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Today I will discuss Coleman theory and higher Coleman theory. We will first show how to p-adically vary the
weight of finite-slope cohomology classes, and then use this variation to construct the eigencurve in two different
ways. There are natural sheaves arising in each of these constructions which admit a perfect pairing, and we will
discuss how they interpolate Serre duality at classical points.

1. Interpolating the Sheaf

Recall from Juan’s talk that in order to do Hida theory, one varies the weight p-adically via the Igusa tower. Recall
that this is defined over the ordinary locus by first viewing the line bundle ωE as a Gm-torsor, and then taking
a restriction of structure to a Z×p -torsor corresponding to the Hodge-Tate map HT : Tp(E)et → ωE . Then we

defined a sheaf ωκ
un

:= (OIg⊗̂Λ)Z
×
p . But let me be a bit more precise: in Louis’s talk he first defined a moduli

problem for characteristic p schemes at finite level n:

PIgn
: S 7→

{
E/T an elliptic curve with an isomorphism Hn := ker(Fn)

∼−→ µpn
}

which was represented by an étale cover of the ordinary locus. Here F is the Frobenius. The interpretation to
keep is mind is that the varying Hn are the level n canonical subgroups. Let me describe a way of constructing

Hn from Hn−1 and Frobenius. Let πn−1 : E → E/Hn−1 denote the natural projection. Then if H̃n = ker(F :
E/Hn−1 → E/Hn−1), then it is a straightforward check to show that

π−1n−1(H̃n) = Hn

This is tautological and seems overly complicated, but it will become clear why this is a useful perspective in a
bit.

Now let’s try to mimic this in the finite slope case. Recall that we now consider the modular curves now as adic
spaces X,X0(p) → Spa(Qp,Zp) (I’m ignoring tame level everywhere). Recall also that we defined, for v < 1, a
quasi-compact open Xv ⊆ X whose rank points are exactly those x ∈ X such that v(Ha(x)) < v. We want to
find an analog of the Igusa tower in this setting. In order to construct this, we will need to be able to talk about
canonical subgroups of level n. Recall the following theorem from last week.

Theorem 1.0.1 (Lubin [Kat73, Theorem 3.1]). If v < p
p+1 there exists a canonical subgroup H1 ⊆ E[p] over Xv.

So at least if we work over the neighborhood Xv of the ordinary locus, we have access to a canonical subgroup.
But what about level n subgroups for n > 1? Now the overly complicated construction I gave above comes in
handy. First we note the following theorem.
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Theorem 1.0.2 (Lubin [Kat73, Theorem 3.10.7]). If v < p
p(p+1) then E/H1 admits a canonical subgroup H̃2 ⊆

E/H1.

Proof. The idea is that if v(Ha(E)) < p
p+1 then there is a canonical subgroupH1 ⊆ E[p] and then v(Ha(E/H1)) =

pv(Ha(E)), which is the theorem cited. �

Then letting π1 : E → E/H1 be the projection map, we define H2 := π−11 (H̃2).

Iterating this idea, we have thus proven the following proposition:

Proposition 1.0.3. If v < p
pn−1(p+1) , there exist canonical subgroups Hn ⊆ E[pn] of level n over Xv.

Now we can use these to construct a version of the Igusa tower. Before giving Boxer-Pilloni’s sketch of the
construction, I should mention that the construction of modular sheaves at a specific p-adic weight in weight
space is done explicitly in [Pil13], which is a good secondary reference. We now regard ωE = e?Ω1

E/X as a

Gm-torsor. Let G+
a = Spa(Qp 〈T 〉 ,Zp 〈T 〉) denote the adic closed unit disk.

Proposition 1.0.4 (Proposition 1.15 in [BP20]). If v < 1
pn−1(p−1) , the Gm-torsor ωE has a natural reduction to

a Z×p (1 + pn−v
pn

p−1G+
a )-torsor Tv over Xv.

Proof Sketch. First, note that the condition on v implies the existence of a canonical subgroup Hn ⊆ E[pn] over
Xv. One then gets an exact sequence

0→ ω+
E/Hn

→ ω+
E → ω+

Hn
→ 0

which induces an isomorphism ω+
E/p

n−v pn−1
p−1

∼−→ ω+
Hn
/pn−v

pn−1
p−1 (for an explanation of why this is true at a rank

1 point, see [Pil13, Proposition 3.1]). Then there is a Hodge-Tate map

(Hn)D
HT−−→ ω+

Hn

and corresponding linearization (Hn)D ⊗ O+
Xv
→ ω+

Hn
. This is not an isomorphism, but if we let

ω]E :=
{
ω ∈ ω+

E | r(w) ∈ im(HT⊗1)
}
⊆ ω+

E

then it is mod pn−v
pn

p−1 :

HTv : (Hn)D ⊗ O+
Xv
/pn−

pn

p−1 → ω]E/p
n−v pn

p−1

and finally define the Z×p (1 + pn−v
pn

p−1G+
a )-torsor

Tv :=
{
ω ∈ ω]E | ∃P ∈ (Hn)D, pn−1P 6= 0,HTv(P ) ≡ ω mod pn−v

pn

p−1

}
This admits a map Tv ↪→ ωE which is equivariant for the analytic group morphism Z×p (1+pn−v

pn

p−1G+
a ) ↪→ Gm. �

Since Tv is meant to be the Coleman theory substitute for the Igusa tower, we want to use it to define a universal
line bundle. Let W := Spa(Λ,Λ)×Spa(Qp,Zp) denote the weight space, which is covered by an increasing union
of affinoid closed unit balls:

W =
⋃
r

Wr

There is a universal character Z×p → O×W which, for large enough t(r), extends to a universal character

Z×p (1 + pt(r)O+
Wr

)→ O×Wr
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Now fix a radius r and choose v small enough and n large enough so that t(r) ≤ n− v pn

p−1 . The aforementioned

actions combine to an action of Z×p (1 + pn−
pn

p−1 O+
Xv×Wr

) on OTv×Wr
. Then we let

ωκ
un

:= (OTv×Wr
)Z
×
p (1+p

n−v
pn

p−1 O+
Xv×Wr

)

Fact: this is a locally free sheaf of OXv×Wr
-modules.

2. Interpolating Cohomology

Continue with the same setup as above, so that v is sufficiently small to allow the existence of level n canonical
subgroups. Recall from Chi-Yun’s talk that for 0 < a ≤ v/p, there is a map p1 : X0(p)[0,a] → Xv, so we can

pull back ωκ
un

to an invertible sheaf over X0(p)[0,a] × Wr. Dually, for 1 − v ≤ a < 1, then we get a map

X0(p)[a,1] → Xv and so we can pull back ωκ
un

to an invertible sheaf over X0(p)[a,1] ×Wr.

The cohomology groups that we want to consider are

• RΓX0(p)[0,a)
(X0(p), ωκ

un

) := RΓX0(p)[0,a)
(X0(p)[0,a], ω

κun

)

• RΓ(X0(p)[a,1], ω
κun

)

Now we would like to define a Up correspondence which induces a Up operator on cohomology. Let’s start with
the [a, 1] part. Recall from Chi-Yun’s talk that we had a correspondence diagram

C[a,1]

X0(p)[a/p,1] X0(p)[a,1]

p2 p1

Lemma 2.0.1. There is a natural isomorphism p?2ω
κun → p?1ω

κun

, and we can define a cohomological correspon-
dence

Up : (p1)?p
?
2ω

κun

→ ωκ
un

which specializes to Up in weight k ≥ 1.

Proof. The idea is that over C[a,1] the universal isogeny p?1E → p?2E induces an isomorphism on canonical
subgroups p?1Hn → p?2Hn: this is because C parametrizes tuples (E,H,E′, H ′) and on C[a,1] both H and H ′ are
the canonical subgroup of E and E′. We end up with a commutative diagram of isomorphisms

p?2(Hn)D ⊗ O+
Xv
/pn−v

pn

p−1 p?1(Hn)D ⊗ O+
Xv
/pn−v

pn

p−1

p?2ω
]
E/p

n−v pn

p−1 p?1ω
]
E/p

n−v pn

p−1

HT HT

and one can check that this induces an isomorphism p?2Tv → p?1Tv, which finally induces an isomorphism p?2ω
κun →

p?1ω
κun

. We thus define

Up : p?2ω
κun

→ p?1ω
κun

1
p trp1−−−−→ p!1ω

κun

�

This induces a compact operator

Up : RΓ(X0(p)[a,1], ω
κun

)
res−−→ RΓ(X0(p)[a/p,1], ω

κun

)→ RΓ(X0(p)[a,1], ω
κun

)
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Now we have to tell the same story for RΓX0(p)[0,a)
(X0(p), ωκ

un

). I will simply remark that the same proof goes
through, but now we note that the Up-correspondence is actually supported on

Ccan
[0,a]

X0(p)[0,pa] X0(p)[0,a]

pcan2 pcan1

where pcan1 is an isomorphism. The point is that the universal isogeny is the canonical isogeny E → E/H1, but its
dual E/H1 → E induces an isomorphism on the canonical subgroups, which exist by the assumption on a.

Lemma 2.0.2. There is a natural isomorphism (pcan2 )?ωκ
un → (pcan1 )?ωκ

un

, and we can define a cohomological
correspondence

Up : (pcan1 )?(p
can
2 )?ωκ

un

→ ωκ
un

which specializes to Up in weight k ≤ 1.

3. Eigencurves

What are eigencurves and how are they constructed? The point is that we now have constructed complexes of
Banach spaces overOWr

equipped with an action of a compact Up-operator. In Coleman theory, one is interested in
finite-slope vectors appearing in the complex, i.e. eigenvectors for the Up-operator which have nonzero eigenvalue.
There are two steps in constructing an eigenvariety:

• First, construct the spectral variety Zr → Wr which, in some sense, parametrizes the reciprocals of the
nonzero eigenvalues of Up.

• Next, construct the eigenvariety itself, which parametrizes systems of Hecke eigenvalues for the whole
algebra of Hecke operators away from p and the level N , which is implicit in this whole discussion.

The general construction goes as follows. Take M• a bounded complex of OWr
-modules. We first define the

characteristic power series

P (T ) = det(1−XUp|M•) =
∏
i

det(1−XUp|M i) ∈ OWr
[[T ]]

There is some work to be done to make sense of this, but one can do so if Up is compact and if the terms in
the complex M• satisfy a technical condition called “property (Pr)” by Buzzard (which resembles, but is not
equivalent to, projectivity in the categorical sense) which we now impose. Then we define

Z̃r := V (P ) ⊆ A1 ×Wr →Wr

Over Zr one has a bounded complex of coherent sheavesM•, which is the universal nonzero generalized eigenspace
of M• for the Up-operator, and for x = (κ, α) ∈ Zr, it satisfies

Mi
x = (M i

x)Up=α
−1

In the cases we care about, M• will have cohomology concentrated in one degree, so we work with H∗(M). If
I ⊆ OZ̃ denotes the annihilator of H∗(M), we define the spectral variety

Z := V (I) ⊆ Z̃.
Now suppose M has an action of an algebra of Hecke operators T. Then T generates a sub-OZr -algebra of
EndZr (M) which we call OCr . Its relative adic spectrum

Cr → Zr →Wr

is the eigencurve. Clearly the sheaf M extends to a sheaf Mr over Cr.

Now let’s put ourselves back in the scenario we care about. There are two cases. In the first case, we take
M• = M = H0(X0(p)[a,1], ω

κun

) to get the first eigencurve Cr → Zr → Wr. In the second case, we take
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N• = RΓX0(p)[0,a)
(X0(p), ω2−κun

(−D)) where D is the divisor of cusps (this has to do with Serre duality, as

we’ll see) and we get Dr → Zr →Wr. We have generalized eigensheaves Mr → Cr and Nr → Dr. The authors
remark that the constructions are compatible as r varies, and do not depend on auxiliary choices like a, n, v, etc,
so we can glue together these eigencurves as r approaches 1, and we obtain two eigencurves

C → Z →W and D → X →W
which carry generalized eigensheaves M and N .

4. Serre Duality

Lastly I’ll sketch Serre duality over the eigencurve. There is a classical Serre duality pairing via the Kodaira-Spencer
isomorphism:

H0(X0(p), ωk)×H1(X0(p), ω2−k(−D))
KS−−→ H0(X0(p), ωk)×H1(X0(p), ω−k ⊗ Ω1

X0(p)/Qp
)→ Qp.

After slightly modifying this by the Atkin-Lehner involution, one obtains the identity

〈f, Upg〉 = 〈Upf, g〉

Now let’s interpolate this p-adically to a pairing between M and N . In the paper, they work with the dagger
spaces

X0(p)m,† := colima→1X0(p)[a,1] and X0(p)et,† := colima→0X0(p)[0,a]
and construct a pairing

H0(X0(p)m,†, ωκ
un

)×H1
c (X0(p)et,†, ω2−κun

(−D))→ OWr

satisfying 〈Upf, g〉 = 〈f, Upg〉. Combined with the fact that by definition

H0(X0(p)m,†, ωκ
un

) = colima→1H
0(X0(p)[a,1], ω

κun

)

and by [BP20, Lemma 5.24]

H1
c (X0(p)et,†, ω2−κun

(−D)) = lim
a→0

H1
X0(p)[0,a)

(X0(p), ω2−κun

(−D))

one gets compactness of Up on the dagger cohomology groups, and the duality pairing ensures that the charac-
teristic power series of Up are same in both cases and thus Z = X . These identifications also imply the existence
of a pairing

M×N → w−1OWr

such that 〈zf, g〉 = 〈f, zg〉 and 〈hf, g〉 = 〈f, hg〉 for z ∈ OZ and h any Hecke operator in T. This pairing
specializes to the classical Serre duality statement given above. One can deduce from this that C = D.
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