
G-BUNDLES ON THE FARGUES-FONTAINE CURVE

ASHWIN IYENGAR

1. p-divisible groups

From now on fix an algebraically closed field k of characteristic p. Let (Schk)fppf denote the big fppf site over
Spec k.

Definition 1.1. A p-divisible group of height h over k (for h ≥ 0) is a sheaf G : (Schk)fppf → Ab such
that

(1) (p-divisiblity) the multiplication by p map G
[p]−→ G is an epimorphism of fppf sheaves,

(2) (p-power torsion) G = lim−→n
G[pn], where G[pn] := ker(G

[pn]−−→ G), and

(3) G[p] is (represented by) a finite flat group scheme of order ph.

Remark 1.2. There is an equivalent formulation as a system (Gn)n≥1 of finite flat group schemes and maps
Gn ↪→ Gn+1 identifying the image with the pn-torsion of the target for each n, subject to some additional
conditions. In fact this is equivalent to the definition we’ve given: in one direction define

G(T ) := lim−→
n

HomSchk(T,Gn)

and in the other direction define

Gn := kerG
[pn]−−→ G

Example 1.3.

(1) Let Qp/Zp denote the constant sheaf associated to the abelian group Qp/Zp: this is a p-divisible

group of height 1.

(2) Set

µp∞(T ) =
{
x ∈ OT (T )× | xp

n

= 1 for some n
}

In the other definition, µp∞ is (µpn)n≥0, which is defined analogously. This also has height 1.

(3) If A/k is an abelian variety of dimension g, then A[p∞] is a p-divisible group of height 2g. If A is
ordinary, then

A[p∞] = µgp∞ ×Qp/Zp
g

Remark 1.4.

(1) Since we are working over a perfect field k, we have a decomposition

G = Gc ×Ge
where Gc is connected and Ge is étale.
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(2) Given a p-divisible group we can define its Cartier dual G∨ by

G∨(T ) = lim−→
n

HomT (G[pn]T ,Gm,T )

which is again a p-divisible group over k, and induces a natural isomorphism (G∨)∨ ∼= G.

(3) Recall we have a relative Frobenius map F : G→ ϕ∗G, and a Verschiebung V : ϕ∗G→ G, which is
dual to the Frobenius on G∨.

2. Dieudonné modules

The goal of this section is to reduce the study of p-divisible groups to (semi)-linear algebra. Let ϕ : W (k)→
W (k) denote the Frobenius map.

Definition 2.1. A Dieudonné module is a triple (M,F, V ), where

(1) M is a finite free W (k)-module,

(2) F : M →M is a ϕ-semilinear endomorphism,

(3) V : M →M is a ϕ−1-semilinear endomorphism, and

(4) FV = V F = p.

Definition 2.2. We define the dual Dieudonné module (M∨, F∨, V ∨) by taking

M∨ = HomW (k)(M,W (k))

and

(F∨`)(m) = ϕ(`(V (m)))

(V ∨`)(m) = ϕ−1(`(F (m)))

Theorem 2.3. There exists an equivalence of categories

{p-divisible groups over k} ∼−→ {Dieudonné modules}
G 7→M(G)

such that

(1) rank(M(G)) is the height of G.

(2) M(G∨) ∼= M(G)∨ and this is natural in G.

Sketch of Construction. We will sketch two possible constructions, which give the same thing.

(1) The first construction is the more classical one, and roughly goes as follows. Let Ŵ denote the
formal completion of the Witt-vector scheme over k, whose representing functor sends a k-algebra R
to W (R). For H a connected p-divisible group we define

M(H) = HomFmlGrp(Ŵ, H)

and one shows that M(ϕ∗H) ∼= ϕ∗M(H) which allows us to define F = M(V ) and V = M(F ). In
general we define

M(G) = M(Gc)×M(G∨e )∨
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(2) The second construction is more abstract and roughly goes as follows. First lift G to a p-divisible
group G0 over W (k). Then there exists a universal vector extension of G0, i.e. an exact sequence of
sheaves

0→ V → EG0 → G0 → 0

such that V ∼= Gm
a,W (k) which is initial in the category of such objects, where we require morphisms

to be W (k)-linear on the V -part. Then Lie(EG0) can be made into a crystal on the crystalline site
over k, and we evaluate this crystal at the PD-thickening W (k) → k to obtain M(G), and one can
show that this doesn’t depend on the lift that you started with. See ? for more details.

�

Example 2.4.

(1) If we start with the height 1 p-divisible group µp∞ , then M(G) is the rank 1 W (k)-module with basis
vector e, where F (e) = e and V (e) = pe: to see this, note that V : ϕ∗µp∞ → µp∞ is an isomorphism,
so F becomes an isomorphism on M(G), and F : µpn → µpn is nilpotent, so it becomes topologically
nilpotent on M(G).

(2) Note Qp/Zp is Cartier dual to µp∞ , so M(G) is the same but we now have F (e) = pe and V (e) = e.

Let K = W (k)[1/p].

Definition 2.5. An isocrystal or ϕ-module is a pair (N,F ) where N is finite dimensional K-vector space
and F : N → N is a ϕ-semilinear map whose linearization ϕ∗N → N is an isomorphism.

Theorem 2.6 (Dieudonné-Manin). The category of isocrystals is abelian semisimple, with simple objects
given by Nr/s for (r, s) = 1 and s > 0, which has a basis

e, Fe, . . . , F s−1e

and F se = pre.

Definition 2.7. We call r/s the slope of the simple isocrystal, and it determines the simple isocrystal
uniquely.

There is a natural functor

{Dieudonné modules} → {isocrystals}
(M,F, V ) 7→ (M [1/p], F )

Note that V is determined because FV = p and now p is invertible.

Remark 2.8. An isogeny of p-divisible groups is an epimorphism with finite kernel, and one can show that
a map is an isogeny if and only if the associated map on isocrystals is an isomorphism. In fact, one can show
that

{p-divisible groups over k} /isogeny
∼−→ {isocrystals with slopes [0, 1]}

G 7→M(G)[1/p]

is an equivalence of categories.

Example 2.9. The isocrystal attached to µp∞ has Frobenius acting by p0, so the slope is 0, and the isocrystal
attached to Qp/Zp has Frobenius acting by p1, so the slope is 1. By the above remark, these are all of the
height 1 p-divisible groups over k, up to isogeny.
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3. Fargues-Fontaine curve

Now let F be an algebraically closed perfectoid field of characteristic p. Recall that this means that F is
perfect and complete with respect to a nondiscrete non-archimedean norm. We let Ainf := W (OF ). Fix a
pseudo-uniformizer $ ∈ OF , and denote by [$] its Teichmüller lift to Ainf .

Definition 3.1. Let Ainf carry the (p, [$])-adic topology, and set

YF = Spa(Ainf , Ainf) \ V (p[$]) :=
{
v : Ainf

cts−−→ Γ t {0} | v(p[$]) 6= 0
}
/∼

(note this does not depend on the choice of $).

One caveat is that we haven’t shown that this is sheafy, so we don’t yet know if this gives an adic space, or
just a “pre-adic space”. In fact the first thing we will do is to cover YF with adic spaces.

The definition may seem mysterious at first, but we can get a better handle on it by noticing that there
are effectively two things going on: there are characteristic p phenomena coming from the fact that F is a
perfectoid field of characteristic p, and we have characteristic 0 phenomena coming from the fact that we
took Witt vectors, and now have a nonzero p ∈ Ainf . In particular, since we chose the (p, [$])-adic topology
on Ainf , we are really incorporating both phenomena.

Remark 3.2. Let’s find some familiar ideals in Ainf , to get a better idea of what kind of points there are
on the curve.

(1) Obviously (Ainf/p)[1/[$]] = F .

(2) Also (Ainf/[$])[1/p] is a field of characteristic 0. For example, if we start with the perfectoid field

Fp((t))
∧t

, then we get W (Fp)[1/p] = Q̆p.

(3) Finally let OE$
:= (Ainf/(p − [$])). Then E$ := OE$

[1/p] is a perfectoid field of characteristic 0:
note we have a surjection

θ̃ : OF
∼−→ (OF /$)[

∼−→ (W (OF )/(p− [$], p))[ = (OE$
/p)[

∼−→ O[
E$

� OE$

so we get a valuation on OE$
by taking v(θ̃(x)) = vF (x). This is well-defined, and shows that E$ is

a characteristic 0 algebraically closed perfectoid field with E[$
∼= F .

In fact, there is a nice moduli description of YF by varying $ in part (3) of the above remark.

Fact 3.3. The map from part (3) induces a bijection

{ideals (p− [$]) ⊆ Ainf for $ ∈ OF with 0 < |$| < 1} ∼−→
{

perfectoid fields E with char(E) = 0 and E[ ∼= F
}
/∼=

and these live inside the rank one points of YF .

Now fix $ again. To understand a point of YF we can look at its behavior at p and [$]. More precisely,
define

κ : YF → (0,∞)

x 7→ log |[$](x̃)|
log |p(x̃)|

where x̃ denotes the rank 1 generization of x, which is well-defined because we removed V (p[$]). Note that
the coordinate ring of YF is

Bb := Ainf

[
1

p[$]

]
=

{ ∑
n>>−∞

[xn]pn ∈W (F )[1/p] | |xn| is bounded

}
.
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For ρ ∈ (0,∞), we define a norm on Bb by∣∣∣∣∣ ∑
n>>−∞

[xn]pn

∣∣∣∣∣
ρ

= max
n
|xn||$|n/ρ.

Then if I ⊆ (0,∞) has endpoints in Q, we let BI denote the completion of Bb with respect to every ρ ∈ I
and we let B◦I denote the ring of power-bounded elements in BI .

Proposition 3.4. If I = [a, b] ⊆ (0,∞) is any closed interval with a, b ∈ Q, then

YF,I := κ−1(I)◦ = Spa(BI , B
◦
I )

and YF,I is an adic space. In particular, YF is an adic space.

Sketch of Proof. These rings are preperfectoid (i.e. there exists a perfectoid field K such that BI⊗̂Qp
K is

uniform and perfectoid) by the Ph.D thesis of Ryan Rodriguez, and rational localizations of preperfectoid
rings are preperfectoid, so BI is stably uniform, hence sheafy. �

The Frobenius ϕ : OF → OF lifts to a Witt vector Frobenius ϕ : Ainf → Ainf . This induces a Frobenius ϕ on
YF , which on points is given by

| · | 7→ |ϕ(·)|.
But note

κ(ϕ(x)) =
log |[$]p(x̃)|

log |p(x̃)|
=
p log |[$](x̃)|

log |p(x̃)|
= pκ(x),

so actually we get induced maps ϕ : YF,[a,b] → YF,[pa,pb]. Thus by choosing small enough intervals, we see
that ϕ acts properly discontinuously, so we can take the quotient.

Definition 3.5. The Fargues-Fontaine curve is

XF = YF /ϕZ

So why did we call this a “curve”? We will see this by introducing a scheme theoretic version of the curve.
We compute

B := Γ(YF ,OYF
) = Γ(lim−→

I

YF,I ,OYF
) = lim←−

I

Γ(YF,I ,OYF
) = lim←−BI = the Fréchet completion of Bb for all | · |ρ

Remark 3.6. We are motivated by the following analogous construction. Given a proper curve X → k over
a field, if we want an explicit model for this, we can pick a very ample line bundle L and then

X = Proj
⊕
d≥0

Γ(X,L⊗d)

Note that by descent, a line bundle on XF should be the same as a ϕ-equivariant line bundle on YF , which
should be the same as an invertible B-module with a compatible ϕ-action. We will take this to be the free
B-module of rank one, with the ϕ action given by ϕ(e) = p−1e. Call this Be. Then we define

XF := Proj
⊕
d≥0

(Be⊗d)ϕ=1 = Proj
⊕
d≥0

Bϕ=pd

Theorem 3.7 (Fargues-Fontaine). XF is a one dimensional regular Noetherian scheme with associated adic
space XF : in particular there is a morphism of locally ringed spaces XF → XF which induces a bijection

{classical points (arising from (p− [$]))} ∼−→ {closed points}

and an isomorphism ÔXF ,x
∼= ÔXF ,x for x classical.

In particular, closed points of XF really correspond to characteristic 0 untilts of F .
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4. Vector bundles

We want to talk about vector bundles on the Fargues-Fontaine curve. Note that for schemes, you can’t build
a theory of coherent sheaves unless you work over a locally Noetherian scheme. For rigid analytic spaces, the
situation is worse, because you don’t always have an analogue of the Hilbert basis theorem for Tate algebras.
Therefore, we restrict ourselves to this case:

Definition 4.1. We say that a Huber ring A is strongly Noetherian if A 〈T1, . . . , Tn〉 is Noetherian for
n ≥ 0.

Theorem 4.2 (Kedlaya). BI is strongly Noetherian.

From this, Kedlaya shows that one can develop a good theory of coherent sheaves on YF and XF , and in
particular of vector bundles.

Let’s describe all of the vector bundles on XF . We can pick an embedding Fp ↪→ OF , which induces a map

Q̆p = W (Fp)[1/p]→ Ainf [1/p[$]]→ B, which by duality gives a structure map

YF → Spa(Q̆p,OQ̆p
).

Note a ϕ-equivariant vector bundle on Spa(Q̆p,OQ̆p
) is the same as an isocrystal. Then pullback of vector

bundles induces a functor

{isocrystals} → {ϕ-equivariant vector bundles on YF }
∼−→ {vector bundles on XF }

Theorem 4.3 (Fargues-Fontaine). The above functor is an equivalence of categories.

Remark 4.4. In particular, Pic(XF ) ∼= Z by the classification of rank 1 isocrystals, so we have a well-defined
notion of degree of any vector bundle via the determinant. If we define the slope to be deg E/ rank E and
say that E is semistable if there are no subbundles of higher slope. Then the vector bundle attached to the
isocrystal Nr/s is semistable of slope r/s.

First note there is a GAGA theorem.

Theorem 4.5. The pullback along XF → XF induces an equivalence of categories between vector bundles.

So it suffices to study vector bundles on XF . Fix a closed point ∞ ∈ XF . Then let Be = Γ(XF \ ∞,OXF
),

and we let B+
dR = ÔXF ,∞ and BdR = B+

dR[1/t] (recall XF is 1-d regular). It turns out that Be is a PID.
It turns out that one can do a version of the Beauville-Laszlo gluing procedure to get an equivalence of
categories

{vector bundles on XF }
∼−→
{

pairs (M,W ) where M is a finite free Be-module and Λ is a B+
dR-lattice in Me ⊗Be BdR

}
E 7→ (Γ(XF \∞, E), Ê∞)

5. G-bundles

Definition 5.1. Let G be a connected reductive group over Qp. Then the Kottwitz set is defined as

B(G) = G(Q̆p)/(ghσ(g)−1 ∼ h).

Definition 5.2. A G-isocrystal is an exact tensor functor

RepQp
G→ Iso

and similarly, a G-bundle on XF is an exact tensor functor

RepQp
G→ BunXF
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Theorem 5.3 (Fargues). We have bijections

{G-bundles on XF }/∼=
∼−→ {G-isocrystals}/∼=

∼−→ B(G)

For G = GLn, the idea is that a G-isocrystal is really just a rank n isocrystal, and the linearization of
the Frobenius map gives a matrix in GLn(Q̆p), which is well-defined up to ϕ-conjugacy, since F was ϕ-
linear.
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