BREUIL-MÉZARD AND AUTOMORPHY

JAMES NEWTON NOTES BY ASHWIN IYENGAR

Contents

- 1. Recollection of the (numerical) Breuil-Mézard conjectures
- 2. Patching Functors

1

$\frac{1}{2}$

These notes are sketchy, use at your own risk

The goal is to explain the relationship between automorphy lifting theorems in the global context and the Breuil-Mézard conjecture, which is purely local statement. We will look at the work of Gee-Kisin showing that automorphy lifting theorems imply the Breuil-Mézard conjecture when n = 2 and for potentially Barsotti-Tate representations. When n = 2 and $K = \mathbf{Q}_p$, Kisin shows the other direction.

The magic ingredient to go between these two things is the Taylor-Wiles-Kisin patching method: we won't give details, but we'll give the context.

1. Recollection of the (numerical) Breuil-Mézard conjectures

Let K/\mathbf{Q}_p be a *p*-adic field with ring of integers \mathscr{O}_K and residue field *k*. We'll fix $\overline{\rho} : G_K \to \operatorname{GL}_n(\overline{\mathbf{F}_p})$, and we work with potentially crystalline lifting rings in this lecture. We fix λ a Hodge type, i.e. a tuple $(\lambda_{1,\iota} \ge \lambda_{2,\iota} \ge \cdots \ge \lambda_{n,\iota})$ for each $\iota : K \hookrightarrow \overline{\mathbf{Q}_p}$, and we fix $\tau : I_K \to \operatorname{GL}_n(\overline{\mathbf{Q}_p})$ a representation with open kernel. This allows us to define the complete local Noetherian \mathscr{O} -algebra (\mathscr{O} is the integers in some *p*-adic coefficient ring *E*)

 $R^{\lambda,\tau}_{\overline{o}}$

which classifies potentially crystalline lifts of $\overline{\rho}$ with Hodge-Tate weights $\lambda + \eta = (\lambda_{1,\iota} + n - 1 > \lambda_{2,\iota} + n - 2 > \cdots > \lambda_{n,\iota})$ and with inertial type τ . The ring $R_{\overline{\rho}}^{\lambda,\tau}$ is reduced and equidimensional, and $R_{\overline{\rho}}^{\lambda,\tau}[1/p]$ is regular.

To (λ, τ) we associate the locally algebraic representation $\sigma^{\operatorname{cris}}(\lambda, \tau)$ of $\operatorname{GL}_n(\mathscr{O}_K)$ on a finite dimensional *E*-vector space. Recall that

$$\sigma^{\operatorname{cris}}(\lambda, \tau) = \sigma_{\operatorname{alg}}(\lambda) \otimes \sigma^{\operatorname{cris}}_{\operatorname{sm}}(\tau)$$

The point is that $\sigma_{\text{sm}}^{\text{cris}}(\tau)$ detects irreducible representations π of $\text{GL}_n(K)$ where $\text{rec}(\pi)|_{I_K} \cong \tau$ and N = 0. We choose $L_{\lambda,\tau} \subseteq \sigma^{\text{cris}}(\lambda,\tau)$ a $\text{GL}_n(\mathscr{O}_K)$ -stable \mathscr{O} -lattice. Then

$$(L_{\lambda,\tau} \otimes_{\mathscr{O}} \overline{\mathbf{F}_p})^{ss} \cong \bigoplus_{V \text{ irreducible } \overline{\mathbf{F}_p}\text{-reps of } \operatorname{GL}_n(k)} V^{\oplus m_V(\lambda,\tau)}$$

Date: March 20, 2019.

¹Notes taken by Ashwin Iyengar, and have not been looked at or edited by the speaker

Conjecture 1.0.1. There exist non-negative integers $\mu_V(\overline{\rho})$ such that

$$e(R^{\lambda,\tau}_{\overline{\rho}} \otimes \overline{\mathbf{F}_p}) = \sum_V m_V(\lambda,\tau) \mu_V(\overline{\rho})$$

2. Patching Functors

As before we have $\mathscr{O} \subseteq E$. The patching method spits out $R_{\infty} = R_{\overline{\rho}}^{\Box}[[x_1, \ldots, x_h]]$, with some auxiliary patching variables. Let \mathcal{C} be the category of finitely generated \mathscr{O} -modules with a continuous action of $\operatorname{GL}_n(\mathscr{O}_K)$. Some examples of objects are $L_{\lambda,\tau}$ and V a Serre weight. Let $X_{\infty} = \operatorname{Spec} R_{\infty}$ and $R_{\infty}^{\lambda,\tau} = R_{\overline{\rho}}^{\lambda,\tau} \otimes_{R_{\overline{\rho}}} R_{\infty}$, and let $X_{\infty}^{\lambda,\tau} = \operatorname{Spec} R_{\infty}^{\lambda,\tau}$.

Definition 2.0.1. A patching functor is a nonzero covariant exact \mathcal{O} -linear functor

$$M_{\infty}: \mathcal{C} \to \operatorname{Coh}(X_{\infty}).$$

satisfying:

- For any (λ, τ) , the action of R_{∞} on $M_{\infty}(L_{\lambda,\tau})$ factors through $R_{\infty}^{\lambda,\tau}$, and $M_{\infty}(L_{\lambda,\tau})$ is maximal Cohen-Macaulay over $R_{\infty}^{\lambda,\tau}$. This implies that the support of $M_{\infty}(L_{\lambda,\tau})$ is equal to a union of irreducible components in $X_{\infty}^{\lambda,\tau}$. It also implies that $M_{\infty}(L_{\lambda,\tau})[1/p]$ is locally free over $X_{\infty}^{\lambda,\tau}[1/p]$.
- $M_{\infty}(L_{\lambda,\tau})[1/p]$ is locally free of rank 1 over its support.
- If V is an irreducible $\overline{\mathbf{F}_p}$ -representation of $\operatorname{GL}_n(k)$, then $M_{\infty}(V)$ is Cohen-Macaulay of dimension $\dim(\mathbb{R}_{\infty}^{\lambda,\tau}\otimes\overline{\mathbf{F}_p})=:d$, i.e. the support is equidimensional of dimension d.

Let $X_{\infty}(V)$ be the closed subscheme of X_{∞} cut out by $M_{\infty}(V)$. A very special example is when $K = \mathbf{Q}_p$ and n = 2. Then P was the universal deformation of Π^{\vee} . We define an exact covariant functor

$$\sigma \mapsto P \otimes_{\mathscr{O}[[\operatorname{GL}_2(\mathbf{Z}_p)]]} \sigma.$$

More generally, one has to use the Taylor-Wiles-Kisin patching method, but the functor still looks like

$$\sigma \mapsto \sigma \otimes_{\mathscr{O}[[\operatorname{GL}_n(\mathscr{O}_K)]]} M_\infty$$

where M_{∞} is constructed globally using spaces of automorphic forms for a unitary group.

So how do you construct these M_{∞} ? Step 0 is to first globalize $\overline{\rho}: G_K \to \operatorname{GL}_n(\overline{\mathbf{F}_p})$ to

$$\overline{r}: G_F \to \operatorname{GL}_n(\overline{\mathbf{F}_p})$$

where F is a CM number field. In other words, there should be one conjugate pair v, \overline{v} lying above p such that $F_v \cong K$ and

$$\overline{r}|_{G_{F_n}} \cong \overline{\rho}$$

Furthermore, \bar{r} should come from an automorphic representation of a unitary group.

Consequences: when M_{∞} is built by patching spaces of automorphic forms, then

- (1) $M_{\infty}(V) \neq 0$ if and only if $S(V^{\vee})_{\overline{r}} \neq 0$ (here S denotes some appropriate space of automorphic forms of weight V^{\vee} , I think). In other words, if and only if \overline{r} is automorphic of weight V.
- (2) If supp $M_{\infty}(L_{\lambda,\tau}) = X_{\infty}^{\lambda,\tau}$, then $S(L_{\lambda,\tau}^{\vee})_{\overline{r}}$ is supported on all of Spec $R_{\overline{r}}^{\lambda,\tau}$, which is equivalent to proving an automorphy lifting theorem.

Lemma 2.0.2 (BM vs aut. lifting). Suppose M_{∞} is as above. Then

$$e(M_{\infty}(L_{\lambda,\tau})\otimes \mathbf{F}_p, R_{\infty}^{\lambda,\tau}\otimes \mathbf{F}_p) \le e(R_{\infty}^{\lambda,\tau}\otimes \mathbf{F}_p)$$

(where $e(M, R) = \sum_{\mathfrak{p} \in \operatorname{Spec}(R) \max \dim} e(R/\mathfrak{p})\ell(M_\mathfrak{p})$) with equality if and only if $\operatorname{supp}(M_\infty(L_{\lambda,\tau})) = X_\infty^{\lambda,\tau}$.

Theorem 2.0.3 (Gee-Kisin). Suppose M_{∞} is a patching functor and suppose $M_{\infty}(L_{\lambda,\tau})$ is supported on $X_{\infty}^{\lambda,\tau}$. Then the conjecture holds for type λ, τ :

$$e(R^{\lambda,\tau}_{\overline{\rho}} \otimes \overline{\mathbf{F}_p}) = \sum_{V} m_V(\lambda,\tau) e(M_{\infty}(V), R_{\infty}(V))$$

Theorem 2.0.4. Suppose the Breuil-Mézard conjecture is true for some fixed λ, τ . Suppose M_{∞} is a patching functor and $e(M_{\infty}(V), R_{\infty}(V)) \geq \mu_{V}(\overline{\rho})$ for all V such that $m_{V}(\lambda, \tau) > 0$. Then supp $M_{\infty}(L_{\lambda,\tau}) = X_{\infty}^{\lambda,\tau}$. In other words, we have proven an automorphy lifting theorem in type (λ, τ) .

Proof. Compute $e(M_{\infty}(L_{\lambda,\tau}) \otimes \overline{\mathbf{F}_p})$ in terms of $e(M_{\infty}(V))$ and apply the lemma.