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1. Review

Let G be a connected reductive group defined over Fq and let k = Fq; as always, we implicitly identify G
with its k-points. Last time we studied virtual representations constructed as follows.

Pick a maximal F -stable torus T in G. Temporarily fix a Borel B containing T . Last time, we constructed
a GF -equivariant TF -torsor

YT⊂B → XT⊂B

Then, after fixing a character
θ : TF → Q`

we defined a virtual representation
RθT = RθT⊂B

which lives in R(GF ), the Grothendieck group of representations of GF . In particular, it was mentioned in
Andy’s talk that this representation does not depend on the choice of B containing T .

Today we will define an equivalence relation on the pairs (T, θ) called geometric conjugacy. The goal of the
next talk is to show the following (somewhat vaguely stated) result.

Theorem 1.1. If (T, θ) and (T ′, θ′) are not geometrically conjugate, then
〈
RθT , R

θ′

T ′

〉
= 0. On the other hand,

if (T, θ) and (T ′, θ′) are geometrically conjugate, then
〈
RθT , R

θ′

T ′

〉
can be computed explicitly in a simple way.

2. Geometric Conjugacy

Consider an F -stable maximal torus T in G. Let F : T → T denote the q-Frobenius. This map induces a
map

F : X∗(T )→ X∗(T )

where X∗(T ) = Hom(Gm, T ) denotes the cocharacter lattice of T . We have an F -equivariant isomor-
phism

X∗(T )⊗Z k
× h⊗α7→h(α)−−−−−−−→ T

where F acts on X∗(T ) via the map just defined, and trivially on k×. Thus we get an exact sequence

0→ TF → X∗(T )⊗ k×
F−id−−−→ X∗(T )⊗ k× → 0

But using the fact that k× ∼= (Q/Z)p′ and a clever application of the snake lemma, one can show that we get
an exact sequence

0→ X∗(T )
F−id−−−→ X∗(T )→ TF → 0

Before stating the definition, we give another definition.

Definition 2.1. For n > 0, the norm map is the map

N =
Fn − 1

F − 1
=

n−1∑
i=0

F i : TF
n

→ TF
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Lemma 2.2. The map X∗(T )→ TF
n N−→ TF is the same as X∗(T )→ TF .

Proposition 2.3. Let (T, θ) and (T ′, θ′) be two pairs such that T, T ′ are F -stable maximal tori and θ and
θ′ are characters of TF and (T ′)F . The following are equivalent:

(1) There exists g ∈ G such that gTg−1 = T ′ and the following diagram commutes:

X∗(T ) TF Q`

X∗(T
′) (T ′)F

ad(g)

θ

θ′

(2) For large enough n, there exists g ∈ GFn

such that gTg−1 = T ′ and the following diagram commutes

TF
n Q`

(T ′)F
n

ad(g)

θ

θ′

Definition 2.4. A pair (T, θ) and (T ′, θ′) are geometrically conjugate if the two equivalent conditions in
Proposition 2.3 hold.

Now fix an absolute torus T (“the torus”). Now given a pair (T, θ) as above, we get a character of X∗(T) by
taking

X∗(T)
∼−→ X∗(T )→ TF → Q`

and one can check that this doesn’t depend on the choice of conjugation isomorphism X∗(T)
∼−→ X∗(T ). But

then θ defines an element of

Hom(X∗(T), µ∞(Q`
×
)) = Hom(X∗(T), k×) ∼= X∗(T)⊗ k×

and construction this element is F -invariant. Note the Weyl group W = NG(T)/T acts on X∗(T) by
precomposition with the action of W on T. We let

S := [(X∗(T)⊗ k×)/W ]F

and denote the image of θ in S by [θ].

Remark 2.5. X∗(T) = X∗(T∨) where T∨ is the corresponding torus in the dual group G∨. Thus X∗(T)⊗
k× ∼= (T∨).

Proposition 2.6. The association (T, θ) 7→ [θ] induces a bijection from the set of geometric conjugacy classes
of pairs (T, θ) to S. Furthermore, the number of geometric conjugacy classes is exactly |(Z0)F |qr where r is
the semisimple rank of G and Z0 is the connected component of the center of G.

Proof. The map is well-defined by Proposition 2.3(1). It is injective because if (T, θ), (T ′, θ′) are two pairs
with [θ] = [θ′] in (X∗(T)⊗ k×)/W then the following diagram commutes

X∗(T) X∗(T ) TF Q`

X∗(T) X∗(T ) TF

adw

ad g θ

ad g
θ′
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and thus the pairs are geometrically conjugate. For surjectivity, note that if the W -orbit of a map θ :

X∗(T) → Q`
×

is invariant under F , there must exist w ∈ W such that F · w · θ = θ. Therefore, θ descends
to a character T(w)F → Q`. But T(w)F is equal to TF for some F -stable maximal torus of G.

Next, we show that |(T∨/W )F | = |(Z0)F |qr. By the Lefschetz fixed point theorem in étale cohomology, we
have

|(T∨/W )F | =
∑

(−1)i tr(F,Hi
c(T∗/W )) =

∑
(−1)i tr(F,Hi

c(T∗)W )

But there is an isogeny T∨ ∼= (T ′)∨ × (Z0)∨ where T ′ is the torus in the derived sugroup of G. But W acts
trivially on (Z0)∨ = Z0, so

|(T∨/W )F | = |(Z0)F | =
∑

(−1)i tr(F,Hi
c((T′)∗)W )

Then using Poincaré duality, cohomology of a torus, and the fact that X∗(T ′)W = 0, one can compute that
the alternating sum is just qr (for this see [DL76, Proposition 5.7]). �

Example 2.7. Let’s do the example of GL2 over Fp. Pick the maximal torus T to be just the upper triangular
matrices: this is F -stable. Then X∗(T ) = Z2, where (a, b) corresponds to

x 7→
(
xa

xb

)
Note F (x, y) = (px, py) and the cokernel of F − id : Z2 → Z2 is clearly Z/p − 1 ⊕ Z/p − 1 ∼= (Fp)× = TF

(non-canonically).

In this case
S ∼−→ (k×/S2)F

which consists of (unordered) pairs (x, x) for x ∈ F×p , (x, y) for distinct x, y ∈ F×p , and distinct (x, xp) for
x ∈ F×p2 \ F

×
p . Counting these up we get

(p− 1) +

(
p− 1

2

)
+

(p2 − 1)− (p− 1)

2
= p(p− 1)

But note Z0 = Gm, which has p − 1 F -rational points, and the semisimple rank is the rank of a maximal
torus in GL2 /Z

0 = PGL2, which is 1, so |(Z0)F |qr = p(p− 1).
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