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1. ARITHMETIC GROUPS

The setting is the same setting as for automorphic forms. Let G be a reductive group over Q (like GL,, or
SL,,, or Sp,,, or GSp,,,...). If R is a Q-algebra (like R, or Q,, or Aq,...) then G(R) form a group.

If R is a topological ring, we can topologize G(R) by choosing a closed embedding (it’s not obvious, but this
is independent of the choice of embedding) G — A™ and giving G(R) the subspace topology of A"(R) =
R".

Example 1.1.

(1) If G = SLy, then SLy < My =2 A%, and this is already a closed embedding (it’s cut out by det = 1).
So SL2(Q,) and SLa(R) get their topology from Qf) and R?, etc.

(2) Let G = GLy: then the embedding GL; < A! is not closed! To remedy this, one can take GL; < A2
via the embedding  + (x,271): this is a closed embedding, and gives you the topology you want on
GL1(R). For instance, GL1(Aq) = Iq — Ag gives the correct topology, whereas Iq = AQg C Aq
does not give you the right thing.

(3) If T choose a closed embedding G — GL,, then the correct topology on G(Aq) is given by its
decomposition

G(AqQ) =[] ¢(Qy)

p<oo
with respect to the G(Z,). Here, G(Q,) gets its topology from GL,(Q,): in this case, you can
actually view this as an open subset of M, x»(Qp).

Definition 1.2. Let I, T” C G(Q) be subgroups, and say I',T” are commensurable if T NI’ has finite index
in both T, T".

Fact 1.3. This is an equivalence relation.

Definition 1.4. T' C G(Q) is arithmetic if for some (equivalently, every) closed embedding G <— GL,,, "
and GL,(Z) N G(Q) are commensurable.
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Note that it’s easy to see that such I' are discrete in G(R), and arithmetic subgroups are stable under
G(Q)-conjugation.
Example 1.5.

(1) If G = SL,, — GL,. Then SL,(Q) N GL,,(Z) = SL,(Z) is an arithmetic subgroup of SL,(Q).

(2) Let I'y = ker(GL,,(Z) - GL,(Z/NZ)): this is arithmetic, and is called a “congruence subgroup” of
level N.

(3) Let G = SL2 — GLQ. We let

FO(N):{@ Z) le=0 modN}

Fl(N):{<CCL Z>|CEO mod Nya=d=1 modN}

and

and
T'(N) =Txn NSLy(Z).

and these are arithmetic.

2. THEIR COHOMOLOGY GROUPS

Let I' C G(Q) be arithmetic, and let (p,V) be a finite dimensional algebraic representation of G. The
cohomology groups we want to study are the group cohomology groups

H*(T,V(C))
One of the key points is that these have a Hecke action. Let I'V,T” C T" be two subgroups of finite index such

~

that there is an isomorphism ¢ : I" = I'””. Then we define T,, € End(H*(I", V(C))) by
H(T,V(C)) L% H'(I",V(C)) £ H(I',V(C)) <% H(T, V(C))

For instance if G = SLy and T' = SLy(Z) and IV = Ty(p), and Ty(p) = {(Z 2) |b=0 mod N}. The

isomorphism is conjugation by <p

0 (1)> We will soon see that T}, corresponds to the T),-operator.

3. PREVIEW OF UPCOMING TOPICS

The reason why these are so important is that these spaces H*(T', V(C)) can be interpreted as a space of
automorphic forms on G of level I'.

(1) (Geometric interpretation of the H*(I', V(C))) Let K C G(R) be a maximal compact subgroup. Let
X = G(R)/K, and view this as a real manifold. Then we consider

Xr == \G(R)/K,

which is a real manifold if I is torsion-free. One can make a local system V on Xt out of V(C), and
then:

H*(T',V(C)) = H* (X, V)
Example 3.1. Let G = SLy, and let K = SO3(R) — SLa(R). Note SLy(R)/SO2(R) = H (the
Poincaré upper half plane). Then if ' C SLy(Z) is a finite index subgroup, then T acts on H by

Mobius transformations.

In general, we can view automorphic forms as functions on certain Xrs.
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(Matsushima’s Formula) Assume X is compact (equivalently T\G(R) is compact). Then G(R) acts
on L?(I'\G(R)) by right translation.

Theorem 3.2 (Gelfand-(Piatetski-Shapiro)).
L*(T\G(R)) = &,n"™)

with m(m) € Z>o, and ™ running over irreducible unitary representations of G(R).

Then Matsushima’s formula says that

H'(Xp,V) =P H (5, K. 72 &v)

where £y is the character of Z(U(g)) on V. Note these H*(g, K, 7 ® {y) can be computed explicitly.

(Eisenstein classes) If I'\G(R) is not compact mod center, then H*(Xr, V') has subspaces correspond-
ing to cuspidal automorphic forms, but they don’t exhaust the entire H*(Xr, V). Other cohomology
classes come from cusp forms on Levi’s of proper parabolic subgroups, which are known as “Eisenstein
classes”.

Theorem 3.3 (Franke). These cuspidal and FEisenstein classes exhaust H* (X, V).

4. WHY STUDY AUTOMORPHIC FORMS IN THIS WAY?

(The “Chao Li”-style answer) H*(I", V(C)) has an obvious rational structure, namely H*(T', V(Q)).
This leads to rationality results for automorphic forms. For instance, we can use this (co)homological
structure to prove rationality results for L-values for modular forms.

(The “Michael Harris”-style answer) Xp will often have the structure of not only a real manifold,
but also a complex manifold, but not only a complex manifold, but also an algebraic structure:
in particular, it will often admit the structure of a variety over a number field F. If we fix an
isomorphism Q = C, then these H*(Xr, V) can be compared with HY ((Xr)#, V). Then there’s a
Hecke action on the singular cohomology group, and a Gp-action on the étale cohomology group,

and these actions together lead to the construction of Galois representations (with a lot of work!)

(The “Eric Urban”-style answer) It’s hard to directly p-adically interpolate automorphic forms. How-
ever, it is much easier to interpolate the local systems V. Then suitably taking cohomology of the
interpolated Vs is the first step on the way to constructing eigenvarieties.
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