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1. Introduction

Fix a perfect field k of any characteristic. Pol’s talk gave an introduction to pure motives, and
gave an indication that they form a universal Weil cohomology theory for smooth projective
varieties over a field. Recall that objects in Motk (the category of pure numerical motives
over a field k) are given by triples (X, p, n), where X is a smooth projective variety over
k, p ∈ Corr(X,X) is a correspondence satisfying p ◦ p = p, and n is an integer. We had a
canonical functor

SPVk → Motk

from the category of smooth projective varieties over k to pure motives over k mapping
X 7→ h(X) = (X, [∆X ], 0), where ∆X ↪→ X ×k X is the diagonal of X.

With this description of a pure motive, we can begin to try to understand how to decompose
a motive, and think about its ith degree components, for 0 ≤ i ≤ 2 dim(X). In the first part
of this talk, we’ll focus on the first component, which we’ll call h1(X), and we will try to
understand how exactly it parametrizes the first cohomology group in any Weil cohomology
theory. We will start with the case of curves, and then move on to the case of a smooth
projective variety in arbitrary dimension.

For singular and non-projective varieties, we need a different category MMk of “mixed mo-
tives” in order to develop a similar theory for varieties that are neither smooth nor projective.
For this second part of the talk, we will investigate a construction of Deligne of a category
MM1,fr

k , and a functor
Vark → MM1,fr

k ,

which parametrizes all of our usual cohomology theories, in degree 0 and degree 1. By usual
(Weil) cohomology theories, we will specifically address

• Hodge (singular) cohomology

• de Rham cohomlogy

• étale cohomology

• crystalline cohomology

Deligne’s construction is motivated by an idea of Grothendieck, which says that pure 1-
dimensional motives are abelian varieties, up to isogeny. This observation is based on the
idea that to extract the essential 0- and 1-cohomological data from a smooth projective
variety X, all one needs is the Albanese variety, i.e. its “universal abelian variety” or its
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“abelian completion”. We will spell this out for curves, and show that objects in MM1,fr
k really

give us the cohomology theories we want.

At the end we will mention that although MM1,fr
k looks promising, it is not abelian, and we’ll

mention how to formally extend the category to MM1
k, which is abelian.

2. Decomposing Pure Motives

Given X ∈ SPVk, we associate to it the motive h(X) = (X, [∆X ], 0).

Assume that X(k) 6= ∅, to avoid some small technical problems.

We recall two constructions:

(1) If f : X → Y is a morphism of varieties, then h functorially gives a correspondence
Γf

h(Y )
f∗−→ h(X).

(2) There is a covariant version of this. If X and Y are purely d and e-dimensional, then
we get a morphism

f∗ : h(X)→ h(Y )⊗ L⊗(d−e)

which is exactly ΓTf . Here L = (Spec k, [∆X ],−1).

Supposing X(k) 6= ∅, we can pick a (non-canonical) section Spec k
x−→ X of the structure

map X α−→ Spec k. Thus,

h(Spec k)
α∗
−→ h(X)

x∗−→ h(Spec k),

is the identity map, so h0(X) = h(Spec k) is a direct summand of h(X). We have thus
decomposed our motive into components

h(X) = h0(X)⊕ h≥1(X),

where h0(X) is the image of h(Spec k) in h(X). Some work shows that

h0(X) ∼= (X, {x} ×X, 0),

Furthermore, α∗ ◦ x∗ = id, so we get a split quotient map

h(X)→ Ld.

Thus, we get another direct factor h2d(X) of h(X), which, after some work is isomorphic
to

h2d(X) ∼= (X,X × {x} , 0).

2.1. Example. For example, given X = P1, one can show that the direct sum of {x} × P1

and P1 × {x} is rationally equivalent to the diagonal on X ×X, so

h(P1) ∼= h0(P1)⊕ h2(P1) ∼= 1⊕ L.
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2.2. Remark. In general, the standard conjectures predict that we have a decomposition

h(X) =
2d⊕
i=1

hi(X)

in a way that lets us recover the ith cohomology groups from the motive hi. This is known
for curves, surfaces, and for abelian varieties (and probably other cases that I’m not aware
of).

3. Pure 1-Motives

Since we can easily describe the h0 and h2d part of any motive, the interesting part lies in
the rest of the splitting. For curves, it turns out this is easy to describe.

3.1. Proposition. If X ∈ SPVk, then there is a decomposition

h(X) ∼= h0(X)⊕ h1(X)⊕ h2(X),

where
h1(X) = ker(h≥1(X)→ h(X)→ h2(X)),

or equivalently
h1(X) = (X, id−p0, p2, 0),

where h0(X) = (X, p0, 0) and h2d(X) = (X, p2, 0).

Note we called this h1(X), so we need to justify the “one”-ness of this component. Although
we should expect this given our conjectural decomposition, we don’t know this a priori, but
the following proposition justifies this terminology:

3.2. Theorem. If X,X ′ ∈ SPVk with Jacobian varieties J(X), J(X ′), then

HomMotk(h1(X), h1(X ′)) = HomAbVark(J(X), J(X ′))⊗Q.

This more or less follows from the remarkable fact that

A1(X ×X ′) = A1(X)⊕ A1(X ′)⊕ HomAbVark(J(X), J(X ′))⊗Q.

3.3. Corollary. If Mot1,ck is the full subcategory of Motk whose objects are direct summands
of objects of the form h1(X) for X ∈ SPVk a curve, then Mot1,ck is equivalent to the category
of abelian varieties over k up to isogeny.

This almost justifies Grothendieck’s statement: to fully justify it, we need to show that we
can recover all of the first cohomology groups from the Jacobians in a natural way.

But before that, let’s briefly mention what happens for more general smooth projective
varieties. In fact,
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3.4. Proposition. For any X ∈ SPVk, there is a decomposition

h(X) = h0(X)⊕ h1(X)⊕M ⊕ h2d−1(X)⊕ h2d(X),

where M ∈ Motk.

3.5. Remark. Conjecturally M should always be M =
⊕2d−2

i=2 hi(X), but this is not fully
known.

As before, we need a justification for the naming h1(X) and h2d−1(X). For this, we need to
generalize the notion of the Jacobian variety. It turns out that there are two generalizations,
called the Picard variety, and Albanese variety.

3.6. Definition. Given X ∈ SPVk with a k-rational point, we can define a functor

Pic : Vark → Grp, V 7→ Pic(X ×k V )/Pic(V ),

which, for smooth projective X with X(k) 6= 0, is representable by a variety PicX. The
connected component of the identity Pic0X is an abelian variety in characteristic 0, while in
characteristic p, this variety may be non-reduced, so we need to take the reduction Pic0,redX,
which is then an abelian variety over k perfect. We will let P(X) = Pic0,red X.

3.7. Definition. Given X ∈ SPVk with a choice of a k-rational point x (there exists one by
assumption), there is abelian variety A(X) and a map X → Alb(X) taking x 7→ 0 called the
Albanese variety, which is the solution to the universal problem

X A(X)

A

for any morphism X → A to an abelian variety A taking x 7→ 0.

In fact, P(X) and A(X) are dual abelian varieties, which we’ll show later.

With these definitions we have, for all X,X ′ ∈ SPV,

HomMotk(h1(X), h1(X ′)) = HomVark(P(X),P(X ′))⊗Q

and
HomMotk(h2d−1(X), h2d−1(X ′)) = HomVark(A(X),A(X ′))⊗Q

4. Cohomology in Degree 1

Grothendieck’s statement is justified by some miraculous isomorphisms between Weil coho-
mologies of a curve and of its Jacobian variety. In some sense one should expect these, by the
Torelli theorem, which says that a curve is uniquely determined by its Jacobian variety.

In fact, the notion of a Jacobian variety generalizes to the notion of a Picard variety, which
can be defined for a smooth projective variety of arbitrary dimension, so we’ll treat this
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more general case, and then mention how it restricts to the Jacobian variety of a curve. The
surprising fact is that the Weil cohomology theories we care about, for arbitrary smooth
projective varieties over k, factor through the Picard variety!

We now show that we can recover H1 for all of the Weil cohomologies we’re interested in,
just by considering P(X). The way this works is to associate

X  P(X) T(−)P(X) = H1
(−)(X)(1),

where T(−) is some sort of “Tate module” of an abelian variety, which is an object that depends
on the chosen cohomology theory, for which there should exist a pairing

T(−)A× T(−)A
∨ → L,

where L is the Tate object for a given category. For example, for `-adic cohomology, the
“Tate module” is the usual `-adic Tate module.

4.1. Hodge (Singular) Cohomology. Suppose we’re working over k = C (or more gener-
ally, a subfield of C, before base changing). Then taking the exponential exact sequence of
sheaves

0→ Z(1)→ OX → O×X → 0

and taking cohomology, we get

0→ H1
sing(X,Z(1))→ ker(Lie(P(X)(C))→ P(X)(C))→ 0,

This lets us compute the singular cohomology in terms of the Picard variety, and we can put
a Hodge filtration on this H1 by setting

F 0H1
sing(X,Z(1)) = ker(H1

sing(X,Z(1))⊗C→ Lie(P(X)(C)))

This description is bit complicated, but one can show that this is the same as the Hodge
filtration one gets from the Hodge decomposition.

4.2. de Rham Cohomology. Now let k be a field of characteristic 0. One can show that
there is an isomorphism

H1
dR(X) ∼= Lie(P(X)\),

where P(X)\ → P(X) represent the functors{
isomorphism classes of line bundles

with an integrable connection

}
−→ {isomorphism classes of line bundles}

4.3. Étale Cohomology. Let char k = 0. Starting with the Kummer exact sequence of
étale sheaves on the étale site of schemes over X

0→ µ`n → Gm,X
·`n−→ Gm,X → 0,

one can take étale cohomology to get an exact sequence

0→ H1
ét(X)→ H1

ét(X,Gm,X)→ H1
ét(X,Gm,X)→ 0.

Continuing this argument, one ends up with an isomorphism

H1
ét(X,Z`)(1) ∼= T`(P(X)).
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4.4. Crystalline Cohomology. If k is a perfect field of characteristic p (e.g. a finite field),
then letX/k be a smooth projective variety. ThenH1

crys(X)(1) is isomorphic to the Dieudonné
module attached to the Barsotti-Tate group of P(X).

Now the Tate objects and Tate modules are:

(1) Singular: The Tate object is Z(1) := 2πiZ which has Hodge structure given by
placing 2πiZ⊗C in bidegree (−1,−1). The Tate module is

TsingA = ker(Lie(A(C))→ A(C)).

(2) de Rham: The Tate object is k itself, with filtration F<−2 = 0 and F≥−2 = k. The
Tate module is

TdRA = Lie(A\).

(3) Étale: The Tate object is Z`(1) acting through the cyclotomic character. The Tate
module is the `-adic Tate module

T`A = lim←−
n

A(k)[`n]

(4) Crystalline: The Tate object is W (k) with some extra data, and the Tate module
TcrysA is the Dieudonné module attached to the p-divisible group associated with A.

By Poincaré duality in a Weil cohomology theory, there is an isomorphism

H1
(−)(X)∨

∼−→ H2d−1
(−) (X)(d)/torsion.

Then since we have a pairing

T(−)P(X)× T(−)A(X)→ L,

we get isomorphisms

T(−)A(X)
∼−→ (T(−)P(X)(−1))∨

∼−→ (H1
(−)(X))∨ = H2d−1

(−) (X)(d)/torsion.

This shows that if we can formulate this theory of “Tate objects” correctly, then we basically
get that H2d−1

(−) (X)/torsion factorizes through the Albanese variety for free.

5. Arbitrary Schemes

Now we let X be non-smooth and non-projective, and see what happens.

First of all, what happens to our Weil cohomology theories? Here are some facts

(1) Singular (Hodge) cohomology is still possible, except now each H1
sing(X) comes with

a mixed Hodge structure instead of a pure Hodge structure. In other words, we have
an increasing filtration W • such that W i/W i−1 is a pure Hodge structure of weight i.

(2) de Rham cohomology generalizes through singular cohomology using hypercohomol-
ogy.

(3) Taking `-adic cohomology still works in exactly the same way.
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(4) Crystalline cohomology doesn’t generalize in the way we want (no longer finitely
generated), need something called rigid cohomology, which we won’t discuss.

To motivate 1-motives, we can ask the naive question: given a variety X over a perfect field
k, can we find some (more complicated) abelian variety A(X) such that for ` 6= char k, we
have a natural isomorphism

T`(PicX) ∼= H1
ét(X,Z`)(1),

or similarly for other cohomology theories?

The answer is no. For example, H1
` (Gm)(1) is 1-dimensional, while T`(A) is always even

dimensional. But let’s consider some examples to see how to fix this.

5.1. Example. First let’s look at something that is smooth, but not projective. Let X = Gm.
Embed X ↪→ P1 so that D = P1 \Gm = {0,∞}. Then the long exact sequence of relative
cohomology groups for (X,P1, D) gives us

0→ H1
ét(P

1,Z`(1))→ H1
ét(Gm,Z`(1))→ ker(H2

D(P1,Z`(1))→ H2
ét(P

1,Z`(1)))→ 0

The left hand term vanishes, and this becomes
0→ H1

ét(Gm,Z`(1))→ ker(deg : DivD(P1)→ Z)⊗ Z` → 0.

But DivD(P1) = Z2 (divisors supported on {0,∞}). Therefore, our étale H1 can be con-
structed from this kernel, which depends only on D.

5.2. Example. Now let’s look at something that is projective, but not smooth. In particular,
choose a projective nodal curve. Using the Kummer exact sequence again, we can get an
isomorphism

H1
ét(X,Z`)(1) ∼= T` Pic0,red(X).

However, one can also show that
Pic0,red(X) ∼= Gm.

So these pathologies suggest that we need to add tori to account for singularities, and free
abelian groups for “compatification” (embedding in projective space).

6. 1-Motives

Deligne defined a category that encompassed abelian varieties, tori, and free abelian groups.

6.1. Definition. The category of free 1-motives over k, denoted MM1,fr
k is the category of

2-term complexes
[L→ G],

of commutative group schemes over k, where L is an étale locally constant sheaf, such that
L(k) is a free finitely generated abelian group, and G is a semi-abelian variety over k, which
is an extension

0→ T → G→ A→ 0,

where T is a torus (i.e. isomorphic to Gn
m) and A is an abelian variety. Morphisms in this

category are given by morphisms of complexes.
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As expected from a theory of motives, the category MM1,fr
k comes with various realization

functors. They are quite technical, and instead of doing them all, we will just discuss the
Hodge realization, and the étale realization, referring the reader to the work of Deligne or
Barbieri-Viale for further elucidation.

6.2. Hodge Realization. Associated to a 1-motive [L → G] is the following mixed Hodge
structure. Note we have a morphism of exact sequences

0 H1(G(C)) Lie(G(C)) G(C) 0

0 H1(G(C)) T (M) L(C) 0

T (M) is the vector space. The Hodge filtration is given by

F 0 = ker(T (M)⊗C→ Lie(G(C))).

The weight filtration is given by

W−1 = H1(G(C)) and W−2 = im(H1(T (C)) ↪→ H1(G(C)))

6.3. `-adic Realization. A 1-motive is a 2-term complex of group schemes M = [L
u−→ G]

which we will say are placed in degrees −1, 0. We can consider the multiplication by `n map
on this complex, which looks like

· · · 0 L G 0 · · ·

· · · 0 L G 0 · · ·
·`n ·`n

Taking the mapping cone of this complex gives us

· · · 0 L G× L G 0 · · ·

−u
·`n

 (
·`n u

)

We then take the 0th cohomology of this complex, which gives

TZ/`nZ(M) =
{

(g, x) ∈ G(k)× L(k) : `ng = u(x)
}
/
{

(nx, u(x)) :x ∈ L(k)
}

Then we let
T`(M) = lim←−

n

TZ/`nZ(M)

Note in particular that
T`([0→ Gm]) = Z`(1)

and T`([0→ A]) is the usual `-adic Tate module of an abelian variety.
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6.4. Defining 1-motives. Now that we have realizations, it remains to ask: is there a
canonical functor Vark → MM1,fr

k ? In fact, Deligne does this in the case of curves by taking
a normalization of a curve and embedding it into a projective space.

Barbieri-Viale and Srinivas have constructed 1-motives in characteristic 0 that correctly give
Hodge, de Rham, and `-adic cohomology. Andreatta and Barbieri-Viale additionally have
defined M1(X) in positive characteristic for perfect fields.

7. Abelianizing MM1,fr
k

If one allows L(k) to be a finitely generated abelian group (not necessarily free), one gets
the notion of 1-motives with torsion, or effective 1-motives. Then after localizing at quasi-
isomorphisms of 1-motives (as complexes), we get MM1

k, which is an abelian category.
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