SECTION 5

ASHWIN IYENGAR

1. REVIEW

Let G be a connected reductive group defined over \mathbb{F}_{q} and let $k=\overline{\mathbb{F}_{q}}$; as always, we implicitly identify G with its k-points. Last time we studied virtual representations constructed as follows.

Pick a maximal F-stable torus T in G. Temporarily fix a Borel B containing T. Last time, we constructed a G^{F}-equivariant T^{F}-torsor

$$
Y_{T \subset B} \rightarrow X_{T \subset B}
$$

Then, after fixing a character

$$
\theta: T^{F} \rightarrow \overline{\mathbb{Q} \ell}
$$

we defined a virtual representation

$$
R_{T}^{\theta}=R_{T \subset B}^{\theta}
$$

which lives in $R\left(G^{F}\right)$, the Grothendieck group of representations of G^{F}. In particular, it was mentioned in Andy's talk that this representation does not depend on the choice of B containing T.

Today we will define an equivalence relation on the pairs (T, θ) called geometric conjugacy. The goal of the next talk is to show the following (somewhat vaguely stated) result.

Theorem 1.1. If (T, θ) and $\left(T^{\prime}, \theta^{\prime}\right)$ are not geometrically conjugate, then $\left\langle R_{T}^{\theta}, R_{T^{\prime}}^{\theta^{\prime}}\right\rangle=0$. On the other hand, if (T, θ) and $\left(T^{\prime}, \theta^{\prime}\right)$ are geometrically conjugate, then $\left\langle R_{T}^{\theta}, R_{T^{\prime}}^{\theta^{\prime}}\right\rangle$ can be computed explicitly in a simple way.

2. Geometric Conjugacy

Consider an F-stable maximal torus T in G. Let $F: T \rightarrow T$ denote the q-Frobenius. This map induces a map

$$
F: X_{*}(T) \rightarrow X_{*}(T)
$$

where $X_{*}(T)=\operatorname{Hom}\left(\mathbb{G}_{m}, T\right)$ denotes the cocharacter lattice of T. We have an F-equivariant isomorphism

$$
X_{*}(T) \otimes_{\mathbb{Z}} k^{\times} \xrightarrow{h \otimes \alpha \mapsto h(\alpha)} T
$$

where F acts on $X_{*}(T)$ via the map just defined, and trivially on k^{\times}. Thus we get an exact sequence

$$
0 \rightarrow T^{F} \rightarrow X_{*}(T) \otimes k^{\times} \xrightarrow{F-\mathrm{id}} X_{*}(T) \otimes k^{\times} \rightarrow 0
$$

But using the fact that $k^{\times} \cong(\mathbb{Q} / \mathbb{Z})_{p^{\prime}}$ and a clever application of the snake lemma, one can show that we get an exact sequence

$$
0 \rightarrow X_{*}(T) \xrightarrow{F-\mathrm{id}} X_{*}(T) \rightarrow T^{F} \rightarrow 0
$$

Before stating the definition, we give another definition.
Definition 2.1. For $n>0$, the norm map is the map

$$
N=\frac{F^{n}-1}{F-1}=\sum_{i=0}^{n-1} F^{i}: T^{F^{n}} \rightarrow T^{F}
$$

Lemma 2.2. The map $X_{*}(T) \rightarrow T^{F^{n}} \xrightarrow{N} T^{F}$ is the same as $X_{*}(T) \rightarrow T^{F}$.

Proposition 2.3. Let (T, θ) and $\left(T^{\prime}, \theta^{\prime}\right)$ be two pairs such that T, T^{\prime} are F-stable maximal tori and θ and θ^{\prime} are characters of T^{F} and $\left(T^{\prime}\right)^{F}$. The following are equivalent:
(1) There exists $g \in G$ such that $g T g^{-1}=T^{\prime}$ and the following diagram commutes:

(2) For large enough n, there exists $g \in G^{F^{n}}$ such that $g T g^{-1}=T^{\prime}$ and the following diagram commutes

Definition 2.4. A pair (T, θ) and $\left(T^{\prime}, \theta^{\prime}\right)$ are geometrically conjugate if the two equivalent conditions in Proposition 2.3 hold.

Now fix an absolute torus \mathbb{T} ("the torus"). Now given a pair (T, θ) as above, we get a character of $X_{*}(\mathbb{T})$ by taking

$$
X_{*}(\mathbb{T}) \xrightarrow{\sim} X_{*}(T) \rightarrow T^{F} \rightarrow \overline{\mathbb{Q}_{\ell}}
$$

and one can check that this doesn't depend on the choice of conjugation isomorphism $X_{*}(\mathbb{T}) \xrightarrow{\sim} X_{*}(T)$. But then θ defines an element of

$$
\operatorname{Hom}\left(X_{*}(\mathbb{T}), \mu_{\infty}\left(\overline{\mathbb{Q} \ell}^{\times}\right)\right)=\operatorname{Hom}\left(X_{*}(\mathbb{T}), k^{\times}\right) \cong X^{*}(\mathbb{T}) \otimes k^{\times}
$$

and construction this element is F-invariant. Note the Weyl group $W=N_{G}(\mathbb{T}) / \mathbb{T}$ acts on $X^{*}(\mathbb{T})$ by precomposition with the action of W on \mathbb{T}. We let

$$
\mathcal{S}:=\left[\left(X^{*}(\mathbb{T}) \otimes k^{\times}\right) / W\right]^{F}
$$

and denote the image of θ in \mathcal{S} by [$\theta]$.
Remark 2.5. $X^{*}(\mathbb{T})=X_{*}\left(\mathbb{T}^{\vee}\right)$ where \mathbb{T}^{\vee} is the corresponding torus in the dual group G^{\vee}. Thus $X^{*}(\mathbb{T}) \otimes$ $k^{\times} \cong\left(\mathbb{T}^{\vee}\right)$.

Proposition 2.6. The association $(T, \theta) \mapsto[\theta]$ induces a bijection from the set of geometric conjugacy classes of pairs (T, θ) to \mathcal{S}. Furthermore, the number of geometric conjugacy classes is exactly $\left|\left(Z^{0}\right)^{F}\right| q^{r}$ where r is the semisimple rank of G and Z^{0} is the connected component of the center of G.

Proof. The map is well-defined by Proposition 2.3(1). It is injective because if $(T, \theta),\left(T^{\prime}, \theta^{\prime}\right)$ are two pairs with $[\theta]=\left[\theta^{\prime}\right]$ in $\left(X^{*}(\mathbb{T}) \otimes k^{\times}\right) / W$ then the following diagram commutes

and thus the pairs are geometrically conjugate. For surjectivity, note that if the W-orbit of a map θ : $X_{*}(\mathbb{T}) \rightarrow \overline{\mathbb{Q}}_{\ell} \times$ is invariant under F, there must exist $w \in W$ such that $F \cdot w \cdot \theta=\theta$. Therefore, θ descends to a character $\mathbb{T}(w)^{F} \rightarrow \overline{\mathbb{Q}_{\ell}}$. But $\mathbb{T}(w)^{F}$ is equal to T^{F} for some F-stable maximal torus of G.
Next, we show that $\left|\left(\mathbb{T}^{\vee} / W\right)^{F}\right|=\left|\left(Z^{0}\right)^{F}\right| q^{r}$. By the Lefschetz fixed point theorem in étale cohomology, we have

$$
\left|\left(\mathbb{T}^{\vee} / W\right)^{F}\right|=\sum(-1)^{i} \operatorname{tr}\left(F, H_{c}^{i}\left(\mathbb{T}^{*} / W\right)\right)=\sum(-1)^{i} \operatorname{tr}\left(F, H_{c}^{i}\left(\mathbb{T}^{*}\right)^{W}\right)
$$

But there is an isogeny $T^{\vee} \cong\left(T^{\prime}\right)^{\vee} \times\left(Z^{0}\right)^{\vee}$ where T^{\prime} is the torus in the derived sugroup of G. But W acts trivially on $\left(Z^{0}\right)^{\vee}=Z^{0}$, so

$$
\left|\left(\mathbb{T}^{\vee} / W\right)^{F}\right|=\left|\left(Z^{0}\right)^{F}\right|=\sum(-1)^{i} \operatorname{tr}\left(F, H_{c}^{i}\left(\left(\mathbb{T}^{\prime}\right)^{*}\right)^{W}\right)
$$

Then using Poincaré duality, cohomology of a torus, and the fact that $X_{*}\left(T^{\prime}\right)^{W}=0$, one can compute that the alternating sum is just q^{r} (for this see [DL76, Proposition 5.7]).

Example 2.7. Let's do the example of GL_{2} over \mathbb{F}_{p}. Pick the maximal torus T to be just the upper triangular matrices: this is F-stable. Then $X_{*}(T)=\mathbb{Z}^{2}$, where (a, b) corresponds to

$$
x \mapsto\left(\begin{array}{cc}
x^{a} & \\
& x^{b}
\end{array}\right)
$$

Note $F(x, y)=(p x, p y)$ and the cokernel of $F-\mathrm{id}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ is clearly $\mathbb{Z} / p-1 \oplus \mathbb{Z} / p-1 \cong\left(\mathbb{F}_{p}\right)^{\times}=T^{F}$ (non-canonically).
In this case

$$
\mathcal{S} \xrightarrow{\sim}\left(k^{\times} / S^{2}\right)^{F}
$$

which consists of (unordered) pairs (x, x) for $x \in \mathbb{F}_{p}^{\times},(x, y)$ for distinct $x, y \in \mathbb{F}_{p}^{\times}$, and distinct (x, x^{p}) for $x \in \mathbb{F}_{p^{2}}^{\times} \backslash \mathbb{F}_{p}^{\times}$. Counting these up we get

$$
(p-1)+\binom{p-1}{2}+\frac{\left(p^{2}-1\right)-(p-1)}{2}=p(p-1)
$$

But note $Z^{0}=\mathbb{G}_{m}$, which has $p-1 F$-rational points, and the semisimple rank is the rank of a maximal torus in $\mathrm{GL}_{2} / Z^{0}=\mathrm{PGL}_{2}$, which is 1 , so $\left|\left(Z^{0}\right)^{F}\right| q^{r}=p(p-1)$.

References

[DL76] P. Deligne and G. Lusztig. Representations of reductive groups over finite fields. Ann. of Math. (2), 103(1):103-161, 1976.

