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1. Arithmetic Groups

The setting is the same setting as for automorphic forms. Let G be a reductive group over Q (like GLn or
SLn, or Spn, or GSpn, . . . ). If R is a Q-algebra (like R, or Qp, or AQ, . . . ) then G(R) form a group.

If R is a topological ring, we can topologize G(R) by choosing a closed embedding (it’s not obvious, but this
is independent of the choice of embedding) G → An and giving G(R) the subspace topology of An(R) =
Rn.

Example 1.1.

(1) If G = SL2, then SL2 ↪→M2×2
∼= A4, and this is already a closed embedding (it’s cut out by det = 1).

So SL2(Qp) and SL2(R) get their topology from Q4
p and R4, etc.

(2) Let G = GL1: then the embedding GL1 ↪→ A1 is not closed! To remedy this, one can take GL1 ↪→ A2

via the embedding x 7→ (x, x−1): this is a closed embedding, and gives you the topology you want on
GL1(R). For instance, GL1(AQ) = IQ ↪→ A2

Q gives the correct topology, whereas IQ = A×Q ⊆ AQ

does not give you the right thing.

(3) If I choose a closed embedding G ↪→ GLn, then the correct topology on G(AQ) is given by its
decomposition

G(AQ) =

′∏
p≤∞

G(Qp)

with respect to the G(Zp). Here, G(Qp) gets its topology from GLn(Qp): in this case, you can
actually view this as an open subset of Mn×n(Qp).

Definition 1.2. Let Γ,Γ′ ⊆ G(Q) be subgroups, and say Γ,Γ′ are commensurable if Γ ∩ Γ′ has finite index
in both Γ,Γ′.

Fact 1.3. This is an equivalence relation.

Definition 1.4. Γ ⊆ G(Q) is arithmetic if for some (equivalently, every) closed embedding G ↪→ GLn, Γ
and GLn(Z) ∩G(Q) are commensurable.
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Note that it’s easy to see that such Γ are discrete in G(R), and arithmetic subgroups are stable under
G(Q)-conjugation.

Example 1.5.

(1) If G = SLn ↪→ GLn. Then SLn(Q) ∩GLn(Z) = SLn(Z) is an arithmetic subgroup of SLn(Q).

(2) Let ΓN = ker(GLn(Z) � GLn(Z/NZ)): this is arithmetic, and is called a “congruence subgroup” of
level N .

(3) Let G = SL2 ↪→ GL2. We let

Γ0(N) =

{(
a b
c d

)
| c ≡ 0 mod N

}
and

Γ1(N) =

{(
a b
c d

)
| c ≡ 0 mod N, a ≡ d ≡ 1 mod N

}
and

Γ(N) = ΓN ∩ SL2(Z).

and these are arithmetic.

2. Their Cohomology Groups

Let Γ ⊆ G(Q) be arithmetic, and let (ρ, V ) be a finite dimensional algebraic representation of G. The
cohomology groups we want to study are the group cohomology groups

H∗(Γ, V (C))

One of the key points is that these have a Hecke action. Let Γ′,Γ′′ ⊆ Γ be two subgroups of finite index such
that there is an isomorphism ϕ : Γ′

∼−→ Γ′′. Then we define Tϕ ∈ End(Hi(Γ, V (C))) by

Hi(Γ, V (C))
res−−→ Hi(Γ′′, V (C))

ϕ∗

−−→ Hi(Γ′, V (C))
cores−−−→ Hi(Γ, V (C))

For instance if G = SL2 and Γ = SL2(Z) and Γ′ = Γ0(p), and Γ0(p) =

{(
a b
c d

)
| b ≡ 0 mod N

}
. The

isomorphism is conjugation by

(
p 0
0 1

)
. We will soon see that Tϕ corresponds to the Tp-operator.

3. Preview of upcoming topics

The reason why these are so important is that these spaces H∗(Γ, V (C)) can be interpreted as a space of
automorphic forms on G of level Γ.

(1) (Geometric interpretation of the H∗(Γ, V (C))) Let K ⊆ G(R) be a maximal compact subgroup. Let
X = G(R)/K, and view this as a real manifold. Then we consider

XΓ := Γ\G(R)/K,

which is a real manifold if Γ is torsion-free. One can make a local system Ṽ on XΓ out of V (C), and
then:

H∗(Γ, V (C)) ∼= H∗(XΓ, Ṽ )

Example 3.1. Let G = SL2, and let K = SO2(R) ↪→ SL2(R). Note SL2(R)/SO2(R) ∼= H (the
Poincaré upper half plane). Then if Γ ⊆ SL2(Z) is a finite index subgroup, then Γ acts on H by
Möbius transformations.

In general, we can view automorphic forms as functions on certain XΓs.
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(2) (Matsushima’s Formula) Assume XΓ is compact (equivalently Γ\G(R) is compact). Then G(R) acts
on L2(Γ\G(R)) by right translation.

Theorem 3.2 (Gelfand-(Piatetski-Shapiro)).

L2(Γ\G(R)) = ⊕̂ππm(π)

with m(π) ∈ Z≥0, and π running over irreducible unitary representations of G(R).

Then Matsushima’s formula says that

H∗(XΓ, Ṽ ) =
⊕
π

H∗(g,K, π ⊗ ξV )

where ξV is the character of Z(U(g)) on V . Note these H∗(g,K, π⊗ ξV ) can be computed explicitly.

(3) (Eisenstein classes) If Γ\G(R) is not compact mod center, then H∗(XΓ, Ṽ ) has subspaces correspond-

ing to cuspidal automorphic forms, but they don’t exhaust the entire H∗(XΓ, Ṽ ). Other cohomology
classes come from cusp forms on Levi’s of proper parabolic subgroups, which are known as “Eisenstein
classes”.

Theorem 3.3 (Franke). These cuspidal and Eisenstein classes exhaust H∗(XΓ, Ṽ ).

4. Why study automorphic forms in this way?

(1) (The “Chao Li”-style answer) H∗(Γ, V (C)) has an obvious rational structure, namely H∗(Γ, V (Q)).
This leads to rationality results for automorphic forms. For instance, we can use this (co)homological
structure to prove rationality results for L-values for modular forms.

(2) (The “Michael Harris”-style answer) XΓ will often have the structure of not only a real manifold,
but also a complex manifold, but not only a complex manifold, but also an algebraic structure:
in particular, it will often admit the structure of a variety over a number field F . If we fix an

isomorphism Q`
∼= C, then these H∗(XΓ, Ṽ ) can be compared with H∗et((XΓ)F , Ṽ ). Then there’s a

Hecke action on the singular cohomology group, and a GF -action on the étale cohomology group,
and these actions together lead to the construction of Galois representations (with a lot of work!)

(3) (The “Eric Urban”-style answer) It’s hard to directly p-adically interpolate automorphic forms. How-
ever, it is much easier to interpolate the local systems V . Then suitably taking cohomology of the
interpolated V s is the first step on the way to constructing eigenvarieties.
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