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These are notes taken by Ashwin Iyengar (ashwin.iyengar@kcl.ac.uk) and edited by James Newton

(j.newton@kcl.ac.uk). All errors/omissions/misrepresentations are James’s responsibility.

1. Cohomology of Arithmetic Groups and Automorphic Forms

1.1. Symmetric Spaces. Let G be a semisimple algebraic group defined over Q: as an example, one could
take a number field F/Q and then take G = ResF/Q SLn.

Then the symmetric space for G is given by X = G(R)/K◦∞, where K◦∞ is a maximal connected compact
subgroup of G(R). If G = ResF/Q(SL2) as above and F has signature (r, s) (i.e. F has r real embeddings
and s pairs of complex embeddings), then

X = (SL2(R)/ SO2(R))r × (SL2(C)/ SU(2))s.

Note that SL2(R)/ SO2(R) is isomorphic to hyperbolic 2-space H2 (i.e. the complex upper half plane with
the hyperbolic metric) and SL2(C)/ SU(2) is similarly hyperbolic 3-space H3.

The symmetric space X is a real manifold, but for dimension reasons may not have a complex structure:
for example, if F/Q is an imaginary quadratic extension, then X ∼= H3, which is a 3-dimensional real
manifold.

1.2. Locally Symmetric Spaces. Let K =
∏
pKp ⊂ G(A∞Q ), where A∞Q is the ring of finite adèles (of Q)

and each Kp ⊂ G(Qp) is a compact open subgroup. Then the locally symmetric space attached to K
(and G) is

Y (K) := G(Q)\[X ×G(AF)/K]

One can show that in fact, there exist finitely many arithmetic groups Γi acting on X for which

Y (K) =
⊔
i

Γi\X

When Γi are small enough (neat) then each Γi acts freely and properly discontinously on X, and Y (K) is
naturally a smooth manifold (locally isomorphic to X, hence a locally symmetric space).

1.3. Cohomology. For us, the primary object of study will be the singular cohomology H∗(Y (K),Z) which
is alternatively computed as the group cohomology

⊕
i,n≥0H

n(Γi,Z). There is a Hecke algebra T acting

on H∗(Y (K),Z), and the complex vector space H∗(Y (K),C), together with its T-module structure, can be
described in terms of automorphic representations of G.

Example 1.3.1. If G = SL2,Q, then this is the relationship between modular forms and cohomology of
modular curves via the Eichler-Shimura isomorphism. In general, this relationship is given by a theorem of
Franke (or Matsushima’s formula if Y (K) is compact, or we restrict attention to the contribution of cuspidal
automorphic representations).
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Remark 1.3.1. Only a special subset of automorphic representations contribute to H∗(Y (K),C): for cusp-
idal automorphic representations π we see a contribution to H∗(Y (K),C) if π∞ has non-vanishing (g,K∞)-
cohomology (c.f. Matsushima’s formula) and (π∞)K 6= 0.

Fix a cuspidal tempered system of Hecke eigenvalues χ : T → Z. Here we say that a system of Hecke
eigenvalues is cuspidal and tempered if all of the automorphic representations π with this system of Hecke
eigenvalues are cuspidal and tempered (at Archimedean places).

Proposition 1.3.1 (Borel–Wallach + Matsushima’s Formula). The generalized χ-eigenspaces Hi(Y (K),Q)χ
satisfy:

(1) Hi(Y (K),Q)χ = 0 if i 6∈ [q0(G), q0(G) + `0(G)]

(2) dimHi(Y (K),Q)χ = dimHq0(G)(Y (K),Q)χ ×
(
`0(G)
i−q0(G)

)
The integers `0(G) and q0(G) (especially `0(G)) will be extremely important for the rest of the study group:
we define

`0(G) = rankG(R)− rankK∞,

and we define

q0(G) =
1

2
(dimY (K)− `0(G)).

Example 1.3.2. Say F/Q has signature (r, s), as before. Let G = ResF/Q SL2,F . Then `0(G) = s and
q0(G) = r + s. In this case

X = (H2)r × (H3)s,

and dimY (K) = 2r + 3s. Therefore, Hi(Y (K),Q)χ is nonzero for i = r + s, . . . , r + 2s.

Note that
(
`0(G)
i−q0(G)

)
is the dimension of

∧i−q0(G)
V where V is a vector space of dimension `0(G). Thus, we

are tempted by 1.3.1(2) to guess that H∗(Y (K),Q)χ is generated by Hq0(G)(Y (K),Q)χ by the action of some
exterior algebra acting on cohomology. In fact, this is exactly what Ventakatesh hopes to be true:

Conjecture 1.3.1 (Venkatesh, see for example the introduction to [7]). H∗(Y (K),Q)χ is generated by

Hq0(G)(Y (K),Q)χ by the action of some exterior algebra acting on cohomology. In particular, this exterior
algebra should come from a motivic cohomology group.

1.3.1. Addendum: The case of ResF/Q GL1. It’s instructive to consider the example G = ResF/Q GL1, F
with signature (r, s). Of course this isn’t semisimple, but we can set up everything discussed above for
reductive groups as well. The analogue of the symmetric space is:

X := GL1(F ⊗Q R)/R>0K
◦
∞

where K◦∞ = SU(1)s is the maximal connected compact subgroup of G(R).

In this case, for K ⊂ GL1(A∞F ) compact open, we have a surjective map

Y (K) := F×\[X ×GL1(A∞F )/K]→ Cl(K) := F×\[GL1(A∞F )/
(
(R>0)r × (C×)s

)
K]

to a (finite) adelic generalized class group (if K = ÔF then Cl(K) is the narrow class group of F ). Assuming
that F× ∩ K is sufficiently small (more precisely, that F× ∩ K is a torsion-free finite index subgroup of

the totally positive global units O×,+F ), Dirichlet’s unit theorem implies that the fibres of this map can be
identified with a real torus of dimension r + s− 1:

T (K) = (F× ∩K)\
(
(R>0)r × (C×/SU(1))s

)
/R>0.

In particular, the cohomology of Y (K) is a direct sum of |Cl(K)| copies of an exterior algebras on the free
rank r + s− 1 Abelian group F× ∩K.
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2. `0(G) and Galois Cohomology

Let G = ResF/Q SLn,F , and let χ : T→ Z be a cuspidal tempered system of Hecke eigenvalues. Assume that

Hq0(G)(Y (K),Q)χ 6= 0.

We assume the following (vaguely stated) conjecture about the existence of Galois representations:

Conjecture 2.0.1. For each prime p there exists a geometric Galois representation ρχ : GF = Gal(F/F )→
PGLn(Qp) such that ρχ(Frobv) is described in terms of χ for almost all places v of F .

When F is CM and p is sufficiently large (depending on n), this conjecture is known (modulo the difference
between SLn and GLn, which is not so serious) [5, 6, 1].

We can define Galois cohomology groups for the adjoint representation Ad ρχ (which is an n2−1 dimensional
representation of GF ) and a Bloch-Kato Selmer group

H1
f (GF ,Ad ρχ) ⊂ H1(GF ,Ad ρχ).

There is also a dual Selmer group

H1
f (GF , (Ad ρχ)∗(1)) ⊂ H1(GF , (Ad ρχ)∗(1)).

where (1) denotes a Tate twist by the cyclotomic character.

Fact 2.0.1 (Greenberg-Wiles). Assuming ρχ is irreducible and odd (odd says something about the image of
complex conjugation under ρχ)1

`0(G) = dimH1
f (GF , (Ad ρχ)∗(1))− dimH1

f (GF ,Ad ρχ).

This fact follows from a computation using Tate global duality, which is also a key computation in the Taylor–
Wiles method (and it’s extension by Calegari and Geraghty to situations with l0(G) > 0. We should also
note that we expect dimH1

f (GF ,Ad ρχ) = 0 — this would be a consequence of the Bloch-Kato conjecture.

See [3].

Thus we see the constant `0(G) defined before on the “automorphic side” appearing in the completely different
“Galois” side.

3. Patching and H∗(Y (K),Zp)

Here we give a Galois theoretic explanation of Venkatesh’s conjecture and the exterior algebra structures
appearing in Proposition 1.3.1, via the obstructed Taylor-Wiles method.

Let χ : T → Z be as before, and fix a prime p. Then we may look at the reduced system of eigenvalues
χ : T→ Fp. This determines a maximal ideal m ⊂ T, and then Tm is a local Zp-algebra which can be shown
to act on H∗(Y (K),Zp)m (we have switched from cohomology to homology here for convenience, although
they encode the same information).

Assuming Conjecture 2.0.1, we then have a Galois representation ρχ attached to χ, and we can look at its
reduction mod p, which we will denote

ρm = ρχ : GF → PGLn(Fp).

In optimal circumstances, the Calegari-Geraghty method of [2] allows us to describe H∗(Y (K),Z)m in a
rather elaborate way, using the following auxiliary objects:

• A map of power series algebras over Zp, S∞ → R∞ such that dimR∞ = dimS∞ − `0(G). (This
numerology arises from the same Galois cohomology calculation as Fact 2.0.1)

1These properties are expected to always hold for ρχ
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• A free R∞-module M∞, and an isomorphism

R∞ ⊗S∞ Zp ∼= Rρχ ,

where the map S∞ → Zp is given by sending all of the power series variables to 0, and where Rρχ is
a certain geometric deformation ring of ρχ.

In nice enough cases (and assuming enough conjectures), Calegari–Geraghty show that Rρχ
∼= Tm and

that
Hq0(G)+i(Y (K),Zp)m = TorS∞

i (M∞,Zp).

Note that since R∞ acts on M∞, we get a graded action of TorS∞
∗ (R∞,Zp) on H∗(Y (K),Zp).

Example 3.0.1. To see how this relates to Ventakesh’s conjecture, suppose Tm = Zp (so we have a Galois
representation ρm with Zp coefficients lifting ρm). In this case we can take R∞ = Zp as well, and S∞ =
ZpJx1, . . . , x`0(G)K. Then

TorS∞
∗ (R∞,Zp) = Tor

ZpJx1,...,x`0(G)K
∗ (Zp,Zp),

which is the exterior algebra of a free rank `0(G) Zp-module. See, example, Corollary 4.5.5 and the subsequent
exercises in [8].

Thus, we get the conjectured graded action, which should be motivic in origin — indeed the free rank `0(G)
Zp-module which appears can be identified with the Selmer group H1

f (GF , (Ad ρm)∗(1)).

In [4], Galatius and Venkatesh describe TorS∞
∗ (R∞,Zp) as the homotopy groups of a simplicial ring, which

is the derived deformation ring of the Galois representation ρχ. This recovers the Tor-algebra in a canonical
way. In [7] (assuming various hypotheses and conjectures), Venkatesh shows that the action of the Tor-algebra
on homology is also canonical, using the derived Hecke algebra which we briefly introduce next.

4. Derived Hecke Algebra

In addition to the Galois-theoretic explanation of the exterior algebra action, Venkatesh also gives a Hecke-
theoretic explanation. One of the goals of [7] is to upgrade the action of T on H∗(Y (K),Zp) to an action

of a graded algebra T̃, whose degree zero part is T. This is the “derived Hecke algebra”. In particular, the
action is graded, and we want a surjection (perhaps only after inverting p)

T̃⊗T H
q0(G)(Y (K),Zp)m � H∗(Y (K),Zp)m.

When Tm = Zp, Venkatesh proves that

T̃m = ∧∗H1
f (GF , (Ad ρm)∗(1))∗,

and compares the action of the derived Hecke algebra with the action of TorS∞
∗ (R∞,Zp) = ∧∗H1

f (GF , (Ad ρm)∗(1)).
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