ARITHMETIC LEVEL-RAISING FOR EVEN N

ASHWIN IYENGAR

Contents

1.	Setup	1
2.	Proof	2
2.1.	. Local Level-Raising Deformations	2
2.2.	2. Global Deformations	3
2.3.	6. Comparison with Cohomology	3
2.5.	6. Equality of Ranks	4
2.7.	. Killing n	4
Ref	ferences	5

1. Setup

We recall the basic setup.

- (1) F/F^+ is a CM extension of a totally real field,
- (2) N = 2r > 1 is an even integer,
- (3) Π is a relevant ([LTX⁺19, Definition 1.1.3]) representation of $GL_N(\mathbb{A}_F)$,
- (4) E is a number field containing the normalized Satake parameters of Π at unramified places (the authors call this a "strong coefficient field" ([LTX⁺19, Definition 3.2.5]),
- (5) Σ_{\min} is a finite set of non-archimedean places of F^+ containing the places above primes which ramify in F, and such that Π is unramified outside Σ_{\min} ,
- (6) $\Sigma_{\rm lr}$ is a finite set of non-archimedean places in F^+ which are inert in F, away from $\Sigma_{\rm min}$,
- (7) Σ is a finite set containing Σ_{\min} and Σ_{lr} ,
- (8) $\lambda \mid \ell$ is a finite place in E such that $\ell \nmid ||v||(||v||^2 1)$ for $v \in \Sigma_{\rm lr}$. Let $O = O_{E,\lambda}$ with residue field k

Then we get a system of Hecke eigenvalues

$$\phi_{\Pi}: \mathbb{T}^{\Sigma} \to O$$

where \mathbb{T}^{Σ} is given by the restricted tensor product of the spherical Hecke algebras away from Σ . There is an associated Galois representation

$$\rho: \Gamma_F \to \mathrm{GL}_N(O)$$

satisfying $\rho^c \sim \rho^{\vee}(1-N)$ and the usual Frobenius-Satake compatibility. As Toby mentioned last week, $\overline{\rho}$ extends to a representation $\overline{r}: \Gamma_{F^+} \to \mathcal{G}_N(k)$. Our deformation problems will be deformations of \overline{r} .

We pick an odd place $\mathfrak{p} \mid p$ of F^+ such that

- (1) \mathfrak{p} is inert in F and p is unramified in F
- (2) $F_{\mathfrak{p}}^+ = \mathbb{Q}_p$

ASHWIN IYENGAR

- (3) $\Sigma \nmid p$
- (4) $\ell \nmid p(p^2 1)$
- (5) the Satake parameter at p contains $\{p, p^{-1}\}$ exactly once and does not contain $\{-1, -1\} \pmod{\lambda}$.

I'm omitting some other assumptions: see the beginning of $[LTX^+19, Section 6]$ for the details. Finally let

$$\mathfrak{m} := \mathbb{T}^{\Sigma \cup \Sigma_p} \cap \ker(\mathbb{T}^{\Sigma} \xrightarrow{\phi_{\Pi}} O_E \twoheadrightarrow O_E / \lambda)$$
$$\mathfrak{n} := \mathbb{T}^{\Sigma \cup \Sigma_p} \cap \ker(\mathbb{T}^{\Sigma} \xrightarrow{\phi_{\Pi}} O_E \twoheadrightarrow O_E / \lambda^m)$$

where m > 1 is some integer.

Recall that we have to choose a certain standard Hermitian space V[°] of rank N over F, which for us will be non-split at every place in Σ_{lr} , and we pick a nice enough level structure K° . For simplicity, write

$$\widetilde{\mathrm{H}}^{i} := \mathrm{H}^{i}_{\mathfrak{T}}(\overline{\mathrm{M}}_{N}, \mathrm{R}\Psi O) \text{ and } O[\mathrm{Sh}] := O[\mathrm{Sh}(\mathrm{V}^{\circ}, \mathrm{K}^{\circ})].$$

We make two more assumptions $([LTX^+19, Assumptions 6.1.(4,5)])$.

- (1) $\widetilde{\mathrm{H}}^{i}_{\mathfrak{m}} = 0$ for $i \neq N-1$, and $\widetilde{\mathrm{H}}^{N-1}_{\mathfrak{m}}$ is finite free over O.
- (2) $\overline{\rho}$ is absolutely irreducible.

Now recall from David's last talk that under these assumptions we have an injective map

(*)
$$F_{-1}H^{1}(I_{p^{2}},\widetilde{H}^{N-1}_{\mathfrak{m}}(r)) \hookrightarrow H^{1}_{\operatorname{sing}}(\mathbb{Q}_{p^{2}},\widetilde{H}^{N-1}_{\mathfrak{m}}(r)) := H^{1}(I_{p^{2}},\widetilde{H}^{N-1}_{\mathfrak{m}}(r))^{\operatorname{Frob}_{p^{2}}}$$

and a surjective map

$$(*') \qquad \qquad \mathbf{F}_{-1}\mathbf{H}^{1}(\mathbf{I}_{p^{2}},\widetilde{\mathbf{H}}_{\mathfrak{m}}^{N-1}(r)) \twoheadrightarrow O[\mathbf{Sh}]_{\mathfrak{m}}/((p+1)\mathbf{R}_{\mathfrak{p}}^{\circ}-\mathtt{I}_{\mathfrak{p}}^{\circ})$$

where R_p° and I_p° are some explicit Hecke operators defined in [LTX⁺19, Proposition 5.7.(1,8)]. The goal is to prove:

Theorem 1.1 ($[LTX^+19, Theorem 6.3.4]$). Assume

- (1) $\ell \geq 2(N+1)$ and ℓ is unramified in F
- (2) \overline{r} is rigid for $(\Sigma_{\min}, \Sigma_{lr})$: this means that every lift of a place $v \in \Sigma_{\min}$ is minimally ramified, the set of generalized eigenvalues of $\overline{r}(\operatorname{Frob}_v^2)$ contains the pair $\{||v||^{-N}, ||v||^{-N+2}\}$ exactly once, and \overline{r} is Fontaine-Laffaille at places dividing ℓ .
- (3) ϕ_{Π} is cohomologically generic,
- (4) $O[\operatorname{Sh}]_{\mathfrak{m}} \neq 0.$

Then (among other things) (*) and (*') are both isomorphisms, and in particular induce isomorphisms

$$\begin{split} & \mathbf{F}_{-1}\mathbf{H}^{1}(\mathbf{I}_{p^{2}},\widetilde{\mathbf{H}}^{N-1}(r)/\mathfrak{n}) \xrightarrow{\sim} O[\mathrm{Sh}]/\mathfrak{n} \\ & \mathbf{F}_{-1}\mathbf{H}^{1}(\mathbf{I}_{p^{2}},\widetilde{\mathbf{H}}^{N-1}(r)/\mathfrak{n}) \xrightarrow{\sim} \mathbf{H}^{1}_{\mathrm{sing}}(\mathbb{Q}_{p^{2}},\widetilde{\mathbf{H}}^{N-1}(r)/\mathfrak{n}) \end{split}$$

2. Proof

2.1. Local Level-Raising Deformations. Let $v \in \Sigma_{lr} \cup \{\mathfrak{p}\}$ with q = ||v|| and let w denote the unique prime in F living over it. Fix a lift r_v of \overline{r}_v to a coefficient ring R. Then by our assumption on the Satake parameters we can decompose

$$R^{\oplus N} = M_0 \oplus M_1$$

which is $r_v^{\natural}(\operatorname{Frob}_w)$ -stable, and is such that $P_w(T) \equiv (T - q^{-N})(T - q^{-N+2}) \mod \mathfrak{m}_R$ (here P_w is the characteristic polynomial of Frob_w on M_0). Now recall that

 $\mathscr{D}^{\min} = \{ \text{lifts such that } M_0 \oplus M_1 \text{ is stable under } r^{\natural}(\mathbf{I}_w), \mathbf{I}_w \text{ unipotent on } M_0, \mathbf{I}_w \text{ trivial on } M_1 \}$ We also have

$$\mathscr{D}^{\mathrm{unr}} = \left\{ r \in \mathscr{D}^{\mathrm{mix}} : \mathrm{I}_w \text{ trivial on } M_0 \right\}$$

and

$$\mathscr{D}^{\mathrm{ram}} = \left\{ r \in \mathscr{D}^{\mathrm{mix}} : P_w(T) = (T - q^{-N})(T - q^{-N+2}) \right\}$$

In fact, if we let $r_{v,\min}: \Gamma_{F_v^+} \to \mathcal{G}_N(\mathsf{R}_v^{\min})$ denote the universal lift, then (up to conjugation)

$$r_{v,\min}^{\natural}(\operatorname{Frob}_{w}) = \begin{pmatrix} q^{-N}\frac{1+x}{1+y} & \\ & q^{-N+2}\frac{1+y}{1+x} \end{pmatrix}$$
$$r_{v,\min}^{\natural}(t) = \begin{pmatrix} 1 & 0 \\ x_{0} & 1 \end{pmatrix}$$

for some $x, y, x_0 \in \mathfrak{m}_{\mathsf{R}_m^{\min}}$ such that $x_0(x-y) = 0$, where t is a generator of the inertia part. So

$$\mathsf{R}_v^{\mathrm{unr}} = \mathsf{R}_v^{\mathrm{mix}}/x_0, \quad \mathsf{R}_v^{\mathrm{ram}} = \mathsf{R}_v^{\mathrm{mix}}/(x-y)$$

2.2. Global Deformations. For $? \in {\text{mix}, \text{ram}, \text{unr}}$, let $R^?$ denote the global deformation ring parametrizing deformations

- with fixed similitude character ϵ_{ℓ}^{1-N}
- which are minimally ramified at $\Sigma_{\rm min}$
- which land in $\mathscr{D}^{\mathrm{ram}}$ at Σ_{lr}
- which land in \mathscr{D} ? at \mathfrak{p}
- which are Fontaine-Laffaille at Σ_{ℓ}
- and are unramified everywhere else.

As above we can find $x, y, x_0 \in \mathfrak{m}_{R^{\min}}$ and $v, v' \in (R^{\min})^{\oplus N}$ with eigenvalues $s = p^{-N}(1+x)/(1+y)$ and $s' = p^{-N+2}(1+y)/(1+x)$. We again have

$$\mathsf{R}^{\mathrm{unr}} = \mathsf{R}^{\mathrm{mix}}/(\mathsf{x}_0), \quad \mathsf{R}^{\mathrm{ram}} = \mathsf{R}^{\mathrm{mix}}/(\mathsf{x} - \mathsf{y}) = \mathsf{R}^{\mathrm{mix}}/(\mathsf{s} - p^{-N}), \quad \mathsf{R}^{\mathrm{cong}} := \mathsf{R}^{\mathrm{unr}} \otimes_{\mathsf{R}^{\mathrm{mix}}} \mathsf{R}^{\mathrm{ram}}$$

2.3. Comparison with Cohomology. Now if we let

$$\mathsf{T}^{\mathrm{unr}} = \mathrm{im}(\mathbb{T}^{\Sigma} \to \mathrm{End}_O(O[\mathrm{Sh}]))$$

then there exists a canonical isomorphism $\mathsf{R}^{\mathrm{unr}} \xrightarrow{\sim} \mathsf{T}^{\mathrm{unr}}_{\mathfrak{m}}$ which makes $O[\mathrm{Sh}]_{\mathfrak{m}}$ a free $\mathsf{T}^{\mathrm{unr}}_{\mathfrak{m}}$ -module of rank d_{unr} .

Similarly if we let

$$\mathsf{T}^{\mathrm{ram}} = \mathrm{im}(\mathbb{T}^{\Sigma \cup \Sigma_p} \to \mathrm{End}_O(\widetilde{\mathsf{H}}^{N-1}))$$

By surjectivity of (*') we get that $\mathsf{T}_{\mathfrak{m}}^{\mathrm{ram}} \neq 0$ and an isomorphism $\mathsf{R}^{\mathrm{ram}} \xrightarrow{\sim} \mathsf{T}_{\mathfrak{m}}^{\mathrm{ram}}$ making $\widetilde{\mathrm{H}}_{\mathfrak{m}}^{N-1}$ a finite free $\mathsf{R}^{\mathrm{ram}}$ -module. Now we let

$$\mathsf{H} = \operatorname{Hom}_{\mathsf{R}^{\operatorname{ram}}[\Gamma_{F}]}(r_{\operatorname{ram}}^{\natural,\mathsf{c}}, \widetilde{\mathsf{H}}_{\mathfrak{m}}^{N-1})$$

This is still a free R^{ram} -module of some rank d_{ram} , and in fact we have

$$\widetilde{\mathrm{H}}^{N-1}_{\mathfrak{m}} \simeq \mathsf{H} \otimes_{\mathsf{R}^{\mathrm{ram}}} r_{\mathrm{ram}}^{\natural,\mathsf{c}}$$

which follows from [LTX⁺19, Hypothesis 3.2.9], which is a multiplicity one result for discrete automorphic representations of an indefinite unitary group.

Lemma 2.4. There exist isomorphisms

$$O[\operatorname{Sh}]_{\mathfrak{m}}/((p+1)\mathfrak{R}_{\mathfrak{p}}^{\circ}-\mathtt{I}_{\mathfrak{p}}^{\circ})=O[\operatorname{Sh}]_{\mathfrak{m}}/(\mathfrak{s}-p^{-N})=O[\operatorname{Sh}]_{\mathfrak{m}}\otimes_{\mathsf{R}^{\mathrm{unr}}}\mathsf{R}^{\mathrm{cong}}$$
$$\mathrm{H}^{1}_{\mathrm{sing}}(\mathbb{Q}_{p^{2}},\widetilde{\mathrm{H}}_{\mathfrak{m}}^{N-1}(r))\simeq\mathsf{H}\otimes_{\mathsf{R}^{\mathrm{ram}}}\mathsf{R}^{\mathrm{cong}}$$

Proof. First of all, an explicit computation in the Hecke algebra, done in appendix B, shows that

$$(p+1)\mathbf{R}_{\mathbf{p}}^{\circ} - \mathbf{I}_{p}^{\circ} = p^{-r^{2}} \prod_{i=1}^{r} (\alpha_{i} + \alpha_{i}^{-1} - p - p^{-1})$$

where $\{p^{1-N}\alpha_i, p^{1-N}\alpha_i^{-1}\}$ runs over the eigenvalues of $r_{unr}^{\natural}(\operatorname{Frob}_p^2)$ and we take $\alpha_r = \mathfrak{s}p^{N-1}$. But by our assumption on the Satake parameters, almost all of these will act invertibly, except for the α_r term. In this case the factor simplifies to the form $u(\mathfrak{s} - p^{-N})$ for some unit u. But this shows that

$$((p+1)\mathbb{R}_{\mathfrak{p}}^{\circ}-\mathbb{I}_{\mathfrak{p}}^{\circ})O[\mathrm{Sh}]_{\mathfrak{m}}=(\mathfrak{s}-p^{-N})O[\mathrm{Sh}]_{\mathfrak{m}}$$

and so we're done with the definite case.

For the indefinite case, we have

$$\mathrm{H}^{1}_{\mathrm{sing}}(\mathbb{Q}_{p^{2}},\widetilde{\mathrm{H}}^{N-1}_{\mathfrak{m}}(r)) = \mathsf{H} \otimes_{\mathsf{R}^{\mathrm{ram}}} \mathrm{H}^{1}_{\mathrm{sing}}(\mathbb{Q}_{p^{2}},r^{\natural,c}_{\mathrm{ram}}(r))$$

But taking $H^1(I_{p^2}, -)$ is the same as taking coinvariants for the inertia action (i.e. kill the action of x_0) and twisting by -1. Then we take Frob_w-invariants. If you do this correctly, you find that

$$\mathsf{H} \otimes_{\mathsf{R}^{\mathrm{ram}}} \mathrm{H}^{1}_{\mathrm{sing}}(\mathbb{Q}_{p^{2}}, r^{\natural, c}_{\mathrm{ram}}(r)) \cong \mathsf{H} \otimes_{\mathsf{R}^{\mathrm{ram}}} \mathsf{R}^{\mathrm{ram}} v' / \mathsf{x}_{0} \mathsf{R}^{\mathrm{ram}} v' = \mathsf{H} \otimes_{\mathsf{R}^{\mathrm{ram}}} \mathsf{R}^{\mathrm{cong}}$$

2.5. Equality of Ranks. It remains to show that $d^{\text{ram}} = d^{\text{unr}}$. This is done using automorphic methods, and we sketch the proof here.

If we take geometric $\overline{\mathbb{Q}}_{\ell}$ -points η_1 and η_2 of Spec R^{unr} and Spec R^{ram} which are respectively contained in the support of $O[Sh]_{\mathfrak{m}}$ and $\widetilde{\mathrm{H}}_{\mathfrak{m}}^{N-1}$, then these are the systems of Hecke eigenvalues for certain relevant representations Π_1 and Π_2 of $\mathrm{GL}_N(\mathbb{A}_F)$ and we get

$$d_{\rm unr} = \dim \overline{\mathbb{Q}}_{\ell}[\operatorname{Sh}][\phi_{\Pi_1}]$$
$$Nd_{\rm ram} = \dim(\widetilde{\mathrm{H}}^{N-1})_{\overline{\mathbb{Q}}_{\ell}}[\phi_{\Pi_2}] = \dim \mathrm{H}^{N-1}_{\operatorname{\acute{e}t}}(\operatorname{Sh}(\mathrm{V}'), \overline{\mathbb{Q}}_{\ell})$$

(here V' is the indefinite Hermitian space chosen as part of the indefinite uniformization data [LTX⁺19, Definition 5.1.6]) Furthermore, since both of these automorphic representations have residual system of Hecke eigenvalues given by \mathfrak{m} , we have an isomorphism of representations valued in $\overline{\mathbb{F}}_{\ell}$:

$$\overline{\rho}_{\Pi_1} \cong \overline{\rho}_{\Pi_2} \cong \overline{\rho}$$

Lemma 2.6. For each $v \in \Sigma_{\min}$, write V_1, V_2 for the underlying vector spaces of $\Pi_{1,v}$ and $\Pi_{2,v}$. Then there exists a $\operatorname{GL}_N(O_{F_v})$ -equivariant isomorphism $i: V_1 \xrightarrow{\sim} V_2$ which commute with certain intertwining operators A_1, A_2 (i.e. linear maps which realize the conjugate self-duality).

Then [LTX⁺19, Proposition D.2.3] gives the result by computing the desired dimensions in terms of traces of endoscopic transfers of certain functions composed with A_1 and A_2 .

We have thus deduced that (*) and (*') are both isomorphisms.

$$\mathrm{F}_{-1}\mathrm{H}^{1}(\mathrm{I}_{p^{2}},\widetilde{\mathrm{H}}_{\mathfrak{m}}^{N-1}(r))/\mathfrak{n}\rightarrow \mathrm{F}_{-1}\mathrm{H}^{1}(\mathrm{I}_{p^{2}},\widetilde{\mathrm{H}}^{N-1}(r)/\mathfrak{n})$$

and

$$\mathrm{H}^{1}_{\mathrm{sing}}(\mathbb{Q}_{p^{2}}, \widetilde{\mathrm{H}}^{N-1}_{\mathfrak{m}}(r))/\mathfrak{n} \to \mathrm{H}^{1}_{\mathrm{sing}}(\mathbb{Q}_{p^{2}}, \widetilde{\mathrm{H}}^{N-1}(r)/\mathfrak{n})$$

are isomorphisms, so the main result follows.

References

[LTX⁺19] Yifeng Liu, Yichao Tian, Liang Xiao, Wei Zhang, and Xinwen Zhu. On the Beilinson-Bloch-Kato conjecture for Rankin-Selberg motives. arXiv e-prints, page arXiv:1912.11942, December 2019.