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1. Definition for Modules

We’ll start by doing very explicit computations of the décalage functor for modules over a
commutative ring A with unity.

Fix a nonzerodivisor (NZD) f ∈ A. Let C(A) denote the category of cochain complexes of
A-modules, let C(A)f denote the full subcategory of complexes whose terms are all f -torsion-
free (i.e. for all i, if f · x = 0 for x ∈ Ci then x = 0), and let D(A) denote the associated
derived category of C(A).

1.1. Definition. For any complex C ∈ C(A)f , we may associate the complex C[1/f ], defined
by (C[1/f ])i = Ci[1/f ]: one checks that this is again a cochain complex.

Then we define ηfC to be the sub-complex

(ηfC)i = {x ∈ f iCi : dx ∈ f i+1Ci+1}.
In other words, ηfC is the largest sub-complex of C[1/f ] which in each degree i is contained
in f iCi. One readily checks that ηf : C(A)f → C(A) defines a functor.

Perhaps the most interesting feature of ηf is how it modifies cohomology groups.

1.2. Proposition. The map Zi(C)→ Zi(ηfC) defined by x 7→ f ix induces an isomorphism

H i(C)/H i(C)[f ] ∼= H i(ηfC),

for all i ∈ Z, which is natural in C.

Proof. If x ∈ Ci is a coboundary, then dx′ = x for x′ ∈ Ci−1, then f ix′ ∈ (ηfC)i−1, and
d(f ix′) = f idx′ = f ix, which is the image of x under Z(Ci) → Z((ηfC)i), so we get a well
defined map

H i(C)→ H i(ηfC).

It remains to compute the kernel. The following are equivalent:

• f ix is a coboundary for some x ∈ Z(Ci)

• f ix = d(f i−1x′) = f i−1dx′ for some x′ ∈ Ci−1

• (Ci is f -torsion-free) fx = dx′ for some x′ ∈ Ci−1

• [fx] = 0 ∈ H i(C).
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Lastly, this is surjective because an element of H i(ηfC) is represented by f ix for some x ∈ Ci

with d(f ix) = f idx = 0, but again Ci is f -torsion-free, so dx = 0. �

So maybe this wasn’t the most conceptual argument, but basically you want some functorial
way of killing f -torsion on the level of complexes, so you invert f , but then maybe this is
still too big, so you throw away everything that doesn’t live in f iCi in each degree, and
voilà.

On the other hand, we wish to kill f -torsion on the level of cohomology for any complex.
Since cohomology is only defined up to quasi-isomorphism of complexes, we use the following
proposition to extend the definition to any complex.

1.3. Definition. A complex C ∈ C(A) is called strongly K-flat if each Ci is a flat A-module,
and for every acyclic complex M ∈ C(A), the total complex Tot(M• ⊗A C•) is acyclic.

1.4. Proposition. Any complex D ∈ C(A) admits a quasi-isomorphism D
∼−→ C to a strongly

K-flat complex C ∈ C(A), (which in particular lives in C(A)f).

Proof. This is [1, Tag 06Y4], but we sketch the argument. If D is bounded above, you can
take a quasi-isomorphism to a strongly K-flat complex. If D is not bounded above, then you
can fix any n and form a diagram

τ≤nD τ≤n+1D · · ·

Cn Cn+1 · · ·

∼ ∼

such that each Ci is strongly K-flat. This induces a map lim−→n
Cn → D, which by exactness of

filtered colimits is still a quasi-isomorphism, and furthermore one can show that C = lim−→n
Cn

is still strongly K-flat. �

Furthermore, note that

1.5. Lemma. If C ∼−→ D is a quasi-isomorphism of f -torsion-free complexes, then ηfC
∼−→

ηfD is a quasi-isomorphism as well.

Proof. This follows from naturality of

H i(C)/H i(C)[f ] H i(ηfC)

H i(D)/H i(D)[f ] H i(ηfD)

∼

∼ ∼

∼

�

http://stacks.math.columbia.edu/tag/06Y4
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1.6. Corollary. The functor ηf : C(A)f → C(A) extends to a functor Lηf : D(A) → D(A)
on the derived category.

In [2], they give a more general definition: in particular, they are situated in some ringed
topos, i.e. they consider a site (e.g. the pro-étale site for an adic space, big/small Zariski
site topology for a formal scheme) with a sheaf of rings O defined on this site, and instead of
defining Lηf for f ∈ A, they define LηI for I an ideal sheaf in O. But in the paper, one can
really restrict our attention to a constant sheaf of rings (they use Ainf) and look at principal
ideals, and even in this setting we don’t lose much if we study categories of modules: the
proofs generalize easily.

2. Almost Quasi-Isomorphisms

Fix a ring A and an ideal I ⊆ A.

2.1. Definition. If ϕ : M → N is a map in ModA, then ϕ is an I-almost isomorphism if
the kernel and cokernel of ϕ are killed by I.

2.2.Definition. If ϕ : C → D is a map in C(A), then ϕ is an I-almost quasi-isomorphism
if the maps H i(C)→ H i(D) have kernel and cokernel killed by I.

One of the magical facts about Lηf is that in good enough circumstances, it can turn almost
quasi-isomorphisms into actual quasi-isomorphisms.

2.3. Lemma. Fix an ideal I ⊆ A and a NZD f ∈ I. Suppose M ∈ ModA and M/fM
have no non-zero elements killed by every element of I. Then if ϕ : M → N is an I-almost
isomorphism, M/M [f ]→ N/N [f ] is an isomorphism.

Proof. Since M has no I-torsion, kerϕ = 0, so we can regard M ⊆ N as a submodule.
Clearly M ∩N [f ] = M [f ], proving injectivity.

For surjectivity, given an n ∈ N , we need to find m ∈ M such that n − m ∈ N [f ], i.e.
fn = fm. Note N/M is killed by I, so fn ∈ M . The image fn ∈ M/fM is killed by I
(because gfn = f(gn) and gn ∈M), so fn ∈ fM . �

2.4.Corollary. If ϕ : C → D is an I-almost-quasi-isomorphism, and H i(C) and H i(C)/fH i(C)
have no I-torsion, then ηfC → ηfD (for any f ∈ I) is a quasi-isomorphism.

The remarkable part about this is that we only need to know about C for this to work. We
don’t need to check anything about D to get this kind of result.

3. Further Properties

We list some properties that will be important for later talks.
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(1) Consider the exact sequence

0→ A/f → A/f 2 → A/f → 0.

If C ∈ C(A) is f -torsion-free, then tensoring with C gives an exact sequence

0→ C/fC → C/f 2C → C/fC → 0.

Taking the long exact sequence associated to this complex gives “Bockstein” (bound-
ary) homomorphisms

H i(C/fC)
β−→ H i+1(C/fC).

One can show that β2 = 0, so this turns (H•(C/fC), β) into a complex. There is a
natural map of complexes

ηfC → (H•(C/fC), β)

given as follows: if f ix ∈ (ηfC)i for x ∈ Ci and d(f ix) = f i+1x′ for some x′ ∈ Ci+1, so
since C is f -torsion-free, dx = fx′, and so dx = 0 where x ∈ Ci/fCi, so x gives a class
in H i(C/fC). One can check the map forms a map of complexes, and furthermore,
one can check that

ηfC ⊗A A/fA→ (H•(C/fC), β)

is a quasi-isomorphism. More generally if D is any complex,

LηfD ⊗L
A A/fA→ (H•(D ⊗L

A A/fA), β)

is a quasi-isomorphism.

(2) The functor η is multiplicative, i.e. ηfηg = ηfg, and induces a natural equivalence
Lηf ◦ Lηg = Lηfg.

(3) (Base Change) Suppose α : A→ B is a map of rings such that f ∈ A and α(f) ∈ B
are NZD. For D ∈ C(A), we want

(LηfD)⊗L
A B → Lηα(f)(D ⊗L

A B)

To do this, we take a K-flat resolution C ∼−→ D. From here we can take ηfC, but then
to represent a derived tensor product with B by an ordinary one, we need to take
another K-flat resolution C0 → ηfC. On the other hand, we can first form C ⊗A B
(this represents D⊗LB since C is K-flat), and then apply ηα(f) (note C ⊗AB is still
a complex of flat modules). We summarize this as follows:

D C ηfC C0 C0 ⊗A B

D C C ⊗A B ηα(f)(C ⊗A B)

∼ ∼

∼
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At each level i, there is a map Ci
0⊗AB → (ηfC)i⊗AB. The A-bilinear map (ηfC)i×

B → (ηα(f)(C⊗AB))i given by (f ix, b) 7→ α(f)i(x⊗ b) induces a map (ηfC)i⊗AB →
(ηα(f)(C ⊗A B))i, which finally induces

(LηfC)⊗L
A B → Lηα(f)(C ⊗L

A B)

In general, this map is not an isomorphism. But this simplifies considerably if α is
flat: in particular, we need only take one K-flat resolution, so the situation looks like

D C ηfC ηfC ⊗A B

D C C ⊗A B ηα(f)(C ⊗A B),

∼

∼

and one can directly show that (ηfC)⊗A B → ηα(f)C is an isomorphism. In general,
this extends to a map of ringed topoi.

4. Application to Ainf Cohomology

Briefly, we mention the important of Lη. The basic construction goes as follows: I’ll go into
some detail, but not too much, as this will be the focus of later talks in the study group. Let
X be a smooth and proper formal scheme over O, the ring of integers in Cp = Q̂p. To X we
can associate the rigid generic fiber X, which is an adic space on which we can define the
pro-étale site Xproet. As mentioned in Pol’s talk we can define a sheaf

Ainf,X = W (Ô+
X[) = W (lim←−

φ

O+
X/p)

on the pro-étale site: this is a sheaf of algebras over the constant sheaf of rings Ainf . There
is a map ν : Xproet → XZar, and we take

AΩX := Lηµ(Rν∗Ainf,X),

where µ = [ε]− 1 is some specific element of Ainf , where ε = (1, µp, µp2 , . . . ).

Locally on XZar, one can assume X = Spf R for R a p-adically complete, formally smooth
O-algebra, where X is connected, and R is formally étale over O〈T±11 , . . . , T±1d 〉. We can
define

R∞ = R⊗̂O〈T±1〉O〈T 1/p∞〉,
which has an action of Zdp = Gal(Frac(R∞)/Frac(R)). By the almost purity theorem of
Faltings, we get an [m[]-almost quasi-isomorphism

RΓcont(Z
d
p, Ainf(R∞))→ RΓproet(X,Ainf,X)

of complexes of Ainf-modules, where m[ ⊆ O[ is the maximal ideal in the tilt. The point is
that we can show that the left side is “good”, in the sense that it has no non-zero elements
killed by [m[], and neither does the quotient by µ. Then applying Lηµ tells us that

LηµRΓcont(Z
d
p, Ainf(R∞))→ LηµRΓproet(X,Ainf,X)
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is a quasi-isomorphism on the nose. But the right hand side, it turns out, is AΩSpf R, and the
left hand side can be computed more easily.

One application of the Bockstein homomorphism and multiplicativity of Lη• is a comparison
theorem.

AΩX ⊗L
Ainf,θ

O = (LηµRν∗Ainf,X)⊗L
Ainf ,θ

O

∼−→ϕ
(Lηϕ(µ)Rν∗Ainf,X)⊗L

Ainf ,θ̃
O

= Lηψ̃(LηµRν∗Ainf,X)⊗L
Ainf ,θ̃

O

= Lηξ̃AΩX ⊗L
Ainf ,θ̃

O

= H•(AΩX/ξ̃) = Ω•,contX/O = lim←−
n

Ωi
(X/pn)/(O/pn)

5. de Rham-Witt Complex

I’ll say something briefly about the historical origin of this functor.
5.1. Definition. Let A → B be a morphism of Z[1/p]-algebras. An F -V -procomplex is the
data (W•r, R, F, V, λr), where

(1) Each W•r is a commutative d.g. Wr(A)-algebra for each r ≥ 1.

(2) Morphisms R : W•r+1 → R∗W
•
r of d.g. Wr+1(A)-algebras.

(3) Morphisms F : W•r+1 → F∗W
•
r of d.g. Wr+1(A)-algebras.

(4) Morphisms V : F∗W
•
r →W•r+1 of d.g. Wr+1(A)-algebras.

(5) Morphisms λr : Wr(B)→W0
r commuting with F, V,R.

such that R commutes with F, V , FV = p, FdV = d, V (F (x)y) = xV (y), and

Fdλr+1([b]) = λr([b])
p−1dλr([b])

for b ∈ B, r ≥ 1.

One can show there is an initial object in the category of F -V -procomplexes, and this is
called the de Rham-Witt complex.
5.2. Proposition. Let k be a perfect field of characteristic p and R a smooth k-algebra. Then
(Illusie 1979) The Frobenius ϕ : WΩ•R/k → WΩ•R/k is injective and has image ηpWΩ•R/k. In
particular (Berthelot-Ogus), there is a Frobenius semi-linear isomorphism

RΓcrys(R/W (k))
∼−→ LηpRΓcrys(R/W (k))
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