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1. Introduction

We are studying the cohomology of arithmetic groups. Today, we will describe the case where when G = SL2,
and Γ is a congruence subgroup, which is an important case showing up in the theory of modular forms.

I am mostly using [Bel] as a reference.

Definition 1.1. A subgroup Γ ⊆ SL2(Z) is a congruence subgroup if for some N ,

Γ(N) = ker(SL2(Z)→ SL2(Z/NZ)) ⊆ Γ.

So fix Γ as above and fix a weight k ≥ 2. Let Sk(Γ) denote the space of cusp forms of level Γ and weight
k, and let Ek(Γ) denote the space of Eisenstein series of level Γ and weight k. The goal of today’s talk is to
prove the following result.

Theorem 1.2 (Eichler-Shimura). There is a Hecke-equivariant isomorphism

Sk(Γ)⊕ Sk(Γ)⊕ Ek(Γ)
∼−→ H1(Γ,Symk−2(C2))

where Γ acts on C2 via Γ ↪→ GL2(C).

Here Sk(Γ) denotes the space of anti-holomorphic cusp forms, which in this case is actually isomorphic to
Sk(Γ). We will explain what “Hecke-equivariant” means later on in the talk.

2. Modular Symbols

Modular symbols (which basically amount to homology classes) turn out to be a nice way of computationally
accessing the link between spaces of modular forms and cohomology, so we will use them as our tool to
construct the Eichler-Shimura map. They also turn out to be a nice way to construct p-adic L-functions,
which is one of their primary uses.
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Definition 2.1. Let ∆ denote the group of divisors on P1(Q). In other words, these are finite sums
∑
i ni[ri]

with ri ∈ Q ∪ {∞}. Let

∆0 =

{
D =

∑
i

ni[ri] ∈ ∆ :
∑
i

ni = 0

}

Note ∆0 admits a left Γ-action via Möbius transformations. In other words if γ =

(
a b
c d

)
, we have an action

on P1(Q) given by

γ · [r] =

[
ar + b

cr + d

]
and this extends to all of ∆0.

Remark 2.2. Note that the set of Γ-equivalence classes of P1(Q) is exactly the set of cusps in the com-
pactification of the modular curve. When we see the definition of a modular symbol associated to a modular
form, we will need the interpretation of ∆0 as the space of (finite sums of) equivalence classes of spaces of
paths between cusps.

Definition 2.3. Let V be a group with a left Γ-action. We let

SymbΓ(V ) = HomΓ(∆0, V )

and call SymbΓ(V ) the space of modular symbols of level Γ with values in V .

Note that we can put a left Γ-action on Hom(∆0, V ) which takes

φ 7→ [γ · φ : D 7→ γ−1 · φ(γ ·D)]

Then we visibly have Hom(∆0, V )Γ = HomΓ(∆0, V ).

3. Cohomology

We now write down a cohomological interpretation of these modular symbols. First we make the technical
assumption that Γ acts freely on H (this is satisfied, for instance, when Γ(3) ⊆ Γ). Note YΓ = H/Γ is a
classifying space for Γ (basically because Γ acts freely and discontinuously on H, and H is contractible),
which (by general manipulations) implies that for V any left Γ-module,

Hi(Γ, V ) ∼= Hi(YΓ, Ṽ )

where Ṽ is the local system associated to V , and where on the right we take singular cohomology. By abuse

of notation, we let Hi
c(Γ, V ) denote the compactly supported cohomology of YΓ with Ṽ -coefficients.

Proposition 3.1. There is a canonical and functorial isomorphism

SymbΓ(V )
∼−→ Hi

c(Γ, V )

Proof. Let H = H∪P1(Q) denote the compactification of H given by adding cusps. Note H is not compact,

so H0
c (H, Ṽ ) = 0. Note further that H is contractible, so H1(H, Ṽ ) = 0. Then if we consider the long exact

sequence for a closed subset for compactly supported cohomology, and if we take Homs into V for the split
short exact sequence 0→ ∆0 → ∆→ Z→ 0, we get

0 H0(H, Ṽ ) H0(P1(Q), Ṽ ) H1
c (H, V ) 0

0 V Hom(∆, V ) Hom(∆0, V ) 0
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The left vertical equality follows from the fact that H is connected, and the middle equality follows from the
fact that ∆ is the free group generated by P1(Q). Therefore H1

c (H, V ) = Hom(∆0, V ), and so a spectral

sequence computation, combined with the fact that H0
c (HΓ, Ṽ ) = 0, implies that

SymbΓ(V ) = Hom(∆0, V )Γ = H1
c (H, Ṽ )Γ = H1

c (H/Γ, Ṽ ).

�

But we care about the whole Hi, so we need to see to what extent the modular symbols contribute to
it.

Definition 3.2. The interior cohomology Hi
! (Γ, V ) is by definition the image of the natural map

Hi
c(Γ, V )→ Hi(Γ, V )

In fact, Poincaré duality induces a perfect pairing

H1
! (Γ, V )×H1

! (Γ, V ∨)→ C

(here V is a C-vector space and Γ acts C-linearly).

4. Cusp Forms

In practice, we let

V = Vk(C) = Symk−2(C2),

which is the exact analog of specifying the weight k in the definition of a modular form.

So how do you associate a modular symbol to a cusp form? We need to construct a map that takes a “path”
[s]−[r] and spits out an element of Vk(C) = Symk−2(C2). First we give a more concrete description of V . Let
Pk(C) denote the space of homogeneous polynomials of degree k− 2 in two variables, with the action

(P · γ)(X,Y ) = P (aX + bY, cX + dY ).

Then Vk(C) ∼= Pk(C)∨. Note also that there is an isomorphism

Θk : Vk(C)
∼−→ Pk(C)

which follows from the classification of highest weight representations of SL2(C). Combined with Poincaré
duality, we get a perfect pairing

H1
! (Γ, V )×H1

! (Γ, V )
1×Θk−−−−→ H1

! (Γ, V )×H1
! (Γ, V ∨)→ C

We also have a pairing on Sk(Γ):

Definition 4.1. The Petersson inner product is given by

(f, g)Γ =

∫
H/Γ

f(z)g(z)yk−2dxdy

It is a perfect sesquilinear pairing.

In a moment we will relate the two pairings. First we associate a modular symbol to each cusp form.

Definition 4.2. Given a cusp form f ∈ Sk(Γ), we may define

If ([s]− [r])(P ) =

∫ s

r

f(z)P (z, 1)dz

and extend φk(f) to all of ∆0 (exercise: check that this is independent of the path chosen between r and s
on the modular curve, and that this “extension to ∆0” is well-defined). Convergence of this integral relies
on the fact that f decays rapidly as it approaches the cusps, eventually hitting 0.
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Lemma 4.3. The map If is Γ-equivariant.

Proof. If D ∈ ∆0 and γ =

(
a b
c d

)
, then we just compute:

If (γ · ([s]− [r]))(P ) = If (γ · [s]− γ · [r])(P )

=

∫ γ·s

γ·r
f(z)P (z, 1)dz

=

∫ s

r

f(γ · z)P (γ · z, 1)d(γ · z)

=

∫ s

r

(cz + d)kf(z)P

(
az + b

cz + d
, 1

)
(cz + d)−2dz

=

∫ s

r

(cz + d)kf(z)(cz + d)−(k−2)(P · γ)(z, 1)(cz + d)−2dz

=

∫ s

r

f(z)(P · γ)(z, 1)dz

= If ([s]− [r])(P · γ)

= [γ · (If ([s]− [r])](P )

Here we used the automorphy condition on f , the homogeneity of P , and the chain rule for dz. �

So we get a map

φk : Sk(Γ)
f 7→If−−−−→ SymbΓ(Vk(C))

∼−→ H1
c (Γ, Vk(C))→ H1(Γ, Vk(C))

Note the existence of the R-vector subspace H1
(c)(Γ, Vk(R)) which satisfies

H1
(c)(Γ, Vk(R))⊗R C ∼= H1

(c)(Γ, Vk(C))

so we define a map

ESk : Sk(Γ)⊕ Sk(Γ) ∼= Sk(Γ)⊗R C
2<(φk)⊗1−−−−−−→ H1

c (Γ, Vk(R))⊗R C = H1
c (Γ, Vk(C))→ H1

! (Γ, Vk(C))

Theorem 4.4. The map ESk is an isomorphism.

Proof. We first show injectivity of <(φk) : Sk(Γ) → H1
c (Vk(R)). To check injectivity, we use the following

computation, due to Shimura:

(<(φk)(f),<(φk)(g)) = ck((f, g)Γ + (−1)k+1(f, g)Γ)

for some nonzero constant ck ∈ C (to do this computation, you need to trace through the cohomological
formalism and figure out what the pairing is: basically it’s given by a cup product, and by using a comparison
with de Rham cohomology, you can get a handle on computing this cup product). Then if we assume
<(φk)(f) = 0, then applying the above formula to g and ig we see that <(f, g)Γ = 0 and =(f, g)Γ = 0. Since
(·, ·)Γ is perfect and (f, g)Γ = 0 for all g ∈ Sk(Γ), we must have f = 0.

As for surjectivity, there is a dimension formula in Section 6 of [Hid93]. Following Bellaiche’s book, we will
sketch a proof when k = 0. In this case, S2(Γ) can actually be identified with the space Ω1(X(Γ)), the
space of holomorphic differential 1-forms on XΓ. But by definition dimC Ω1(X(Γ)) is the genus of XΓ, so
dimR S2(Γ) = 2g. On the other hand we have a factorization (note V0(R) = R)
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H1
c (YΓ,R) H1(YΓ,R)

H1(XΓ,R)

but dimRH
1(XΓ,R) = 2g. �

5. Hecke Operators

As mentioned in the beginning, we should show that this map has “nice properties”. In this case, this means
that the map respects Hecke operators.

First we define Hecke operators for modular forms. Take the monoid S = GL+
2 (Q) ∩M2(Z), and form the

double coset ΓsΓ. If we pick a decomposition ΓsΓ =
⊔
i Γsi, for si ∈ S, then we can define a right action

on:

• Sk(Γ):

f 7→ f |ΓsΓ =
∑
i

f [si]k

where we define the slash operator

f [si]k(z) = (det si)
k−1j(si, z)

−kf(si · z)

• SymbΓ(Vk(R)): note Vk(R) is actually an S-module because S acts on R2 in the same way as Γ.

φ 7→ φ|ΓsΓ : D 7→
∑
i

φ(si ·D) · si

Remark 5.1. When Γ = Γ1(N), the matrices 1, 0, 0, p give you the Tp operators, which have the decompo-
sition

Proposition 5.2. The map <(φk) : Sk(Γ)→ H1(Γ, Vk(R)) respects the Hecke operators.

Proof. First we show that Sk(Γ)→ Symb(Vk(R)) respects the Hecke operators. Then the proposition follows
from the fact that

SymbΓ(V (R))→ H1(Γ, Vk(R))

is Hecke-equivariant, which follows from the fact that 0→ V → Hom(∆, V )→ Hom(∆0, V )→ 0 is actually
an exact sequence of S-modules, and the above map is the connecting homomorphism in the long exact
sequence associated to taking Γ-invariants of this sequence.

But the proof that SymbΓ(Vk(R)) → H1(Γ, Vk(R)) is Hecke-equivariant is an only slightly more general
version of Lemma 4.3. �

6. Correspondences

There is a more geometric perspective on Hecke operators. To explain this, we use the formalism of coho-
mological correspondences. We will do this in a very elementary way, and in particular we will not discuss
derived categories or the six functor formalism.

Again assume for simplicity that Γ acts freely on H. Let F = R,C. As before, we fix an element s ∈
GL+

2 (Q) ∩M2(Z). Then we let

Φ = Γ ∩ sΓs−1
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This allows us to define the map

Hi(Γ, Vk(F ))
res−−→ Hi(Φ, Vk(F ))

u 7→u(s−1·s)−−−−−−−−→ Hi(s−1Φs, Vk(F ))
cores−−−→ Hi(Γ, Vk(F ))

Note restriction is well-defined for any morphism of groups, and corestriction is an operation on Galois
cohomology which is well-defined because [Γ : s−1Φs] <∞. The corestriction map is the map on cohomology
induced by the norm map: if H ≤ G is a finite index subgroup and A is a left G-module, then the norm map
is (exercise: check this is well-defined)

AH → AG

a 7→
∑

gH∈G/H

g · a

Fix cocycle representatives g for each g ∈ H\G. Explicitly on cocycles then, the map is given by

Hi(H,A)→ Hi(G,A)

u(σ0, . . . , σi) 7→
∑

Hg∈H\G

g−1x(gσ0[gσ0]−1, . . . , gσi[gσi]
−1)

Exercise 6.1. Show that the map

Sk(Γ)
If−→ SymbΓ(Vk(C))

∼−→ H1
c (Γ, Vk(C))→ H1(Γ, Vk(C))

is given by

f 7→

(
γ 7→

∫ γ(z0)

z0

f(z)(zX + Y )k−2dz

)
and then show that this map is Hecke equivariant (you will use the fact that

Φ\Γ→ Γ\ΓsΓ
γ 7→ sγ

is a bijection)

Remark 6.2. There is a more geometric picture of what’s going on: we’ll illustrate it for smooth complex
curves. If we have the diagram of complex curves

C

X Y

f g

with nonconstant holomorphic maps, then you may take

H1(X,Ω1)
f∗−→ H1(C,Ω1)

g∗−→ H1(Y,Ω1)

So for instance if we take X = Y = YΓ and C = YΦ then we recover the situation above, with f the natural

inclusion, and g = f ◦ cs, where cs denotes conjugation. If s =

(
p 0
0 1

)
, this should recover the Tp operator.

7. Eisenstein Series

To finish the proof of the Eichler-Shimura isomorphism, we need to address the Eisenstein part.

First we construct a map. Let γ =

(
a b
c d

)
, and define

Ek(Γ)→ H1(Γ, Vk(C))

f 7→ uf : (γ 7→ g|γ−1,−(k−2) − g)
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where g is some analytic function with g(k−1) = f . One can show that in fact

(g|γ,−(k−2))
(k−1)(z) = f |γ,k(z),

Modularity of f implies that uf (γ)(k−1) = 0, so uf (γ) is actually a polynomial landing in Vk(C). One can
check that uγ in fact defines a cocycle, and that the map f 7→ uf is Hecke-equivariant.

Lemma 7.1. The map f 7→ uf is injective.

Proof. If uf = 0, then g satisfies the weight −(k − 2) automorphy condition, and since g is holomorphic at
the cusps, it really is a modular form of weight −(k−2). If k > 2 then g = 0, and if k = 2 then g is constant.
Either way, f = 0. �

Thus we get a Hecke-equivariant embedding

H!(Γ, Vk(C))⊕ Ek ↪→ H1(Γ, Vk(C))

Another dimension computation in [Hid93] shows that this is actually an isomorphism.

Remark 7.2. The exact sequence

0→ V → Hom(∆, V )→ Hom(∆0, V )→ 0

and the isomorphism above give

0→ B SymbΓ(Vk(C)) := Hom(∆, Vk(C))Γ/Vk(C)Γ → H1
c (Γ, Vk(C))→ H1(Γ, Vk(C))→ Ek(Γ)→ 0

Note Poincaré duality (and an identification Vk(C) ∼= Vk(C)∨) gives a pairing

H1
c (Γ, Vk(C))×H1(Γ, Vk(C))→ C

Fact: (c|ΓsΓ, d) = (c, d|Γs′Γ) where s′ = det(s)s−1, so this pairing “respects Hecke operators”. Then one can
define a pairing

B SymbΓ(Vk(C))× Ek(Γ)→ C

(x, y) 7→ (x, ỹ)

where ỹ is any lift of y to H1(Γ, Vk(C)), and one can show this is well-defined. This pairing also respects
Hecke operators. This induces a Hecke-equivariant isomorphism

B SymbΓ(Vk(C)) ∼= Ek(Γ)∨.
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