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1 Week 1
1.1 Sets
We will use naive set theory, and take the notion of a set as a primitive; for us, this is any definable collection.
We will use curly braces {} to describe a set, and will use : to separate an object from the conditions it
satisfies. So if X is a set, we can say

{x ∈ X : x satisfies some condition}

We have the notion of a subset Y ⊂ X. This is a collection of elements of X.

Definition 1.1.1. We let ∅ denote the empty set, which contains no elements. If X is a set, we let P(X)
denote its powerset, i.e.

P(X) = {Y ⊂ X} ,

the set of all subsets of X. Note X ∈ P(X) and ∅ ∈ P(X).

Definition 1.1.2. If X is a finite set, let |X| denote its size.

• Z denotes the integers

• N denotes the natural numbers (for me, 0 ̸∈ N)

• Q denotes the rational numbers

• R denotes the real numbers

Definition 1.1.3. If X ⊂ Z and Y ⊂ Z then we define:

• the union of X and Y is
X ∪ Y = {z ∈ Z : z ∈ X or z ∈ Y }

• the intersection of X and Y is

X ∩ Y = {z ∈ Z : z ∈ X and z ∈ Y } .

• If X ∩ Y = ∅ then we sometimes write X ⊔ Y := X ∪ Y , and we refer to this as a disjoint union 1.

• The complement of X in Z is
Xc = {z ∈ Z : z ̸∈ X}

• The difference between X and Y denoted X − Y or X \ Y is

X ∩ Y c = {z ∈ Z : z ∈ X and z ̸∈ Y }

Definition 1.1.4. If X and Y are sets, then a function or map f : X → Y is an assignment f(x) ∈ Y to
every x ∈ X.

1if X and Y are not common subsets of a bigger set, we may also define X ⊔ Y to be some set whose elements are the
elements of X and the elements of Y
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• f : X ↪→ Y is injective or an injection if x1, x2 ∈ X and f(x1) = f(x2) implies x1 = x2.

Note that if f : X → Y is injective and X and Y are both finite, then |X| ≤ |Y |.

• f : X ↠ Y is surjective or a surjection if for every y ∈ Y there exists some x ∈ X such that f(x) = y.

• f : X
∼−→ Y is bijective or a bijection if it is both injective and surjective.

• The image of f , denoted im(f) or f(X) is

f(X) = {y ∈ Y : there exists x ∈ X such that f(x) = y}

• If V ⊂ Y is a subset, the preimage of V under f , denoted f−1(V ), is

f−1(V ) = {x ∈ X : f(x) ∈ V }

• We let Fun(X, Y ) denote the set of all functions f : X → Y .

• If f : X → Y and g : Y → Z are two functions, we let g ◦ f : X → Z denote their composition.

Definition 1.1.5. If X and Y are two sets, the cartesian product X × Y is the set of pairs of elements (x, y)
with x ∈ X and y ∈ Y .

A subset R ⊂ X × X is called an equivalence relation if (we write x1 ∼ x2 if (x1, x2) ∈ R)

• (reflexive) x ∼ x for all x ∈ X

• (symmetric) x1 ∼ x2 if and only if x2 ∼ x1

• (transitive) x1 ∼ x2 and x2 ∼ x3 implies x1 ∼ x3

An equivalence relation is the same as a partition of X, which is a decomposition of X into disjoint subsets.
We write this as

X =
⊔
i∈I

Xi

where I is some (possibly infinite) indexing set.

Definition 1.1.6. An infinite set X is countable if there exists a bijection

X
∼−→ N

and uncountable if not. Note R is uncountable.
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2 Week 2
This week we will study metric spaces. Our eventual goal is to study topological spaces, but as with anything
in math, it’s best to study simpler examples first before trying to understand general theory.

2.1 Metric spaces
You’re probably used to the real numbers R, and n-dimensional Euclidean space Rn from your calculus or
real analysis course. You might have talked about length, area, volume, measure, convergence, continuity,
differentiation and integration, etc. If you look at the definitions, you’ll realize that the thing underlying all
of these notions is the absolute value. This is a function

| · | : R → R≥0

and it measures size. Here R≥0 is the set of nonnegative real numbers. In higher dimension, we take

| · | : Rn → R≥0

sending |(x1, . . . , xn)| =
√∑n

i=1 x2
i .

From a certain perspective, a more fundamental notion is that of distance. The usual Euclidean distance
is

d : Rn × Rn → R≥0

(x, y) 7→ d(x, y) = |x − y|

where |x − y| is the Euclidean distance.

Let’s generalize this definition and see what happens.

Definition 2.1.1. Fix a set M . A metric on M is a function

d : M × M → R≥0

satisfying

1. (positivity) d(x, y) = 0 if and only if x = y

2. (symmetry) d(x, y) = d(y, x) for all x, y ∈ M

3. (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ M

The pair (M, d) is called a metric space. If d is clear from context we often say M is a metric space.

So a metric space is “a set with a good notion of distance”.

Example 2.1.2.

1. You can check that the Euclidean metrics satisfy the 3 defining properties.

2. Taxicab metric.

3. If M is any set, then consider the discrete metric

d(x, y) =
{

1 x ̸= y

0 x = y

4. Fix (M, d) a metric space and fix [a, b] ⊆ R and consider C([a, b], M), the space of continuous functions.
Define a function dmax by taking

dmax(f, g) = max
x∈[a,b]

d(f(x), g(x)) for all f, g : [a, b] → M

This is well-defined; it turns out that the maximum will always be attained, since f and g are assumed
to be continuous (we will see why later). On the homework you will show that this is a metric when
M = R. Note that if a = b, this space is the same as M .
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2.2 Convergence
One of the reasons we define metric spaces is to talk about convergence. Convergence is defined in basically
the same way as Euclidean space, but let’s spell it out and try some examples.

Definition 2.2.1. Suppose (M, d) is a metric space, and suppose (xi) = (x1, x2, . . . ) is a sequence in M .
We say that (xi) converges to x ∈ M if for every ϵ > 0 there exists a Nϵ > 0 such that if n > Nϵ then
d(x, xn) < ϵ. In this case we say that x is the limit of x1, . . . , xn, and we write xi → 0.

The idea of course is that as you go further down the sequence, you get closer and closer to x.

Example 2.2.2.

1. If M = R and xi = 2−i, then xi → 0.

2. Not every sequence converges, e.g. xi = i.

3. If M is a set and ddisc is the discrete metric, then can you characterize the convergent sequences?

Before moving on let’s slightly rephrase this definition.

Definition 2.2.3. If (M, d) is a metric space, then the open ball of radius r > 0 around a point x ∈ M is

Br(x) = {y ∈ M : d(x, y) < r} .

Similarly, the closed ball of radius r > 0 around a point x ∈ M is

B•
r (x) = {y ∈ M : d(x, y) ≤ r} .

So convergence can be characterized as saying that for every ϵ > 0 there exists Nϵ such that if n > Nϵ then
xn ∈ Bϵ(x).

2.3 Continuity
Sets are interesting, but functions between sets are more interesting. So what should a function between
metric spaces be?

If (M1, d1) and (M2, d2) are two metric spaces, then we want a notion of a “function”

f : (M1, d1) → (M2, d2)

A metric space is “a set with extra structure”. A general paradigm says that a map between them should
be a map between the sets respecting the structure. In this case:

Definition 2.3.1. If f : M1 → M2 is a function, then we say it is continuous if for every x ∈ M1 and every
ϵ > 0 there exists δ > 0 such that d1(x, y) < δ then d2(f(x), f(y)) < ϵ. In other words, if y ∈ Bδ(x) then
f(y) ∈ Bϵ(x). In other words still,

Bδ(x) ⊆ f−1(Bϵ(f(x))).

In the homework, you will show that this is the same as saying that if

xi → x then f(xi) → x

for every converging sequence xi ∈ M1.

Example 2.3.2.

1. For functions R → R with the Euclidean metric, this recovers the usual definition of continuous function
you’re used to.

2. If M1 has the discrete metric, then what are the continuous functions f : M1 → M2?

3. Is the composition of two continuous functions continuous? Can we see this both using the ϵ-δ definition
and the sequence definition?
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3 Week 3
Today we’ll finish up continuity and then discuss compactness, an important property of a metric space
which admits an important generalization to the topological context.

3.1 Subspaces
One thing I didn’t mention but probably should have is that if (M, d) is a metric space and N ⊆ M is a
subset, then N is still a metric space; you just define the metric to be the restriction of d to N . So subsets
of metric spaces are naturally metric spaces.

3.2 More on Continuity
Recall from last week that we saw that a map f : M1 → M2 of metric spaces is continuous if for all x ∈ M1
and all ϵ > 0, there exists δ such that

Bδ(x) ⊂ f−1(Bϵ(f(x))).

Recall also from last week that we defined the notion of an open set. We said that if M is a metric space
then U ⊆ M is open if for every x ∈ U there exists ϵ > 0 such that Bϵ(x) ⊆ U .

Next week we’re going to consider spaces with notions of openness which have nothing to do with balls of
a certain radius. These spaces should still admit continuous functions between them though, so we need
a way to say this without the words (and letters) “ball”, “radius”, “ϵ”, “δ”, etc. As you will see on the
homework, it turns out we can combine these two statements in the most natural way: f is continuous if
and only if

U is open =⇒ f−1(U) is open .

Notice how succinct this statement is; it shows us that any time we have a good notion of “open-ness”, we
have a good notion of continuity. Stay tuned.

3.3 Compactness
Recall from calculus that a continuous function f : [a, b] → R always attains its maximum and minimum; in
other words, there exists xmin, xmax ∈ [a, b] such that f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ [a, b].

But why is this true? Let’s try to generalize this a bit and see. First of all, note that [a, b] is closed because
its complement is (−∞, a) ⊔ (b, ∞). So you might ask, it this true for any closed set?

The answer is no; e.g. R itself is closed, but a function R → R does not necessarily attain its maximum or
minimum. It turns out that we need the further condition that the closed set is bounded.

Definition 3.3.1. If (M, d) is a metric space, then a subset N ⊆ M is bounded if there exists r > 0 such
that d(x, y) < r for all x, y ∈ N .

Remark 3.3.2. What does a bounded closed set in R look like, anyway? In the Week 2 group problems,
one question was to describe all of the open sets in R. The answer (I’ll leave you to think about why this is
true) is that it’s the disjoint union of countably many open intervals, i.e. things of the form (−∞, a), (a, b)
for a < b, (b, ∞), or R itself. The complements of such disjoint unions are therefore (certain, not all) disjoint
unions of closed sets of the form (−∞, a], [a, b], [b, ∞), where now we’re allowing a ≤ b. So clearly the closed
and bounded things are the closed sets which are contained within some big enough open ball.

But these can look weird; e.g. the Cantor set is closed and bounded! Why? It’s clear that it’s bounded, and
the point is that its complement is the countable disjoint union of open intervals (remember you construct
it by removing middle thirds).

Theorem 3.3.3. If Z ⊆ R is closed and bounded, Z is nonempty, and f : Z → R is continuous then f
attains its maximum and minimum.

On the other hand, this is somewhat special to R, as evidenced by the following example.
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Example 3.3.4. Every subset of a discrete metric space is closed. Which are the bounded ones? All of
them! But if M is a discrete metric space, a (continuous) function M → R only necessarily attains its
maximum and minimum if M is finite.

So if we want to generalize this notion of “closed and bounded”, we need a different way of seeing it. The
answer goes as follows.

Definition 3.3.5. A metric space (M, d) is sequentially compact if every sequence x1, x2, . . . has a convergent
subsequence.

Theorem 3.3.6 (Bolzano–Weierstrass). A subset of R (with the Euclidean metric) is sequentially compact
if and only if it is closed and bounded.

Proof. This is a topology course and not a real analysis course, so I’m not going to give a detailed proof of
this, but I’ll sketch it.

1. First we show that a subset Z inside a metric space M is closed if and only if the limit of every sequence
(xi) ⊆ Z is contained in Z (you will show this on your homework)

2. Use (1) to show that the statement of the Theorem is equivalent to showing that every bounded
sequence in R has a convergent subsequence.

3. Show that every sequence in R has a monotone subsequence, i.e. one of the form

x1 ≥ x2 ≥ · · · or x1 ≤ x2 ≤ · · ·

4. Conclude by using the monotone convergence theorem: every bounded monotone sequence converges.

Theorem 3.3.7. If f : M1 → M2 is a continuous map of metric spaces and M1 is sequentially compact,
then f(M1) is sequentially compact.

Proof. If (yi) ⊂ M2 is a sequence in f(M1), then we can write yi = f(xi) for some xi ∈ M1 for each
i = 1, 2, . . . . But M1 is sequentially compact, so the sequence (xi) ⊂ M1 has a convergent subsequence
xn1 , xn2 , xn3 , . . . . But f is continuous, so f(xn1), f(xn2), f(xn3), . . . converges, and thus f(M1) is also
sequentially compact.

Corollary 3.3.8. If f : M → R is a map of metric spaces and M is sequentially compact and nonempty,
then f has a maximum and minimum, i.e. there exists xmin and xmax such that f(xmin) ≤ f(x) ≤ f(xmax)
for all x ∈ M .

Proof. Just take M1 = M and M2 = R and then apply the Bolzano–Weierstrass theorem.

So this is all well and good for metric spaces, but we’re going to be interested in a more general class of
spaces (topological spaces) shortly. So we should reformulate this notion in a way that doesn’t mention
convergence (which implicitly involves ϵ and δ). This will be the topic of your group work this week, where
you will explore compactness.
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4 Week 4
So far we’ve been busy studying metric spaces. We defined them, gave some examples, stated some basic
notions related to them like continuity, (sequential) compactness, etc. We also spent time carefully re-working
these notions so that they don’t look like they have anything to do with metric spaces.

So let’s take this to its logical end. What’s the minimal amount of structure needed to capture all this?

4.1 Topological spaces
Definition 4.1.1. If X is a set, a subset T ⊂ P(X) is called a topology on X (or just a topology if X is
clear from context) if

1. ∅, X ∈ T ,

2. T is closed under arbitrary unions, i.e. if {Ui}i∈I ⊂ T is a collection of subsets of X then⋃
i∈I

Ui ∈ T

and

3. T is closed under finite intersections, i.e. for U1, . . . , Un ∈ T ,

U1 ∩ · · · ∩ Un ∈ T .

We say that (X, T ) is a topological space. The elements of T are called open subsets of X. A subset Z ⊆ X
is called closed (with respect to T ) if Xc ∈ T .

Remark 4.1.2. Strictly speaking, the fact that ∅, X ∈ T follows from (2) and (3), if we accept that the
intersection of an empty collection of subsets of X is X, and the union of an empty collection of subsets of
X is ∅; if this is confusing, just ignore it.

Remark 4.1.3. de Morgan’s laws imply that you could also define a topology by specifying the closed sets;
i.e. some collection of subsets closed under finite union and arbitrary intersection.

If (M, d) is a metric space, recall that we said that U ⊂ M is open if for every x ∈ U there exists an open
ball Br(x) contained in U .

Proposition 4.1.4. The set Td ⊂ P(M) of open sets in M is a topology on M .2

Proof. You proved this in the group work from Week 2!

Example 4.1.5. Here are some basic examples of topological spaces.

1. If X is a set, take T = P(X). This is called the discrete topology. You can check that if (M, d) is a
discrete metric space then Td (see Proposition 4.1.4) is the discrete topology.

2. If X is a set, take the set T = {∅, X}. This is the spiritual opposite of the discrete topology, so we
call it the indiscrete topology on X.

3. The topology on Rn generated by the Euclidean metric is called the Euclidean topology.

4. If S = {0, 1} then define TS = {∅, {0} , {0, 1}}. This topological space is called the Sierpiński space,
and you will study it on Homework 4.

Definition 4.1.6. If T1 and T2 are two topologies on X with T1 ⊂ T2, we say that T1 is coarser than T2,
and that T2 is finer than T1. Not every pair of topologies is comparable, but on every set X the discrete
topology is always the finest topology, and the indiscrete topology is always the coarsest topology.

2The subscript d in Td refers to the metric d on M .
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Remember that when we defined the topology for a metric space we started with Br(x) and then used them
to define a notion of open set. This can be done more generally, as follows.

Definition 4.1.7. If X is a set, then a base of open sets on X is a subset B ⊂ P(X) such that:

1. for all x ∈ X there exists B ∈ B such that x ∈ B, and

2. if B1, B2 ∈ B and x ∩ B1, B2 then there exists B3 ∈ B such that x ∈ B3 and

B3 ⊆ B1 ∩ B2

Example 4.1.8.

1. For example, if M is a metric space, then the set Bd of all open balls in M is a base for the metric
topology Td.

2. If X has the discrete topology, then the set B = {{x} : x ∈ X} is a base.

Definition 4.1.9. If B is a base of open sets in X, then it generates a topology TB on X by taking the
collection of unions of open sets in B (along with the empty set ∅). You will explain this more thoroughly
on the homework.

If (X, T ) is a topological space and B ⊆ P(X), we say that B is a base for T if B generates T .

Often we will start with a topology and ask for a basis of open sets which generates it.

4.2 Continuity
Recall that we proved that a function f : M1 → M2 between two metric spaces is continuous if and only if
f−1(U) is open whenever U is open. This works in general.

Definition 4.2.1. A function X → Y between two topological spaces is continuous if

V ⊆ Y open =⇒ f−1(V ) ⊆ X open.

Example 4.2.2.

1. Just as for metric spaces, if X has the discrete topology and Y is any topological space, any function
f : X → Y is continuous. If Y has the indiscrete topology and X is any topological space, then any
function f : X → Y is continuous.

2. If X and Y are metric spaces, this is equivalent to metric space continuity.

3. If B is a base of open sets for a topology on X then you can check that f : X → Y is continuous iff
f−1(B) is open for all B ∈ B. This is because preimages preserve unions, as you showed on Homework
3.

For sets, we have the notion of bijective map. If f : A → B is a bijection of sets, then for all intents and
purposes, A and B are the “same”; in other words, one is a relabelling of the other. For topological spaces,
we have the following.

Definition 4.2.3. If f : X → Y is a continuous function between topological spaces, then we say f is a
homeomorphism if

1. f is bijective (so f−1 is uniquely defined) and

2. f−1 is continuous.

Example 4.2.4.
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1. As a dummy example, take any set X with at least two elements and take the identity map X → X, but
consider the first X to have the discrete topology and the second one to have the indiscrete topology.
Then the identity is a continuous bijection, but is not a homeomorphism.

2. There are a number of continuous bijections R → Rn called “space filling-curves”. But these are not
homeomorphisms. We won’t discuss them in this class.

3. The logistic function f : R → (0, 1) given by f(x) = (1 + e−x)−1 is a homeomorphism. In fact, any
two open intervals are homeomorphic, as are any two closed intervals.

4. Let S1 denote the unit circle in the complex plane with the Euclidean topology (i.e., view S1 ⊆ C as
a metric space with the Euclidean metric). The map

[0, 1) → S1

x 7→ e2πix

is continuous and bijective, but is not a homeomorphism.
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5 Week 5
This week we will discuss how to construct new topologies from old ones.

5.1 Set-theoretic constructions
Remember that we have some constructions for sets.

1. For instance, if X is a subset, there are subsets Y ⊆ X.

2. If (Xi)i∈I is a collection of sets, we can form the Cartesian product
∏

i∈I Xi and the disjoint union⊔
i∈I Xi.

3. If X is a set and ∼ is an equivalence relation on X then we can define the “quotient space” Y = X/ ∼,
where we identify equivalent objects.

We understand these operations. Great. But now what if the sets we started with above also carry topologies?
Then our constructions should also naturally carry a topology somehow. The problem is that there are many
choices; for instance, we could give all of our constructions the discrete or indiscrete topology, but this is a
sort of unnatural thing to do. So what do we do?

5.2 Natural maps
The solution is to notice that in all of our constructions, there’s an extra piece of information we get for free
that we haven’t taken into account; natural maps.

1. If Y ⊆ X, then there is a natural inclusion map Y → X; this is pretty straightforward.

2. If (Xi)i∈I is a collection of sets, an element of
∏

i∈I Xi is a choice of one element xi ∈ Xi for each
i ∈ I. So for every j ∈ I, we get a natural projection map

πj :
∏
i∈I

Xi → Xj

sending (xi)i∈I to xj .

3. In the same vein, an element of
⊔

i∈I Xi is a choice of an element xj ∈ Xj for a single j ∈ I. So in
this case we don’t have projections, but instead we have natural inclusion maps going in the opposite
direction:

ιj : Xj →
⊔
i∈I

Xi

4. Finally, given a set X and an equivalence relation, we get a natural quotient map

q : X → X/ ∼

sending x to its equivalence class. Note q is surjective, and in fact given any surjective map X ↠ Y
there is an equivalence relation ∼ on X making Y = X/ ∼ (just say that x ∼ x′ if f(x) = f(x′)).

So for example, in this sense the product of two sets X and Y should be thought of as the diagram

X × Y X

Y

πX

πY

or in other words, the set X × Y equipped with these two maps.

Now if X and Y have topologies, then from this perspective it becomes a bit clearer how to define a topology
on X × Y . Why? Well, the projection maps πX and πY should “respect the topology”; or in other words,
they should be continuous maps. But this is all we will impose! So if U ⊆ X and V ⊆ Y are open sets, we
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want π−1
X (U) = U × Y and π−1

Y (V ) = X × V to be open. Note that if X × Y is very coarse, then there’s less
of a chance that πX , πY will be continuous. But if X × Y is very fine, then there are a lot of open sets that
don’t need to be open.

So in conclusion we define the topology on X × Y to be the coarsest topology making πX , πY continuous.
More concretely, we view {

π−1
X (U) : U ⊆ X open

}
∪

{
π−1

Y (V ) : V ⊆ Y open
}

as a subbase, and then generate a topology by first closing under finite intersection and then arbitrary union.
That’s the product topology (for two sets)!

For instance, you can think about the topology on R × R; it’s the same as the Euclidean topology.

5.3 Topologies
Let’s propagate this idea to the other examples.

1. If X is a topological space and Y ⊆ X is a subset, then we want Y ↪→ X to be continuous, i.e. if U is
open in X then U ∩ Y should be open in Y . You can check that

{U ∩ Y : U ⊆ X open} ⊆ P(Y )

is a topology, called the subspace topology.

2. As discussed previously, if (Xi)i∈I is a collection of sets, then the product topology is the coarsest
topology on

∏
i∈I Xi such that every projection map πj :

∏
i∈I Xi → Xj is continuous; in other words,

the topology generated (as a subbase) by sets of the form π−1
j (U) where U ⊆ Xj is open.

3. For disjoint unions, we have the opposite description; the disjoint union topology on
⊔

i∈I Xi is the
finest topology making the inclusion maps ιj continuous for all j. A base of open sets for this topology
is just ⊔

i∈I

TXi

where TXi
is the topology on Xi.

4. Similarly, in the case of quotients we are also trying to define a topology on a target of a natural map.
So we define the quotient topology on X/ ∼ be the finest topology making X → X/ ∼ continuous. So
a set of equivalence classes in X is open if the union of all of those equivalence classes is open in X.

Let’s see a few examples.

1. If X is a metric space and Y ⊆ X is a subset, then it’s not so hard to check that the metric topology
on Y is the subspace topology. So for instance the subspace topology on S1 ⊆ R2 is just the metric
topology.

2. The subspace Q ⊆ R is not discrete, but it is totally disconnected; every open is a disjoint union of two
opens.

3. If X1, . . . , Xn are discrete spaces, then X1 × · · · × Xn is again discrete. But things don’t work so well
for infinite products. For instance, ∏

N
{0, 1}

is not discrete, and turns out to be homeomorphic to the Cantor set!

4. Here’s an example of a quotient topology. Take X = R with the Euclidean topology and define an
equivalence relation where x ∼ y if and only if x − y ∈ Z. Then as a set, the quotient space has
equivalence class representatives given by [0, 1). But on the other hand, 1 ∼ 0, so you’re effectively
gluing 0 to 1, and you get a circle. The topology is exactly the metric topology again on the circle.
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6 Week 6
Remember in week 3 that there was a problem which asked you to try to cover B1((0, 0)) ⊆ R2 with disjoint
open balls, but I then said that you couldn’t do this because it was “connected”. This week will study
connectedness in more detail, and discuss some of the subtleties that come along with it.

6.1 Connectedness
Definition 6.1.1. If X is a topological space, we say that X is connected if ∅, X are the only two subsets of
X which are both open and closed. Equivalently, you cannot write X = U ⊔ V where U, V ⊆ X are disjoint
nonempty open subsets.

Connectedness is a homeomorphism invariant; in other words, if X ∼= Y then X is connected if and only if
Y is connected.

Example 6.1.2. Here are some examples to consider.

1. A discrete space is connected if and only if it consists of one point, while all indiscrete spaces are
automatically connected.

2. R is connected. To see this, note that if U ⊔ V = R both nonempty then pick x ∈ U and y ∈ V and
consider the interval [x, y]. Let z = inf {a ∈ [x, y] : a ∈ V }. Then z is a limit point for V , so z ∈ V
since V is closed. But since z ∈ V we have x < z and thus z must be a limit for point U as well, so
z ∈ U since U is closed as well. Contradiction. This implies that (a, b) is connected, and in fact also
that [a, b] is connected.

3. Q is not connected (as a subspace of R); this is because (−∞, r)⊔(r, ∞) disconnects Q for any irrational
r ∈ R.

4. The union of the line y = 0 and y = 1/x (for x > 0) is not connected.

Lemma 6.1.3. If X = U ⊔ V for U, V nonempty disjoint opens and A ⊆ X is a connected subset, then
either A ⊆ U or A ⊆ V .

Proof. Since U and V are open in X we have U ∩ A and V ∩ A open in A. Since A is connected and
A = (U ∩ A) ∪ (V ∩ A) one of U ∩ A or U ∩ V is empty.

Proposition 6.1.4. If X is a topological space and Yi is a collection of connected subspaces of X which
contain a common point, then Y =

⋃
i Yi is connected.

Proof. Suppose Y = U ∪V nonempty disjoint opens. By assumption there is a point p ∈ Y which is contained
in each Yi, so wlog suppose p ∈ U . Since Yi is connected, it is either contained in U or V , but p ∈ U , so
Yi ⊆ U for all i, so V is empty, contradiction.

In view of this proposition, we can make the following definition.

Definition 6.1.5. If X is a topological space, then a connected component of X is a maximal connected
subset of X.

Note that if x ∈ X then the “connected component of X containing x” is well-defined. Why? Well, just take
the union of all connected subsets of X containing x; this will still be connected.

On the homework you will show that if C ⊆ X is connected, then C is connected as well. Therefore, every
connected set is closed. If a space has only finitely many connected components then they’re all open as
well. But in general this is not true; take Q for instance. The connected components are singleton sets, but
these are not open, because every open in Q contains infinitely many rational numbers! This is an example
of a more general phenomenon:

Definition 6.1.6. A topological space X is called totally disconnected if the connected components are the
singletons {x}.
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So for instance, a discrete space is totally disconnected, but so is something like Q ⊆ R. Also, the Cantor set
turns out to be totally disconnected; this is not so hard to see from the description of “removing thirds”.

Let’s talk about one related notion.

Definition 6.1.7. A topological space X is called path-connected if for every x, y ∈ X there exists a
continuous map f : [a, b] → X such that f(a) = x and f(b) = y. This is another way of saying that “any
two points in X can be connected by a path”.

Proposition 6.1.8. A path-connected space is connected.

Proof. This is easy: if X is path-connected and X = U ⊔ V , then pick x ∈ U and y ∈ V , and pick a path
f : [a, b] → X such that f(a) = x and f(b) = y. But then f−1(U) ∪ f−1(V ) = [a, b] and we’ve therefore
disconnected the interval, contradiction.

Path-connectedness for subspaces of Euclidean space is usually easy to detect. On the other hand, there are
some pathological examples.

Example 6.1.9 (Topologist’s sine curve). Let X = {(x, sin(1/x)) : 0 < x ≤ 1}∪{(0, y) : y ∈ R}. Each piece
in the union is connected and even path-connected. The union turns out to be connected as well. But this
is not path-connected!
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7 Week 7
In Week 3 we talked about sequential compactness of a metric space. Recall that a metric space is sequentially
compact if every sequence admits a convergent subsequence. Today we’ll generalize this notion to an arbitrary
topological space and discuss some properties.

7.1 Compactness
Definition 7.1.1. A topological space X is compact if every open cover of X has a finite subcover. In other
words, for any collection {Ui}i∈I of open subsets of X such that

X =
⋃
i∈I

Ui

there exist i1, . . . , in ∈ I such that
X = Ui1 ∪ · · · ∪ Uin

.

Remark 7.1.2. In the group work in Week 3 you showed that if M is a compact metric space then it is
sequentially compact; in fact for a metric space these turn out to be equivalent, but since this is not a real
analysis class, we won’t go into the (somewhat complicated) proof of this fact.

Example 7.1.3. Let’s do some examples.

1. If Z ⊆ Rn is a subset of Euclidean space, then it is a metric space so compactness is the same as
sequential compactness. But we saw that for Euclidean space this is the same as being closed and
bounded; this was the Bolzano–Weierstrass theorem, which we sketched a proof of.

2. If X is a discrete topological space, then {{x}}x∈X is an open cover. But if you remove any sets from
this cover then it’s no longer a cover. Therefore, a discrete topological space is compact if and only if
it contains finitely many points.

3. Indiscrete spaces are always compact.

4. Familiar topological spaces are compact; e.g. the circle S1, the torus T = S1 × S1, the interval [0, 1],
a closed ball B•

r (x) in Euclidean space.

5. A cofinite topology is always compact. Recall that is X is a set then we define this topology by specifying
that all finite subsets of X are closed (so their complements are open). Why? If {Ui}i∈I is an open
cover and pick a random member Ui in the collection, then U c

i is finite, so if we write U c
i = {x1, . . . , xn},

you can find i1, . . . , in ∈ I such that xk ∈ Uik
for k = 1, . . . , n. Then Ui ∪ Ui1 ∪ · · · Uin

= X.

Compact sets satisfy some useful properties. One such property is the following:

Proposition 7.1.4. If f : X → Y is a continuous map of topological spaces and X is compact, then f(X)
is compact (as a subspace of Y with the subspace topology).

Proof. Since f(X) has the subspace topology from Y , without loss of generality we may assume that f is
surjective, i.e. f(X) = Y . Then if {Vi}i∈I is an open cover of Y , we immediately see that

{
f−1(Vi)

}
i∈I

is
an open cover of X. Since X is compact is must have a finite subcover. So we can write

X = f−1(Vi1) ∪ · · · ∪ f−1(Vin)

for some i1, . . . , in ∈ I. So we want to show that

Y = Vi1 ∪ · · · ∪ Vin

But if y ∈ Y , then f is surjective so there is some x ∈ X such that f(x) = y. But then x ∈ f−1(Vik
) for

some k, so we conclude because
y = f(x) ∈ Vik

.
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This is great, because for instance this implies that every function f : X → R from a nonempty compact
space X achieves its maximum and minimum. While the condition of compactness is somewhat opaque
on first glance, we’ll see that one can construct new compact spaces from old ones, so it’s actually a fairly
flexible notion.

For this, we need to take a brief digression and talk about Hausdorff spaces.

7.2 Hausdorff spaces
Definition 7.2.1. A topological space X is Hausdorff if points in X can be separated by disjoint opens.
In other words, if x1, x2 ∈ X are two distinct points, then there exist open subsets U1, U2 ⊆ X such that
x1 ∈ U1, x2 ∈ U2, and U1 ∩ U2 = ∅.

Example 7.2.2. Here are some examples.

1. Any metric space is Hausdorff: if x ̸= y then d(x, y) > 0 and the triangle inequality implies that

Bd(x,y)(x) ∩ Bd(x,y)(y) = ∅.

2. Any discrete space is clearly Hausdorff. Indiscrete spaces are clearly not (if they have more than one
point).

3. If X is an infinite set, then the cofinite topology is very much not Hausdorff, because the intersection
of any two nonempty open sets is infinite.

On the homework, you will see that these play very nicely with respect to compactness:

Proposition 7.2.3. Every closed subspace of a compact space X is compact. If X is Hausdorff, every
compact subspace of X is closed.

Proof. Homework.

For instance, this implies:

Proposition 7.2.4. If f : X → Y is a continuous bijection, X is compact, and Y is Hausdorff, then f is a
homeomorphism.

Proof. It suffices to show that f takes open sets to open sets, or equivalently that f takes closed sets to
closed sets. But if Z ⊆ X is closed then it is compact by Proposition 7.2.3, so f(Z) is compact in the
Hausdorff space Y and is therefore closed, again by Proposition 7.2.3.
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8 Week 8
We will start talking about homotopy theory this week.

So far in the course we have studied topological spaces, and declared that two of them are the same if they are
homeomorphic. Although homeomorphic spaces may look slightly different from one another (for example,
R is homeomorphic to (0, 1)), being homeomorphic means that any topological property of one space is the
same as the same property for the other space.

8.1 Homotopy
Homotopy is a weaker notion of “sameness”, where two topological spaces are not the same if they are in
bicontinuous bijection with each other, but instead if one can be continuously deformed into another without
“tearing” or “breaking” the space. For example Rn ∼=∗; this sentence is read “Rn is homotopy equivalent to
a point”. Intuitively you can imagine taking Euclidean space and contracting it inwards to a point.

Another example: the letter Q and the letter O in the previous group work were not homeomorphic. But
they are homotopy equivalent, because you can take the tail of the Q and just continuously shrink it until
it becomes part of the O.

A non-example: the circle S1 is not homotopy equivalent to ∗. As we will see, this is because if you want to
shrink the circle to a point, you have to “break it”.

Definition 8.1.1. If X and Y are two topological spaces and f, g : X → Y are two continuous maps, then
a homotopy from f to g is a continuous map

H : X × [0, 1] → Y

such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. If there exists a homotopy from f to g, then we
say that f and g are homotopic, and we write f ≃ g.

We will justify the apparent symmetry in the definition in a moment, but for now let’s do some exam-
ples.

Example 8.1.2. If X is any topological space, then any two maps f, g : X → Rn are homotopic. To see
why, define the function

H : X × [0, 1] → Rn

(x, t) 7→ (1 − t)f(x) + tg(x)

On the homework you will show that this is continuous, and therefore defines a homotopy.

Example 8.1.3. If Y is path-connected, then any two constant maps are homotopic. To see this, note that
if f1(x) = y1 and f2(x) = y2, then simply pick a path p : [0, 1] → Y such that p(0) = y1 and p(1) = y2 and
then take

H(x, t) = p(t).
This is continuous because it is the composition of the projection X × [0, 1] → [0, 1] with p : [0, 1] → Y .

A map which is homotopic to a constant map is called null-homotopic.

Proposition 8.1.4. Homotopy from f to g is an equivalence relation.

Proof. First of all, f ≃ f . To see this, note that you can just take H(x, t) = f(x) for all x and t.

Secondly, if f ≃ g then there exists H : X × [0, 1] → Y such that H(·, 0) = f and H(·, 1) = g. Note that the
map [0, 1] → [0, 1] defined by t 7→ 1 − t is continuous, so we can define

Hs : X × [0, 1] (x,t)7→(x,1−t)−−−−−−−−−→ X × [0, 1] H−→ Y.

You can then easily check that Hs(·, 0) = g and Hs(·, 1) = f .
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Finally, if f ≃ g and g ≃ h, we have H1 : X × [0, 1] → Y and H2 : X × [0, 1] → Y such that H1(·, 0) = f ,
H1(·, 1) = g, H2(·, 0) = g and H2(·, 1) = h. But then

H3(x, t) =
{

H1(x, 2t) 0 ≤ t ≤ 1/2
H2(x, 2t − 1) 1/2 ≤ t ≤ 1

is a homotopy between H1 and H2; on the homework you will check that H3 is still continuous.

In general, you say that f : X → Y is an isomorphism whenever there exists a left-and-right inverse. This
applies to basically any mathematical object.

But here is a weaker version of this.

Definition 8.1.5. A (continuous) map f : X → Y of topological spaces is a homotopy equivalence if there
exists g : Y → X such that

g ◦ f ≃ idX and f ◦ g ≃ idY .

If there exists a homotopy equivalence between X and Y , then we say they are homotopy equivalent and
write X ∼=h Y .

Remark 8.1.6. This is an equivalence relation (check this for yourself).

Example 8.1.7. Let’s go back to the Euclidean space example. There is a unique continuous map Rn → ∗,
and we can define ∗ → Rn by just sending ∗ to 0. The compositions are Rn x 7→0−−−→ Rn and the unique map
∗ → ∗. Note ∗ → ∗ is just id∗, so in particular it is homotopic to itself. But we showed that any two maps
into Rn are homotopic, so Rn x7→0−−−→ is homotopic to the identity. Therefore, Rn ∼=h ∗.

Example 8.1.8. Here’s another example. Consider R2 − {(0, 0)} and let S1 ⊆ R2 denote the unit circle.
Consider the map

f : R2 − {(0, 0)} → S1

x 7→ x

||x||

where ||x|| denotes the distance from x to (0, 0). Also consider the map

g : S1 → R2 − {(0, 0)}

just given by inclusion. Now, note that f ◦ g = idS1 . On the other hand, what is g ◦ f? It’s “projection onto
the unit circle”. We want to find a homotopy g ◦ f ∼ idR2−{(0,0)}. But we can do this by taking

H : R2 − {(0, 0)} × [0, 1] → R2 − {(0, 0)}

(x, t) 7→ (1 − t)x + t

(
x

||x||

)
.

So we conclude that R2 − {(0, 0)} ∼=h S1.

Remark 8.1.9. A similar argument shows that Rn+1 − {(0, 0)} ∼=h Sn where Sn is the n-sphere defined by

Sn =
{

x ∈ Rn+1 : ||x|| = 1
}

.
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9 Week 9
This week we will use the notion of homotopy to define an invariant of a topological space that measures
the number of “distinct loops”.

9.1 Path homotopy
In the previous lecture, the notion of “homotopy between maps” was defined as a fairly flexible notion. Now
let’s restrict it a bit, in order to study our spaces a bit more finely.

Definition 9.1.1. If f, g : I → X are two continuous maps from the interval I to a topological space X
satisfying f(0) = g(0) = x0 and f(1) = g(1) = x1, then a path-homotopy between f and g is a homotopy H
from f to g satisfying H(0, t) = x0 and H(1, t) = x1. In other words, the beginning and end of the paths
are preserved throughout the homotopy.

Instead of trying to write out some examples, let’s immediately specialize to the case that we care about.

Definition 9.1.2. Fix a point x0 ∈ X. A loop based at x0 in X is a continuous map ℓ : I → X satisfying
f(0) = f(1) = x.

Recall that we showed in Proposition 8.1.4 that homotopy of maps is an equivalence relation; it’s fairly
straightforward to check that path homotopy between loops is also an equivalence relation, which we denote
≃ph.

Definition 9.1.3. The fundamental group (based at x0) of a topological space X (and the point x0) is

π1(X, x0) = {ℓ : I → X a loop based at x0} / ≃ph

In other words “based loops taken up to path homotopy”. If ℓ : I → X is a loop, we write [ℓ] for its
equivalence class in π1(X, x0).

Example 9.1.4. Here are two examples.

1. Note that π1(Rn, x0) is a singleton set, since every loop can be contracted to a single point because
there is “enough space”. In fact, you can check that the function in Example 8.1.2 is a path-homotopy.

2. We will show that π1(S1, x0) = Z; the point is that each equivalence class is determined by “how many
times you wind around the circle”.

9.2 Group structure on π1(X, x0)
So far we’ve defined π1(X, x0) as a set, but we’ve called it a “group”. So we need to understand what the
group structure is. For this, we need a group operation and an identity element, and then we need to check
some axioms.

Definition 9.2.1. If f, g : I → Y are two paths such that f(1) = g(0), then we define

(f ∗ g)(x) =
{

f(2t) 0 ≤ t ≤ 1/2
g(2t − 1) 1/2 ≤ t ≤ 1

which we call the “product of f and g”, or the “concatenation of f and g”.

In particular, if f, g are both loops, then we can define f ∗g. We want to show that this induces a map

− ∗ − : π1(X, x0) × π1(X, x0) → π1(X, x0).

But for this we need to know:

Lemma 9.2.2. Suppose f, f ′ : I → X are two paths with the same start and endpoint, and g, g′ : I → X
are two paths with the same start and endpoint, and assume f(1) = g(0). If f ≃ph f ′ and g ≃ph g′ then
f ∗ g ≃ph f ′ ∗ g′.
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Proof. If Hf is a path homotopy between f and f ′ and Hg is a path homotopy between g and g′, then we
will show that

H(x, t) =
{

Hf (2x, t) 0 ≤ x ≤ 1/2
Hg(2x − 1, t) 1/2 ≤ x ≤ 1

One can then check directly that this defines a path-homotopy f ∗ g ≃ph f ′ ∗ g′. One can check that H is
continuous.

If all the path are loops then if [f ] = [f ′] and [g] = [g′] the above lemma implies that [f ∗ g] = [f ′ ∗ g′].

Now we need an identity element: it is (the equivalence class of) the constant loop c : I → X sending t 7→ x0.
You will show on the homework that [ℓ ∗ c] = [c ∗ ℓ] = ℓ for all loops ℓ ∈ π1(X, x0). You will also show on
the homework that ∗ is associative.

Finally, the inverse map is ℓ 7→ ℓ−1, where

ℓ−1(t) = ℓ(1 − t).

You will also show on the homework that this is a valid inversion operation.

So in conclusion, π1(X, x0) is actually a group! If x0, x1 ∈ X can be connected by a path in X, i.e. if
there exists a continuous map f : I → X sending 0 7→ x0 and 1 7→ x1, then you will also show on the
homework that π1(X, x0) and π1(X, x1) are isomorphic groups; recall that this means that there exists a
bijection φ : π1(X, x0) → π1(X, x1) such that φ(x ∗ y) = φ(x) ∗ φ(y).

Definition 9.2.3. A path-connected topological space X is simply-connected if π1(X, x0) = 1 (i.e. is the
trivial group).

So for instance Rn (or more generally, any convex subset of Rn, as you will demonstrate on the homework)
is simply-connected, while S1 is not.

One important point to make is that π1 should be a functor, meaning that any continuous map of topo-
logical spaces f : X → Y and any choice of x0 ∈ X with image y0 = f(x0) should give rise to a group
homomorphism

f∗ = π1(f) : π1(X, x0) → π1(Y, y0).

So how do you define this map? Simple: if ℓ : I → X is a loop, just define the image under π1(f) to be
f ◦ ℓ : I → X → Y . This is well-defined because of the following lemma.

Lemma 9.2.4. If f, g : I → X are two paths satisfying f(0) = g(0) and f(1) = g(1), k : X → X ′ is another
continuous map and H is a homotopy between f and g, then k ◦ H is a homotopy between k ◦ f and k ◦ g.

Proof. This is a homework exercise.

Since f∗ is basically just composition, it follows immediately that if X
f−→ Y

g−→ Z are two maps then (g◦f)∗ =
g∗ ◦ f∗, and that if (idX)∗ : π1(X, x0) → π1(X, x0) is just the identity map of groups. Therefore:

Corollary 9.2.5. If f : X → Y is a homeomorphism, then f∗ is an isomorphism.

Proof. This is just the fact that f∗ ◦ f−1
∗ = (idY )∗ = idπ1(Y,y0) and f−1

∗ ◦ f∗ = (idX)∗ = idπ1(X,x0).

In fact this remains true when f is a homotopy equivalence.
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10 Week 10
We have noted repeatedly that π1(S1, ∗) = Z. The homework from last week allows you conclude that

π1(T, ∗) = Z2

where T is the torus. Today we’ll introduce a tool that lets you prove such things.

10.1 Covering spaces
Definition 10.1.1. If p : E → B is a continuous surjective map of topological spaces, we say that p is a
covering map (and that E is a covering space for B) if for every b ∈ B there exists an open set U ⊆ B
containing b such that p−1(U) =

⊔
i Vi in such a way that

1. Vi is open and

2. the restriction p : p−1(U) → U maps each Vi homeomorphically onto U .

This is a bit wordy, but it basically means that locally around each point in the base B, the map p looks
like a stack of copies of B lying over it. Note that by definition if b ∈ B then p−1(b) must be discrete.

You can construct a trivial example. Take X any discrete topological space, and consider the map X×B → B.
This is clearly a covering space, but it’s not very interesting.

To get more interesting examples, you should assume that E is path-connected, which rules out the above
sort of example. In fact, we make the following definition.

Definition 10.1.2. If E is simply-connected and p : E → B is a covering map, then we say that E is a
universal cover of B.

Lemma 10.1.3. The map

p : R → S1

x 7→ (cos 2πx, sin 2πx)

is a covering map.

Proof. This follows from basic properties of trigonometric functions. We’ll content ourselves with a picture
to see how this works.

On the homework you will prove some other basic properties of covering spaces.

10.2 Lifting
We are going to identify the fundamental group with the fiber over a point of a universal cover. This will
be achieved by lifting paths to the universal cover, and then lifting homotopies between them.

Definition 10.2.1. If p : E → B is any map and f : X → B is any map, a lifting of f to E is a map
f̃ : X → E such that f̃ ◦ p = f .

Lemma 10.2.2. If p : E → B is a covering map, fix a point b0 ∈ B and a lift e0 7→ b0. Then any map
f : [0, 1] → B satisfying f(0) = b0 has a unique lift f̃ : X → E satisfying f̃(0) = e0.

Proof. If Uα is an open cover of B such that p|Uα
is a stack of pancakes, then by compactness one can show

that we can find 0 = s0 < . . . < sn = 1 such that for all i there exists α such that f([sj , sj+1]) ⊆ Uα.

First define f̃(0) = e0. Note that f([s0, s1]) ⊆ Uα for some α, so if Vi is the pancake homeomorphic to Uα

in E, then we can take the map
[s0, s1] f−→ Uα

“p−1”−−−−→ Vi ↪→ E
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This is continuous by construction.

Now we just repeat this argument to construct f |[sj ,sj+1]. By the pasting lemma, f will be continuous.
Moreover, the map is defined uniquely at each step by taking connectedness into account.

In particular, suppose ℓ : [0, 1] → B is a loop. Then there is a unique map ℓ̃ : [0, 1] → E lifting ℓ but
crucially, it is no longer necessarily a loop. For instance, think about R → S1, and take the loop that just
goes around the circle once.

Now if b ∈ B, then in this way we almost see that we get a map

π1(B, b0) → p−1(b0)

by taking [ℓ] 7→ ℓ̃(1). But we still need to show that this is well-defined, and it turns out to be.

Proposition 10.2.3. If p : E → B is a covering map with p(e0) = b0 and F : I × I → B satisfies
F (0, 0) = b0, then there is a unique lifting F̃ of F to E satisfying F̃ (0, 0) = e0. If F is a path-homotopy,
then F̃ is a path-homotopy.

Proof. For lack of time, we will not give a full proof, but content ourselves with a sketch; first, lift the left
and bottom side of the square using the interval case. Then subdivide the square into a grid of rectangles
in such a way that the image of each rectangle is contained in an open set of B whose preimage under p is
a stack of pancakes. Then lift each rectangle using basically the same argument as before.

If F is a path-homotopy, then the bottom of the square maps to b0 under F . The top of the square maps to
a single point as well, so call it b1. This implies that F̃ takes the bottom edge to p−1(b0) and the top edge
to p−1(b1). But both of fibers are discrete and [0, 1] is connected, so F̃ must be contant on top and bottom
edges.

Corollary 10.2.4. If f, g : I → B are two paths from b0 to b1, let f̃ and g̃ denote their lifts to E. If f and
g are path-homotopic, then so are f̃ and g̃, and they must end at the same point.

Proof. Exercise: follows from the previous proposition.

So we get a well-defined map
π1(B, b0) → p−1(b0).

Note that this map, strictly speaking, depends on the choice of e0 ∈ E.

Proposition 10.2.5. If E is path-connected then above map is surjective. If E is a universal cover, it is
bijective.

Proof. If e ∈ p−1(b0) then pick a path f̃ : I → E from e0 to e. Then f = p ◦ f̃ defines a loop in B based at
b0, and by definition it maps to e.

Now, if f and g are two loops in B based at x0, then suppose that f̃(1) = g̃(1). If E is simply-connected,
then there is a path homotopy F̃ between f̃ and g̃. But then p ◦ F̃ is a path-homotopy between f and g, so
we’re done.

Corollary 10.2.6.
π1(S1, ∗) ∼= Z

Proof. Take e0 = 0 ∈ R and note that R → S1 is a universal cover. It is also a homomorphism (just consider
what happens if you concatenate two loops).
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11 Week 11
We have seen that π1(S1, ∗) ∼= Z. What about other spheres? For example, what about S2? One can
intuitively see that any loop on the 2-sphere can be contracted to a point. But what about in higher
dimensions?

11.1 Seifert-van Kampen
One can compute examples of this phenomenon using the following theorem, which is a corollary of the
Seifert-van Kampen theorem.

Theorem 11.1.1 (Seifert-van Kampen). If X is a path-connected topological space and U, V ⊆ X are two
open subsets such that U and V are simply-connected and U ∩ V is path-connected and nonempty, then X is
simply connected.

More generally, as long as U ∩V is path-connected, if we pick a point x0 ∈ U ∩V then π1(X, x0) is generated
by the images of π1(U, x0) → π1(X, x0) and π1(V, x0) → π1(X, x0).

Note that if X = S1 then the above theorem tells us nothing, because any two proper open subsets of S1

have non-connected intersection.

But what about larger dimensional spheres?

Corollary 11.1.2. If n > 1 then π1(Sn, ∗) = 0.

Proof. Note that if you remove a point from Sn you get Rn; one can show this by using a higher-dimensional
analogue of the projection argument as for the 2-sphere. So take two points a, b ∈ Sn which are not equal to
∗ and remove them individually to get open sets Ua, Ub ⊆ Sn, both homeomorphic to Rn. Their intersection
Ua ∩ Ub is homeomorphic to Rn \ {•}.

But now note that Rn is simply-connected and Rn \ {•} is path-connected, so by Theorem 11.1.1 Sn is
simply-connected.

So the fundamental group, while very useful and extremely interesting, can’t distinguish any of the spheres
except for S1! It can’t even distinguish Sn from Euclidean space.

This might suggest to you that Sn and Rn are homotopy equivalent. This is in fact not the case, so let’s try
to understand why.

11.2 Higher homotopy groups
Recall that the fundamental group was defined to be the group of path-homotopy equivalence classes of
loops. We can generalize this to “higher dimensions” as follows.

Definition 11.2.1. If n > 0, let ∂In denote the boundary of the n-cube.

πn(X, x0) = {f : In → X : f(∂In) = {x0}} / ≃rh

where ≃rh is relative homotopy equivalence, which is to say that two maps f, g : In → X satisfying f(∂In) =
g(∂In) = {x0} are equivalent if there exists a relative homotopy, i.e.

H : In × I → X

satisfying
H(x, 0) = f(x), H(x, 1) = g(x), H(∂In × I) = {x0} .
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Remark 11.2.2. Note that if you take In and collapse ∂In to a point, then you obtain Sn. So we can also
describe:

πn(X, x0) = {f : Sn → X : f(∗) = x0} / ≃ph

where ∗ denotes a fixed point on the n-sphere. Defining it this way lets us naturally extend the definition to
n = 0:

π0(X, x0) =
{

f : S0 → X : f(1) = x0
}

/ ≃ph

Note here we’re viewing S0 as two points labeled 1 and −1, and you’re requiring 1 to be sent to x0; but −1
can go anywhere! Note there is a path-homotopy between two maps f, g : (S0, 1) → (X, x0) if and only if
there’s a path between f(−1) and g(−1), so therefore π0(X, x0) is in bijection with the set of path-connected
components of X.

If n > 0 we define a group structure on πn(X, x0) by shrinking the cubes in half along one axis and then
sticking them together.

It is fairly straightforward to show that this operation is commutative and associative, but there is another
way that makes it also proves that it doesn’t matter which axis you shrink along.

Proposition 11.2.3 (Eckmann–Hilton). Suppose X is a set equipped with two functions ◦, • : X × X → X.
Suppose

1. ◦ and • are both unital, meaning that there exist identity elements 1◦, 1• ∈ X such that 1◦◦x = x◦1◦ = x
and 1• • x = x • 1• = x for all x ∈ X.

2. (a ◦ b) • (c ◦ d) = (a • c) ◦ (b • d) for all a, b, c, d ∈ X.

Then ◦ = • and 1◦ = 1• and both are commutative and associative.

Proof. Homework.

Note that shrinking along an axis and adding commutes with shrinking along any other, so we get the group
structure essentially for free.

11.3 Homotopy groups of spheres
So what are the homotopy groups of Sn? Perhaps surprisingly, this is a wide open question. But at least
some facts are known.

• If 0 < i < n then
πi(Sn) = 0.

This is because one can show that any map f : (Ii, ∂Ii) → (Sn, ∗) is relative homotopy equivalent
to another f which is not surjective. There is really something to prove here, because there are
very-difficult-to-visualize space-filling curves.

But if the map is not surjective, then it lands in Sn − {•} ∼= Rn which is contractible.

• If i = n it turns out that
πn(Sn) ∼= Z

and one sees this by studying the degree of a map Sn → Sn, which is a concept from differential topology
which we won’t discuss in detail. One needs to study the homology groups to give an explanation of
where this comes from.

• If i > n then things get more complicated. For instance, π3(S2) ∼= Z, and a generator is given by a
map called the Hopf fibration, which is difficult to visualize, but there are some good YouTube videos
which display it well.
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Theorem 11.3.1. If i < 2n − 1 then there is an isomorphism

πi(Sn) ∼= πi+1(Sn+1)

These are called the stable homotopy groups of spheres.

These have not been computed in full generality, but they are known to be finite abelian groups when
i ̸= n.
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12 Week 12
Recall that a covering space was defined in such a way that we could lift maps from the interval and
homotopies between them. In fact, on the homework we saw that covering spaces satisfy a lifting property
for spaces which are path-connected, locally path-connected, and simply-connected.

In topology this kind of lifting property turns out to be extremely useful and fundamental, so let’s explore
a more general example satisfying a more general lifting property.

12.1 Fiber bundle
Definition 12.1.1. A fiber bundle is a continuous surjection p : E → B of topological spaces along with
a space F satisfying the following condition, called local triviality; B admits an open cover U such that for
every U ∈ U there exists a homeomorphism φ : p−1(U) ∼−→ U × F such that

p−1(U) U × F

U

φ

p πU

commutes, where πU is the natural projection U × F → U sending (u, f) 7→ u.

Lemma 12.1.2. If p : E → B is a fiber bundle with fiber F , then the preimage of any point b ∈ B is
homeomorphic to F .

Proof. Any b ∈ B is contained in some U on which p|U = πU where πU : U × F → U is the projection. The
fiber over a point of πU is clearly homeomorphic to F .

Remark 12.1.3. Note that this definition strictly generalizes the notion of a covering spaces. You can check
that a covering map is the same thing as a fiber bundle with discrete fiber F .

Example 12.1.4. Here are some fiber bundles.

1. The trivial bundle p : B × F → B is a fiber bundle.

2. Any nontrivial covering map is a nontrivial fiber bundle.

3. Not every fiber bundle is trivial. For instance, consider the map from the Mobius strip to its central
band. It is not trivial! To see this, construct the Möbius band by taking the square I2 = [0, 1] × [0, 1]
and gluing one edge to the other with a twist. The line in the center of the square maps to a circle,
and so there is an induced projection map from the Möbius band to the circle with fibers [0, 1].
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If this were trivial then it would have to be isomorphic to the cylinder S1 × [0, 1] since [0, 1] is the fiber.
But the “boundary” of the Möbius strip is S1 and the boundary of the cylinder is S1 ⊔ S1, and these
spaces are not homeomorphic. Here we are defining “boundary” to be the subset of points which do not
admit an open neighborhood isomorphic to R2; this is a condition preserved under homeomorphism, so
any homeomorphism must preserve the boundary, up to homeomorphism. Thus we get a contradiction.

You could ask what would happen if we removed the boundaries and considered these spaces as fiber
bundles with fibers (0, 1). This “open” Möbius band is still not trivial, but the argument is subtler
and is left to part of the homework.

4. Another example is a tangent bundle to a manifold. A manifold is roughly a topological space that
locally looks like Euclidean space; its tangent bundle is what you get when you take all of the tangent
spaces at each point and glue them together. When doing this, one needs to be careful so that you get
the right topology.

12.2 Lifting
As previously mentioned, we want to generalize the kind of lifting property that covering spaces satisfy.

Definition 12.2.1. A map p : E → B of topological spaces (not necessarily a fiber bundle) satisfies the
homotopy lifting property with respect to a topological space X if whenever you’re given a map h : X ×[0, 1] →
B and a lift h̃0 : X × {0} → E of h|0, you get a map h̃ : X × [0, 1] → E lifting h. In other words, the map h̃
exists in the following diagram:

X × {0} E

X × [0, 1] B

h̃0

p

h

h̃

and the diagram commutes. Another way of saying this is that if you can lift a map into B, you can lift any
homotopy starting at that map.

Definition 12.2.2. If p : E → B satisfies the homotopy lifting property with respect to every topological
space X it is a fibration. If it satisfies the lifting property with respect to the hypercubes In for all n ≥ 0
then it is a Serre fibration.

Proposition 12.2.3. Every fiber bundle is a Serre fibration.

Proof. The proof is a direct generalization of Lemma 10.2.2 and Proposition 10.2.3, except that we no longer
get uniqueness of the lifts. So we reduce this to showing that a trivial fiber bundle is a Serre fibration. But
given h : In × I → B and a lift h̃0 : In × {0} → B × F , we can extend the lift to a map h̃ : In × I → B × F

by taking (x1, . . . , xn+1) 7→ (h(x), (πF ◦ h̃0)(x1, . . . , xn)) where πF : B × F → F is the projection. Note this
is not unique!

Remark 12.2.4. Not every fiber bundle is a fibration, but it takes some very bizarre examples to see why.
If B is paracompact and Hausdorff then every fiber bundle is a fibration, and most nice spaces are.

Example 12.2.5. More importantly, not every fibration is a fiber bundle. This is because in general the
fibers of a fibration have to be homotopy equivalent, but not necessarily homeomorphic. So for example,
take E =

{
(x, y) ∈ R2 : |y| ≤ |x|

}
→ B via projection onto the x-axis. This can’t be a fiber bundle because

the fibers are not all homeomorphic. But a homework exercise is to show that it is in fact a Serre fibration.

Example 12.2.6. Not every Serre fibration is a fibration, but this will be true whenever E and B are
CW-complexes. These are spaces that are built by gluing disks Dn to other disks along their boundaries Sn.

Proposition 12.2.7. If the base B is path-connected, the fibers of a fibration are homotopy equivalent.
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Proof. If E → B is the fibration, let Eb = p−1(b). Pick a path γ connecting b to b′. Consider the diagram

Eb E

Eb × I B

p

γ

The fibration property gives us a lift Hγ : Eb × I → E. But if we restrict this homotopy to t = 1 we get a
map Lγ : Eb → Eb′ .

We show two facts. First, if γ and γ′ have the same endpoints and are path-homotopic, then Lγ is homotopic
to Lγ′ (and in particular doesn’t depend on the lift Hγ). Second, if γ ∗ γ′ is the composition of two paths,
then Lγ∗γ′ is homotopic to Lγ∗γ′ .

The theorem follows because Lγ is a homotopy equivalence with homotopy inverse Lγ̄ , where γ̄ is the reverse
of γ.

Now suppose α : γ → γ′ is a path-homotopy between two paths γ and γ′. But now note that any two
lifts Hγ , Hγ′ : Eb × I → E are two lifts define a map Eb × ∂I × I → E which can be glued to the map
ι : Eb × I × {0} ↠ Eb ↪→ E, and so we get a diagram

Eb × ∂I × I ∪ Eb × I × {0} E

Eb × I × I B

Hγ ,Hγ′ ,ι

p

α

But note that ∂I × I ∪ I × {0} ⊆ I × I is homeomorphic to the inclusion I × {0} ⊆ I × I (draw a picture),
so we get a lift, and we can restrict that lift to t = 1 to get the desired homotopy.

The second part is left as an exercise.
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13 Week 13
In this last lecture, we will explore fixed-point theorems, a cool application of the machinery of fundamental
groups.

Definition 13.0.1. Suppose S ⊆ X is a subset. A continuous map r : X → S is a retraction if the restriction
r|S : S → S is the identity map.

Example 13.0.2. Here are some examples.

• The identity map is a retraction.

• If x0 ∈ X then X → X sending every x 7→ x0 is a retraction.

• If you shrink a square to a line, that’s a retraction.

• There are lots of examples.

Theorem 13.0.3 (Brouwer Fixed-Point Theorem). Any map f : Bn → Bn has a fixed point, i.e. there
exists x0 ∈ Bn such that f(x0) = x0.

Proof. We argue by contradiction. Let f denote a map such that f(x) ̸= x for all x ∈ Bn. Then we can
define a map

F : Bn → Sn

by drawing a ray from f(x) to x in n-dimensional space, and then taking the intersection with Sn. Note
that if x ∈ Sn then by definition F (x) = x. But for F to be a retraction it needs to be continuous.

We can describe F as
F (x) = x + t(x − f(x))

where t is the positive solution to the equation

1 = ∥x + t(x − f(x))∥2.

What do I mean by “positive solution”? Note that if x = (x1, · · · , xn) and f(x) = (f1(x), · · · , fn(xn))

1 =
n∑

i=1
(xi + t(xi − fi(x)))2

If you rearrange the terms, you get some quadratic polynomial in t. By construction t = 0 solves this
equation exactly when x is contained in Sn, but whenever x ̸∈ Sn there exist two solutions, one positive and
one negative, by the quadratic formula. We only care about the positive one though. But then we can use
the fact that the quadratic formula

−b +
√

b2 − 4ac

2a

is a continuous function in the coefficients to conclude that F is continuous.

But note that F is a retraction! Contradiction, by below.

Note that if i : S → X is the inclusion and r : X → S is a retraction, then r ◦ i = idS . But then this means
that r∗ ◦ i∗ = idπn(S,s0) for all n ≥ 0. In other words, we have a commuting diagram

πn(S, s0) πn(X, s0) πn(S, s0)i∗

id

r∗

But this implies that r∗ is surjective and i∗ is injective. This means that you can realize π1(S, s0) both as a
subgroup of π1(X, s0), and as a quotient!
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Lemma 13.0.4. There is no retraction from Bn → Sn.

Proof. Note that Bn, the closed unit ball of radius 1 in Rn is contractible, so πn(Bn, ∗) = 0, while πn(Sn, ∗) =
Z. We never actually showed that πm(Bn, ∗) = 0, but the point is that since Bn is convex you can actually
just take “straight-line homotopies” between any two maps Im → Bn.

Note that the fixed point theorem holds for anything homeomorphic to Bn.

13.1 Borsuk-Ulam
Finally, I will briefly mention the following theorem.

Theorem 13.1.1 (Borsuk–Ulam). Given a continuous map Sn → Rn, there exists a point x ∈ Sn such that
f(x) = f(−x).

The proof of this theorem is a bit more complicated, so we’ll give a sketch.

If f : Sn → Rn were a map satisfying f(x) ̸= f(−x) for all x, then we could define

g(x) = f(x) − f(−x)
∥f(x) − f(−x)∥ .

This is a continuous map g : Sn → Sn−1 satisfying g(−x) = −g(x). But such a thing cannot exist!

To see why, first consider n = 1. Then this is easy: any continuous map S1 → S0 must have image a single
point since S1 is connected. But g(−x) = −g(x) definitely does not have image a single point.

But what about in higher dimensions? Now say n = 2. If we restrict to the equator, we get a map S1 → S1.
But this map must be nullhomotopic because you can just swing it through the top half of the sphere to
contract it to the constant map!

Then we show that any map S1 → S1 satisfying f(−x) = −f(x) cannot be nullhomotopic.

30


	Week 1
	Sets

	Week 2
	Metric spaces
	Convergence
	Continuity

	Week 3
	Subspaces
	More on Continuity
	Compactness

	Week 4
	Topological spaces
	Continuity

	Week 5
	Set-theoretic constructions
	Natural maps
	Topologies

	Week 6
	Connectedness

	Week 7
	Compactness
	Hausdorff spaces

	Week 8
	Homotopy

	Week 9
	Path homotopy
	Group structure on pi1(X,x0)

	Week 10
	Covering spaces
	Lifting

	Week 11
	Seifert-van Kampen
	Higher homotopy groups
	Homotopy groups of spheres

	Week 12
	Fiber bundle
	Lifting

	Week 13
	Borsuk-Ulam


