THE DECALAGE FUNCTOR
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1. DEFINITION FOR MODULES
We'll start by doing very explicit computations of the décalage functor for modules over a
commutative ring A with unity.

Fix a nonzerodivisor (NZD) f € A. Let C(A) denote the category of cochain complexes of
A-modules, let C(A); denote the full subcategory of complexes whose terms are all f-torsion-
free (i.e. for all ¢, if f-2 = 0 for x € C* then x = 0), and let D(A) denote the associated
derived category of C'(A).

1.1. Definition. For any complex C' € C'(A), we may associate the complex C[1/f], defined
by (C[1/f])" = C*[1/f]: one checks that this is again a cochain complex.

Then we define n;C to be the sub-complex
(n;C) ={x € fiC":dzx € O},
In other words, 1;C' is the largest sub-complex of C[1/f] which in each degree 7 is contained
in f'C". One readily checks that n; : C(A); — C(A) defines a functor.
Perhaps the most interesting feature of 1y is how it modifies cohomology groups.
1.2. Proposition. The map Z*(C) — Z'(n;C) defined by x — f'x induces an isomorphism
H'(C)/H(C)[f] = H' (n;C),
for all v € Z, which is natural in C.
Proof. If x € C" is a coboundary, then da’ = x for 2’ € C*!, then f'a’ € (n;C)"!, and
d(f'z’) = fidx’ = f'z, which is the image of z under Z(C*) — Z((n;C)?), so we get a well
defined map
H'(C) — H'(nsC).

It remains to compute the kernel. The following are equivalent:

e fix is a coboundary for some z € Z(C?)

o fix=d(f'a") = fi=ldx’ for some 2’ € C*!

e (C"is f-torsion-free) fx = dz’ for some z’ € C*~1

o [fz] =0¢€ H'(C).
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Lastly, this is surjective because an element of H'(n;C') is represented by f‘z for some z € C"
with d(f'z) = f'dx = 0, but again C* is f-torsion-free, so dx = 0. O

So maybe this wasn’t the most conceptual argument, but basically you want some functorial
way of killing f-torsion on the level of complexes, so you invert f, but then maybe this is
still too big, so you throw away everything that doesn’t live in f'C® in each degree, and
voila.

On the other hand, we wish to kill f-torsion on the level of cohomology for any complex.
Since cohomology is only defined up to quasi-isomorphism of complexes, we use the following
proposition to extend the definition to any complex.

1.3. Definition. A complex C € C'(A) is called strongly K-flat if each C" is a flat A-module,
and for every acyclic complex M € C(A), the total complex Tot(M®* ®4 C*®) is acyclic.

1.4. Proposition. Any complex D € C(A) admits a quasi-isomorphism D = C' to a strongly
K-flat complex C € C(A), (which in particular lives in C(A)y).

Proof. This is [1, Tag 06Y4], but we sketch the argument. If D is bounded above, you can
take a quasi-isomorphism to a strongly K-flat complex. If D is not bounded above, then you
can fix any n and form a diagram

TSnD — T§n+1D —_—

| |

Cfp —— Cy —— -+

such that each C} is strongly K-flat. This induces a map hﬂn C, — D, which by exactness of
filtered colimits is still a quasi-isomorphism, and furthermore one can show that C' = hgln Ch
is still strongly K-flat. O

Furthermore, note that

1.5. Lemma. If C = D is a quasi-isomorphism of f-torsion-free complezes, then n;C =
ngD is a quasi-isomorphism as well.

Proof. This follows from naturality of

H'(C)/H'(C)[f] —— H'(1;C)

I s

H'(D)/H'(D)[f] —— H'(n;D)


http://stacks.math.columbia.edu/tag/06Y4
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1.6. Corollary. The functor ny : C(A)y — C(A) extends to a functor Lny : D(A) — D(A)

on the deried category.

In [2], they give a more general definition: in particular, they are situated in some ringed
topos, i.e. they consider a site (e.g. the pro-étale site for an adic space, big/small Zariski
site topology for a formal scheme) with a sheaf of rings & defined on this site, and instead of
defining Lny for f € A, they define L1, for J an ideal sheaf in &¢'. But in the paper, one can
really restrict our attention to a constant sheaf of rings (they use Aj,¢) and look at principal
ideals, and even in this setting we don’t lose much if we study categories of modules: the
proofs generalize easily.

2. ALMOST QUASI-ISOMORPHISMS

Fix a ring A and an ideal I C A.

2.1. Definition. If ¢ : M — N is a map in Mod,4, then ¢ is an /-almost isomorphism if
the kernel and cokernel of ¢ are killed by I.

2.2. Definition. If p : C' — D isamap in C(A), then ¢ is an /-almost quasi-isomorphism
if the maps H'(C') — H'(D) have kernel and cokernel killed by 1.

One of the magical facts about L7y is that in good enough circumstances, it can turn almost
quasi-isomorphisms into actual quasi-isomorphisms.

2.3. Lemma. Fiz an ideal I C A and a NZD f € I. Suppose M € Mods and M/fM
have no non-zero elements killed by every element of I. Then if ¢ : M — N s an I-almost
isomorphism, M /M|f] — N/N|[f] is an isomorphism.

Proof. Since M has no I-torsion, kerp = 0, so we can regard M C N as a submodule.
Clearly M N N[f] = M|[f], proving injectivity.

For surjectivity, given an n € N, we need to find m € M such that n —m € N[f], i.e.
fn = fm. Note N/M is killed by I, so fn € M. The image fn € M/fM is killed by I
(because gfn = f(gn) and gn € M), so fn € fM. O

2.4. Corollary. If ¢ : C — D is an I-almost-quasi-isomorphism, and H'(C) and H'(C)/ fH'(C')
have no I-torsion, then ngC — ngD (for any f € 1) is a quasi-isomorphism.

The remarkable part about this is that we only need to know about C' for this to work. We
don’t need to check anything about D to get this kind of result.

3. FURTHER PROPERTIES

We list some properties that will be important for later talks.
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(3)
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Consider the exact sequence
0—A/f = A/f* = A/f —0.
If C € C(A) is f-torsion-free, then tensoring with C' gives an exact sequence
0—C/fC — C/f?’C = C/fC —0.

Taking the long exact sequence associated to this complex gives “Bockstein” (bound-
ary) homomorphisms
Hi(C/fC) S H Y (C/f0).

One can show that 3% = 0, so this turns (H*(C/fC), 3) into a complex. There is a
natural map of complexes

n;C = (H*(C/fC), B)

given as follows: if fiz € (n;C)" for z € C" and d(f'z) = f"'2’ for some z' € C™*, s0
since C'is f-torsion-free, dr = f2’, and so dZ = 0 where T € C*/ fC", so T gives a class
in H(C/fC). One can check the map forms a map of complexes, and furthermore,
one can check that

n;C @4 A/fA— (H*(C/fC), )
is a quasi-isomorphism. More generally if D is any complex,
LD &% A/fA— (HY(D &% A/fA), B)
is a quasi-isomorphism.

The functor 7 is multiplicative, i.e. 71, = 1y, and induces a natural equivalence
Lny o Lng = Ly,

(Base Change) Suppose o : A — B is a map of rings such that f € A and o(f) € B
are NZD. For D € C(A), we want

(LnyD) ®% B — Lo (D ®% B)

To do this, we take a K-flat resolution C' = D. From here we can take n;C, but then
to represent a derived tensor product with B by an ordinary one, we need to take
another K-flat resolution Cy — nyC. On the other hand, we can first form C' ®4 B
(this represents D ®@" B since C' is K-flat), and then apply 7,5 (note C' ®4 B is still
a complex of flat modules). We summarize this as follows:

D +—— C o 10 ———— Cy vy Gy @4 B

D +—=— C ~~~ C®AB A na(f)(C®AB)
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At each level i, there is a map C}®4 B — (n;C)"®4 B. The A-bilinear map (n;C)" X
B = (Na(n)(C ®4 B))" given by (f'z,b) — a(f) (z®0b) induces a map (n;C)' ®4 B —
(Na(s)(C ®4 B))", which finally induces

(LnyC) ®% B = Lita(p)(C @54 B)
In general, this map is not an isomorphism. But this simplifies considerably if « is

flat: in particular, we need only take one K-flat resolution, so the situation looks like

D —= €~ fC ~rnnnnnnns 1;C @4 B

D —— C ~~s C®4 B~~~ 105)(C ®4 B),

and one can directly show that (n;C) ®4 B — 1) C is an isomorphism. In general,
this extends to a map of ringed topoi.

4. APPLICATION TO A;yy COHOMOLOGY

Briefly, we mention the important of L»n. The basic construction goes as follows: I'll go into
some detail, but not too much, as this will be the focus of later talks in the study group. Let

X be a smooth and proper formal scheme over O, the ring of integers in C, = Q,. To X we
can associate the rigid generic fiber X, which is an adic space on which we can define the
pro-¢tale site X,,,;. As mentioned in Pol’s talk we can define a sheaf

At x = W(G},) = W (lim 0% /p)
¢

on the pro-étale site: this is a sheaf of algebras over the constant sheaf of rings A;,;. There
is amap v : Xproet — Xz4r, and we take

AQX = L?’]#(Rl/*Ainf,X),
where ;1 = [¢] — 1 is some specific element of A;y¢, where € = (1, f1,, 12, . . . ).

Locally on Xz, one can assume X = Spf R for R a p-adically complete, formally smooth

O-algebra, where X is connected, and R is formally étale over (‘)(Tlil, e ,Tf1>. We can
define

Roo = R+ O(THP™),
which has an action of Z¢ = Gal(Frac(Rs)/ Frac(R)). By the almost purity theorem of
Faltings, we get an [m’]-almost quasi-isomorphism
chont(zza Aint(R)) = R proet (X, Aine x)
of complexes of Ajr-modules, where m’” C O is the maximal ideal in the tilt. The point is

that we can show that the left side is “good”, in the sense that it has no non-zero elements
killed by [mb], and neither does the quotient by ;. Then applying L, tells us that

L'r],uRFcont(ZZ; Ainf(Roo)) — Ln,uRFproet (X, Ainf,X)
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is a quasi-isomorphism on the nose. But the right hand side, it turns out, is A{Qgys g, and the

left hand side can be computed more easily.

One application of the Bockstein homomorphism and multiplicativity of L, is a comparison
theorem.
AQ’A{ ®kinf,0 O = (LnuRV*AlnﬁX) ®ﬁinf79 O
~ P
— (LUW(M)RU*Ainﬂx) ®Emf’§ O
= LnJ(LnuRV*Ainf,X> ®L ~0

Ainf’e
= Lz AQx @7 50
= H*(AQx/€) = Q570" = W Qe y0/m)

n

5. DE RHAM-WITT COMPLEX

I'll say something briefly about the historical origin of this functor.

5.1. Definition. Let A — B be a morphism of Z[1/p]-algebras. An F-V-procomplex is the
data (W, R, F,V, \,), where

(1) Each W? is a commutative d.g. W,.(A)-algebra for each r > 1.

2) Morphisms R : W2 | — RW; of d.g. W,.,1(A)-algebras.

3) Morphisms F': We_ | — FW? of d.g. W,.41(A)-algebras.

4) Morphisms V' : F'Ws — Wy, of d.g. W,11(A)-algebras.

5) Morphisms A, : W,.(B) — WY commuting with F,V, R.

such that R commutes with F,V, FV =p, FdV =d, V(F(z)y) = 2V (y), and
Fd 1 ([B]) = A ([0~ dX (b))

(
(
(
(
h

forbe B, r > 1.

One can show there is an initial object in the category of F-V-procomplexes, and this is
called the de Rham-Witt complex.

5.2. Proposition. Let k be a perfect field of characteristic p and R a smooth k-algebra. Then
(Illusie 1979) The Frobenius ¢ : W%, — WQg . is injective and has vmage nyWQg, . In
particular (Berthelot-Ogus), there is a Frobenius semi-linear isomorphism

RU s (R/W (k) = L, RT 4ys (R/W ()
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