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1. VENKATESH’S CONJECTURE
Given a reductive group G with neat level K = [[ K, € G(Ay) and maximal connected compact (mod
center) K, C G(R), let
Vi = GIQ\(G(R)/KS, x G(Af)/K)
be the associated locally symmetric space. Away from a finite set of bad primes S (the ones where K, is not
hyperspecial: in the modular curve case think of “away from N”) we define

H=QQ)H, =X Cc(K,\Go/K,, Z)
veS veS
and fix a character y : H — Z which comes from a cuspidal and tempered automorphic representation of

G(A), with some extra conditions as in Robin’s talk.

Recall we defined ¢y = rank G(R) — rank K2, and qo = w. Then H(Yk,Q)y # 0 exactly when

i € [qo,qo + Yo], we had a formula for the dimension, and

Conjecture 1.1. H*(Yk,Q), is generated over H® (Yx, Q) by the action of the {y-exterior power of a
motivic cohomology group (the subscript x denotes the x-eigenspace).

The subject of this talk will be a variant of this conjecture for G = GL,, in terms of eigenvarieties.

2. COHOMOLOGY FOR GL,

We now work with G = GL,,. This is an appropriate context for Venkatesh’s conjecture because £, = L”T_lj,
which is positive for n > 2. The level we work with throughout is

K = K1 (N;p) == K1 (N)*I

with (N,p) = 1 where K;(N) is the mirabolic congruence subgroup of GLn(z) of matrices whose bottom
row is congruent to (0,...,0,1) mod N and I = (GL,(Z,) — GL,(F,))"}(B(F,)) is the standard Iwahori.
Maybe K isn’t necessarily neat, but we can define

H'(Yg,—) = H (Yg:,—)K

for K’ C K neat normal open compact.
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The Hecke algebra is

TP = T 0 Z(X,(T) ] = [ R) ColGLa(Ze)\ GLo(Qe)/ L (Z0), Z) | 02 ZIX.(T)]
UNp

Here the second factor is for the p-part and acts via Hecke operators via
ZIX.(T)7] = C.(I\G(Qy)/1,Z)
= [Tp(p)I]

If we denote U, ; = [Ip;(p)I] where p; : x — diag(l,...,1,2,...,x), then our U,-operator (with respect to
which we measure slopes and say “finite slope”) is

Up=Upr--Upn_1

Let L/Q, be finite. For each dominant character A € X*(T)*, we let £y 1, denote the L-points of the algebraic
representation of G of highest weight A. In particular £y 1 this has compatible L-linear actions of G(Q) and
A, = |_|H€X*(T), Iu(p)I, so it defines a local system on Yx and we get U, operators on H'(Yg, L ).

Proposition 2.1 (Corollary 4.4 in [HT17]). Say 7 is a regular algebraic cuspidal automorphic representation
of GL,,(A) of conductor (N,p) = 1 satisfying a certain parity condition on the central character of moo (this
is so that the cohomology groups don’t vanish, and can be made true by twisting ™ by a quadratic character).
Let m,; C TW) be the associated mazimal ideal (mention that this is generated by T, for £+ Np). Then there
exists a unique X € X*(T)" (the “weight” of 7) such that

H*(Yi,Lx1)m, #0

Suppose the eigenvalues of the Satake parameter for m, are distinct. Fixz an ordering t for the eigenvalues of
the Satake parameter. If m C TP is the mazimal ideal associated to (m,t), then

dim H®V (Y, Lar)m = (io)

Implicit in this statement is a correspondence between orderings of the eigenvalues of the Satake parameters

for m and maximal ideals m C T@M).p containing the maximal ideal m, C TW) ynder the inclusion TW) s
T(N).p

3. BACKGROUND ON EIGENVARIETIES: HIDA FAMILIES

One of the first constructions of eigenvarieties is due to Hida. We will give a very brief and sketchy explanation
of what Hida did.

The idea is to put modular forms into p-adic families. More precisely, recall that a modular form of level
I'o(p) has a g-expansion f =) - a,q", and it is a theorem that the a,, live in a common number field E.
Suppose for simplicity that £ = Q. Then we can embed Q Q,, and then using rigid analytic geometry we
can study the p-adic variation of the a,,: rigid geometry is a version of analytic geometry where the coefficient
rings are certain Banach Q,-algebras R, and one way to think about families of p-adic modular forms is to
cook up g-expansions with a,, € R and then specialize to certain classical points of Sp R, and hope to recover
classical modular forms.

In particular, varying modular forms p-adically this way really involves varying the weight of the modular
form (this line of reasoning was developed by Serre, Katz, Hida, Coleman, etc). In the p-adic world, this
means that our family of modular forms lives over weight space.

Definition 3.1. Let W : Affq, — Grp be the functor taking
W (R) = {continuous characters Z; — R*}
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Here Affq, is the category of affinoid Q,-algebras, each of which has a canonical topology. Then this functor
is represented by a Q,-rigid analytic group variety W, called weight space.

The C,-points of weight space looks like this (draw a bunch of circles). Why? Because Z, = (Z/p)* x 1+pZ,,.
Each 1 + pZ, contributes a disk to W (e.g. via x — x(1+p) —1 € Og,) and there are |(Z/p)*| =p—1
many of them. In particular, integers live in the weight space via the map

Z— W

k— (z— zb)
In fact the integers contained in a mod p — 1-equivalence class of Z are dense (under the above map) in each
piece of W. So if we pick a point k € W (draw this) and take a smaller disk D around it (draw this) then a
Hida family w : £ — D is another copy of D, such that each point x € £ is a modular form of weight given by
w(x). Heuristically, if R is the ring of functions on D, then a Hida family should be given by a g-expansion
> n>0ang" € R[[g]] such that if you specialize to an integer weight & € D, you get a modular form of level
Ty(p) and weight k'

Theorem 3.2 (Hida). If f € Sk(To(p)) is an ordinary eigenform for the T, (¢ # p) and U, operators then
there exists a unique Hida family foo specializing to f at the weight k.

What does ordinary mean? Let U,f = )\, f. Then ordinary means that v,(\,) = 0, i.e. A, € Z}. For non-
ordinary forms, Coleman and Mazur (and numerous other people after that) have a various generalizations
of this type of construction: one can define U,-operators for general reductive groups and talk about p-adic
variation of finite slope automorphic forms.

For instance, the eigencurve parametrizes all finite slope p-adic eigenforms of some tame level (draw the halo
and some scribbles).

4. THE GL,,-EIGENVARIETY

Definition 4.1. The weight space W in this context is the rigid analytic space associated to

R+ {continuous characters T(Z,) — R* }

The eigenvariety w : & — W of tame level K? is a rigid space whose fibers w~!()\) parametrize Hecke
eigensystems
TMw» T,

whose kernels appear in the support of H*(Yk, Dy 1.); here Dy 1, is some huge p-adic coefficient system with
an action of A,, which I won’t explicitly describe. However, note that there is a canonical Aj,-equivariant
map Dy — Ly 1, which basically follows from the fact that Dy 1 is dual to a space of locally analytic
functions, and Ly 1, is dual to a space of polynomials (in fact this isn’t true on the nose: you have to twist the
action of U, by a character determined by A, but let’s agree to ignore this for exposition purposes).

Recall 7 is a regular algebraic cuspidal automorphic representation of GL, (A) of conductor N, satisfying a
parity condition. Suppose , is unramified and that the Satake parameter of 7, is regular. Fix an ordering
t of the eigenvalues of the Satake parameter and let m C T(N)? be the maximal ideal corresponding to

(m, ).
Definition 4.2. Let A = (k1 > -+ > k,,) be the weight. We say that m is “numerically non-critical” if
Up(Upi) <14+ kp_j —kpy1—;for 1 <i<n-—1

Proposition 4.3. If m is numerically non-critical, then
H*(Yi,Dxr)m = H* (Yi, L 1)m

18 a Hecke-equivariant isomorphism.
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Since points on £ are given by Hecke eigensystems appearing in H*(Yx, Dy 1), we get a point « € £ associated
to , such that w(z) = A.

Theorem 4.4 (Hansen-Thorne). Let T, = ﬁg,ac and let A = ﬁwy,\. Then
dimT, > dim A — ¢,
If equality holds, then
(1) The natural map A — T, is surjective and T, is a complete intersection ring.

(2) If we let V, := ker(A — T,) ®a L (which has dimension £y by our equality assumption), then
H*(K,Ly1) is a free rank 1 \*V,-module.

M(m,t)
Sketch. There exists a faithful graded T,-module H which is finite over A and concentrated in degrees
[0,dim Yk, and there exists a spectral sequence

EY) = Tor™ (HJ, L) = H™(Yk,Da1)
Furthermore, there exists a complex C*® of finite free A-modules such that such that H} = H*(C*) and
H*(C*®x L)=H"(Yk,Lx 1)

M (x,t)

M (1)
Some general commutative algebra then allows you to deduce that dim H*(C*®) > dim A—/y and that equality
happens when H is concentrated in degree gy + ¢o.

When equality happens, the spectral sequence already degenerates on the second page to
Tor*(H,, L) = HOT0™(Yie, L3 1)m
If i = 0 we get
dim H, @5 L = dim HO (Ye, L3 1)m = 1
By Nakayama’s lemma H, = A/I, and in fact H, is free of rank 1 over Ty, so A — T, is surjective. Then

qud%oil(YKwC)\,L) = TOI“i\(Hz, L) =1, ®xL

M(r,t)

But the left side has dimension (Zfﬂl) = {y so using Nakayama again, we see I, can be generated by ¢
elements. Since dim T, = dim A — ¢y, we conclude that T, is a complete intersection ring. The conclusion
then follows from some other commutative algebra lemmas that they prove in Section 2 of [HT17], which I
didn’t have time to work out. O

Attached to 7 (by Harris-Lan-Taylor-Thorne) is a Galois representation
Pt GQp — GLn(L)

Conjecturally, p, is crystalline with Hodge-Tate weights determined by A and ¢-eigenvalues of De,is(pr) given
by

(o1, o) =p D207ty )
where the ¢; run through the eigenvalues of the Satake parameter of 7 (here ¢ : Qp =~ C is some isomor-
phism).

Then an ordering ¢ of the a; determines something called a “triangulation” of p,. We can deform both p,
along with the triangulation. Assume
T:E = RP-mOé

Under these assumptions, [HT17] proves the existence of a canonical isomorphism
Ve = Hp(Q,ad pr(1))

The H } is a Bloch-Kato Selmer group which should be p-adic realization of a motivic cohomology group.
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