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1 Lecture 1
This course is an introduction to the theory of Galois representations and their deformation theory. The
primary motivation for such a theory is to try to understand the p-adic variation of continuous representations
of the absolute Galois group Gal(Q/Q).

This topic, initially studied in Mazur’s seminal article [Maz89], has garnered a lot of attention in the last
25 years, especially due to the proof of Fermat’s Last Theorem by Wiles and Taylor–Wiles. Although I do
not intend to cover modularity in much detail in this course, it is worth first giving a brief overview of how
a Galois deformation ring is used in a modularity lifting theorem, so that I can pretend this course is about
“number theory”, when in reality it’s about commutative algebra and representation theory. The original
modularity lifting theorem was used to prove Fermat’s Last Theorem, so let’s start there.

1.1 Fermat
If ap + bp + cp = 0 with abc ̸= 0 is a counterexample, consider the elliptic curve (over Q)

E : y2 = x(x− ap)(x + bp).

One can show that this is a semistable elliptic curve, meaning that at the primes where E has bad reduction,
it is of multiplicative type. This is another way of saying that when you take a minimal Weierstrass model
and form the base change EFp and complete at the singularity you get Spf kJx, yK/(xy).

A good replacement for E (which actually determines E up to isogeny, if you vary p) is the p-adic Tate
module. Recall that E has a group structure, so we can define

Tp(E) = lim←−
n

E(Q)[pn] ∼= Z2
p.

which has a continuous linear action of GQ := Gal(Q/Q). Incidentally, Tℓ(E) ∼= H1
ét(EQ,Zp)∨, and this is

Galois equivariant. This gives a representation

ρE,p : GQ → GL2(Zp)

which satisfies a bunch of nice properties. The mod p reduction ρE,p does as well. We want to show that
the fact that they satisfy a bunch of nice properties leads to some kind of contradiction. So how do we do
that?

Well, we want to show that ρE,p satisfies some a remarkable property, which contradicts the nice property. I
was lazy and didn’t write down the nice properties, but we will next focus on the remarkable property, since
it’s the key to this argument.
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1.2 Modularity
The remarkable property is called modularity. To explain this, we need to sidestep and talk about modular
forms.

If f =
∑

n≥1 anqn is a weight 2 normalized cuspidal new eigenform of level Γ0(N), the Eichler–Shimura
construction associates to it an elliptic curve Ef appearing as a direct summand of J0(N), the Jacobian
of X0(N), which is an algebraic curve whose complex points are Γ0(N)\H.

A fact: ρf,p := ρEf ,p is unramified at ℓ ∤ pN , which means that ρf,p(IQℓ
) = 1. Thus we can state that this

elliptic curve satisfies the important Eichler–Shimura relation, which says that

tr(ρf,p(Frobℓ)) = aℓ and det(ρf,p(Frobℓ)) = ℓ.

Saying that f is an eigenform in this context means that Tℓ · f = aℓf , where Tℓ is the usual Hecke operator
in End(S2(Γ0(N))). Let T(N) denote the subring of End(S2(Γ0(N))) generated by Tℓ for each ℓ ∤ Np.

Definition 1.2.1. If A is a topological ring, a continuous representation

ρ : GQ → GL2(A)

is modular if there exists an integer N > 0 and a homomorphism π : T(N)→ A such that

• ρ is unramified outside of Np

• for every ℓ ∤ Np,
tr(ρ(Frobℓ)) = π(Tℓ) and det(ρ(Frobℓ)) = ℓ.

We say an elliptic curve over Q is modular if ρE,p is modular for some (equivalently any, as it turns out)
prime p.

Fact 1.2.2. An elliptic curve E over Q is modular if and only if there exists a weight 2 normalized cuspidal
neweigen form f of level Γ0(NE) as above satisfying

ρf,p
∼= ρE,p.

Here NE is the conductor of E, defined by counting the primes of bad reduction for E with multiplicities
depending on the reduction type.

Theorem 1.2.3 (Wiles, Taylor–Wiles). Every semistable elliptic curve over Q is modular.

In fact, something stronger is true:

Theorem 1.2.4 (Breuil–Conrad–Diamond–Taylor). Every elliptic curve over Q is modular.

So how do you prove such a theorem? First, assume that you know that ρE,p is modular for some prime p.
This by itself is not enough; this only says that there exists some newform f such that ρE,p

∼= ρf,p mod p.
We need isomorphism on the nose.

This is where Wiles’s work comes in. The rough idea is that there is a ring R parametrizing all “nice”1 lifts
of ρE,p (including ρE,p itself), and there’s a ring T parametrizing all nice modular lifts of ρE,p. The former
is a Galois deformation ring, and the latter is a certain kind of Hecke algebra T.

The way this works is roughly that if A is a certain kind of ring with a surjection onto Fp, then

{R→ A} =
{

nice ρ : GQ → GL2(A) lifting ρE,p

}
.

In particular taking A = R itself we get a universal nice lift ρR : GQ → GL2(R), which every other lift is
specialized from. Also

{R→ A} =
{

nice modular ρ : GQ → GL2(A) lifting ρE,p

}
.

1What does nice mean? Remember that we said that ρE,p is nice. The definition of nice applies to more general ρ.
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In particular taking A = T itself we get a universal nice modular lift ρT : GQ → GL2(T), which every other
lift is specialized from.

But now notice that ρT therefore corresponds to some map R → T. The point is now to show that this
map is an isomorphism! If you do this, this implies that ρR

∼= ρT, so every nice lift is actually modular, and
you’re done.

Constructing R is “easy”, once you understand the basics of Galois deformation theory. Understanding its
properties requires some work. Constructing T is a bit more subtle, but is not the hard part of the argument.
For both, one of the subtleties is figuring out what “nice” should mean.

Finally, note that we didn’t justify the fact that ρE,p is modular for some p. This follows from a deep theorem
of Langlands–Tunnell, which proves this when p = 3 and ρE,3 is irreducible. When it’s reducible, you can
perform some tricks involving the primes 3 and 5 to conclude the same thing.

1.3 Finishing Fermat
Recall we had ap + bp + cp = 0 with p odd and abc ̸= 0. We can also assume a ≡ −1 mod 4 and 2 | b. We
then constructed an elliptic curve E : y2 = x(x − ap)(x + bp), and looked at ρE,p. One can compute the
conductor is

NE =
∏

ℓ|abc

ℓ.

So the theorem says that E is modular, so there’s a newform f of level NE such that ρE,p
∼= ρf,p.

We know that ρE,p is unramified outside of pNE . In fact, Frey and Serre show that ρE,p is actually unramified
outside of 2p. Moreover, a level-lowering theorem of Ribet (called the ϵ-conjecture) says that in this situation
there exists a weight 2 newform g of level Γ0(2) such that

ρg
∼= ρE,p

But
dim S2(Γ0(2)) = genus(X0(2)) = 0,

so we get a contradiction.

The rest of the course won’t really involve modular forms and Hecke algebras. Instead, we’ll focus on how
to construct the ring R.
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