
THE DERIVED DEFORMATION RING AND PATCHING

ASHWIN IYENGAR

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019. Notes
written by the speaker.

The goal of this talk is to prove the main theorem (Theorem 14.1) of [GV18], which says that a certain Tor
algebra appearing in the Calegari-Geraghty method, which is constructed non-canonically via patching (and
so depends on a lot of arbitrary choices) is actually isomorphic to the graded homotopy ring of a derived
version of the global deformation ring unramified outside a finite set of bad primes (and p) with a crystalline
condition at p:

Tor
S◦∞
∗ (R∞,W (k)) ∼= π∗Rcris

S

In the rest of the talk we will describe where these things come from and then construct the isomor-
phism.

1. Background on the Calegari-Geraghty Method

In this section we recall the Calegari-Geraghty method (at least as presented in Section 13 in [GV18]) and the
objects it gives us to work with, so that we may perform a derived version of its patching argument.

Let S′ be a finite set of primes. G is a split semisimple algebraic group over Q with a smooth reductive model
over Z[ 1

S′ ]. Let Y0 denote the usual locally symmetric space attached to G with hyperspecial level outside
of S′ and Iwahori level at primes in S′. We define the Hecke algebra T0 to be the Z-algebra generated by
the Hecke operators away from S′. First fix a cuspidal and tempered system of Hecke eigenvalues

T0 � O

landing in the ring of integers O of some number field. We then fix a prime p lying over a prime p 6∈ S′

satisfying the following (one expects all but finitely many p to satisfy these conditions)

(1) We assume H∗(Y0,Z) is p-torsion free.

(2) p is larger than the order of Weyl group of G.

(3) The induced map (T0)m → Op is an isomorphism, where m = ker(T0 → O/p =: k).

(4) O is unramified at p.

(5) The localization Hj(Y0,Zp)m vanishes outside of [q0, q0 + `0].

Now let S = S′ ∪ {p}, and let G denote the group dual to G, defined over W := W (k), where k = O/p:
we furthermore assume that G is adjoint in order to state the conjecture on the existence of Galois repre-
sentations, and in order to ensure the derived deformation functors are actually pro-representable without
some modification taking into account the center Z(G) (which is now 0 by assumption). Let T denote a
maximal k-split torus of G. Conjecturally, we expect there to exist a Galois representation ρ : GQ,S → G(O)
associated to m, such that ad ρ is torsion crystalline, and such that there exists a subfunctor Dcris

ρp
of the usual

unframed deformation functor for ρp : GQp
→ G(k) which is formally smooth with tangent space given by
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the Selmer group H1
f (GQp , ad ρp). We make the following further assumptions on ρ, mentioned by Rebecca

last week.

(1) H0(GQp
, ad ρp) = H2(GQp

, ad ρp) = 0, i.e. the local deformation ring at p is representable and
formally smooth.

(2) For q ∈ S′, H{0,1,2}(GQq
, ad ρq) = 0, i.e. the local deformation ring at S′ is W .

(3) ρ has big image, which ensures that ρ is Schur (i.e. the centralizer of ρ in G(k) is T (k)).

Finally, we define a Taylor-Wiles datum.

Definition 1.1. A Taylor-Wiles datum of level n is a set Qn of primes disjoint from S and a choice of
elements tq ∈ T (k) for each q ∈ Qn such that

(1) pn|(q − 1) for all q ∈ Qn
(2) ρ(Frobq) (recall ρ is unramified at q) is conjugate to tq, a strongly regular element of T (k), i.e. the

centralizer of tq in G(k) is T (k).

(3) We have the following cohomological vanishing condition. In the exact sequence

H1
f (GQ,SQn

, ad ρ)→ H1(GQ,SQn
, ad ρ)

A−→
H1(GQp , ad ρp)

H1
f (GQp

, ad ρp)
→ H2

f,Qn
→ H2(GQ,SQn

, ad ρ)
B−→

⊕
q∈Qn

H2(GQq
, ad ρq),

the term H2
f,Qn

vanishes. This sequence is defined in Appendix B of [GV18], and should be thought
of part of the long exact sequence coming from a “derived local condition”. More precisely, they
have some specific recipe to lift the underived local conditions H1

f (GQp
, ad ρp) ⊆ H1(GQp

, ad ρp) and

0 ⊆ H1(GQq , ad ρq) to subcomplexes Cf,q ↪→ Cq for q ∈ Qn and Cf,p ↪→ Cp, and then take the
cohomology of the mapping cone of C → ⊕q∈Qn∪{p}Cq/Cf,q to get the above sequence. In fact, the
big image assumption on ρ ensures that B is an isomorphism.

Note then that if q is a Taylor-Wiles prime of level n, then we have determined representations (via tq)

Gq Gur
q T (k)

ρTq

ρT,ur
q

which are isomorphic to ρq and ρurq after composing with T (k)→ G(k).

Now writeGab,tame
Qq

= Iq×Ẑ where the tame inertia subgroup Iq is non-canonically isomorphic to (Z/q)×.

Theorem 1.2. For s >> 0 large enough, set

S◦∞ = W [[x1, . . . , xs]], R∞ = W [[x1, . . . , xs−`0 ]].

Also let an = (pn, (1 + xi)
pn − 1) ⊂ S◦∞. If we assume a natural local-global compatibility criterion is true (a

precise statement is in Section 13.5 in [GV18]), then we get Taylor-Wiles data Qn for all n and a diagram

W S◦∞ S◦∞/an S◦n

W = Rcris
ρ,S R∞ R∞/an Rn

ι

∼

∼

where the leftmost square is a pushout diagram of commutative rings, S◦n = S◦n/p
n is the mod pn reduction

of the framed deformation ring S◦n of
∏
q∈Qn

Iq/p
n triv−−→ T (k) and Rn is the quotient of Rcris

n /(pn,mα(n))

parametrizing deformations of inertial level ≤ n (defined in Andy’s talk: this will become clear as the talk
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goes on), where Rcris
n is the global crystalline deformation ring for ρ : GQ,SQn → G(k), and α(n) is some

strictly increasing sequence.

Moreover, there is a chain complex C∞ ∈ D(ModS◦∞) with homology M concentrated in degree q with an
R∞-action compatible with ι, and

Tor
S◦∞
∗ (M,W ) := H∗(C∞ ⊗L

S◦∞
W ) = H∗(Y0,W )m,

and we get a free action of Tor
S◦∞
∗ (R∞,W ) on H∗(Y0,W )m, generating it in degree q.

In particular, we should be able to “realize R∞ ⊗L
S◦∞

W” in some natural way: in other words, there should

be some derived interpretation of what’s going on before we take homology. Today we will construct a map
Rcris
S → R∞ ⊗L

S◦∞
W (which exists at least up to replacing the rings with weakly equivalent ones) which

induces an isomorphism on the graded homotopy rings.

2. Allowing Ramification at Taylor-Wiles Primes

We define the following derived deformation functors:

(1) Let F (cris)
S := F (cris)

GQ,S ,ρ
be the derived deformation functor of ρ (with the crystalline condition im-

posed), as defined by Rebecca last week. This is pro-representable because ρ is Schur and Z(G) = 0.

(2) For q ∈ Qn let Fq := FGQq ,ρq
denote the derived deformation functor of the pullback of ρ to GQq .

(3) For q ∈ Qn let FTq := FGQq ,ρ
T
q

denote the derived deformation functor of ρTq : here we replace G

with T in the definition of the derived deformation functor. In particular, this is never going to be
pro-representable because T is abelian.

(4) For q ∈ Qn, ρ is unramified at q, so let Fur
q := FGur

q ,ρ
ur
q

denote the derived deformation functor of
ρurq .

(5) If q belongs to a Taylor-Wiles datum, then let FT,urq := FGur
q ,ρ

T,ur
q

denote the derived deformation of

ρT,urq , again valued in T .

Furthermore, if we add a � in any of the superscripts, that means that we’re doing a framed version: these
will always be pro-representable.

Now fix a Taylor-Wiles prime q.

The point of this section is to show that there is a diagram of homotopy pullback squares

Fcris
S FS Fur

q FT,urq FT,ur,�q

Fcris
Sq FSq Fq FTq FT,�q

(a) (b)

∼

(c)

∼

where the curvy maps in (c) are splittings (i.e. FT,urq → FT,ur,�q → FT,urq = id). We need to construct these
maps and prove that these are actually homotopy pullbacks, which I won’t do in full detail here, but I’ll give
some indication of how they’re proven. First note that the crystalline condition is given by taking the usual
underived local crystalline condition and lifting it to a derived local condition, as described by Rebecca last
week, and the ith homotopy group of the tangent complex is then just Hi

f (GQq
, ad ρq). But this is defined

using a homotopy pullback, so it’s not hard to see that this is also a homotopy pullback.

First, we note two technical lemmas.
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Lemma 2.1 (Lemma 4.30 and Lemma 3.10 in [GV18]). A homotopy commutative square of formally cohesive
functors

G F0

F1 F01

is a homotopy pullback if and only if the natural map

G → F0 ×hF01
F1

induces a quasi-isomorphism on tangent complexes.

This lets us reduce the proof of homotopy pullback to something about the tangent complexes, which we
understand, because they should compute Galois cohomology, as discussed by Rebecca last week.

Now we say a word about the homotopy pullback squares.

(a) This says that a deformation of GQ,Sq unramified at q is actually a deformation of GQ,S . This is
proven in Section 8.2 of [GV18]: essentially one reduces this to the statement that

C∗(Spec Z[1/S], ad ρ)→ C∗(Spec Z[1/Sq], ad ρ)⊕ C∗(V, ad ρ)→ C∗(Spec Z[1/Sq]×SpecZ[1/S] V, ad ρ)

is an exact triangle, for V → Spec Z[1/S] a finite étale cover, and then uses Lemma 2.1. These
complexes are some cochain complexes computing étale cohomology.

(b) After a slight rephrasing, this follows from a square

H∗(Gur
q , ad ρTq ) H∗(Gur

q , ad ρq)

H∗(Gq, ad ρTq ) H∗(Gq, ad ρq)

It turns out that the horizontal maps are isomorphisms (this follows from the fact that tq is strongly
regular: see Section 8 of [GV18] for an outline of the proof), and this is enough to show that the
square is a homotopy pullback.

(c) The fact that this is a homotopy pullback essentially follows from the fact that

FT,�q (A) = FTq (A)×hBG(A) ∗

is defined by a homotopy fiber product. I won’t explicitly construct the splitting: it’s some technical
homotopy theoretic thing I don’t think lends enough intuition for the purposes of this talk (the
idea is to choose 1 ∈ T (A) as the framing, but since we’re really working with BT (A) which isn’t
a simplicial group, we replace BT (A) functorially with a weakly equivalent simplicial group). The
important thing is that it still gives a homotopy pullback square, simply because it’s a splitting.

Now, up to replacing diagram (b) with a weakly homotopy equivalent diagram to “invert the arrows”, we get
a homotopy pullback square

Fcris
S FT,ur,�q

Fcris
Sq FT,�q

Roughly why we go through this process is that we eventually want to compare the ring representing Fcris
S

to the rings S◦n appearing in the Calegari-Geraghty method. But note that S◦n deforms Iq/p
n, and FT,�q
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deforms Iq × Ẑ, so there are a few more intermediate steps we need before we can write down the map

Rcris
S → Rn ⊗L

S◦n
Wn that we want to define (and then take the limit over n in a “pro”-sense to get the map

that we ultimately want).

3. Descending from Taylor-Wiles Level

So why did we bother with Section 2? The point is that if we replace the prime q in the previous analysis with
a Taylor-Wiles datum Qn, then everything still works: we get an analogous diagram of homotopy pullbacks,
where we now take the product over q ∈ Qn of all of the local deformation functors. So now fix the following
notation:

(1) Fcris
n is the crystalline deformation functor unramified outside S ∪ Qn with representing pro-ring
Rcris
n . Similarly, say Rcris

S pro-represents Fcris
S .

(2)

F loc
n =

∏
q∈Qn

FT,�q

with representing pro-ring Sn, and

(3)

Fur,loc
n =

∏
q∈Qn

FT,ur,�q

with representing pro-ring Surn .

Therefore, following what we did earlier, we get an equality (ok really this is only a strict equality up to
replacing the functors with weakly equivalent ones, but for all practical purposes we can ignore this subtlety:
these are homotopy theoretic issues that only crop up because of the way we set up the homotopy theoretic
framework, and are not really an essential feature of the argument)

Fcris
n ×hF loc

n
Fur,loc
n = Fcris

S .

Let Sur
n := π0Surn , which is the ring parametrizing framed deformations of (ρT,urq )q∈Qn

. Let Sn = π0Sn. Let
S′n denote the ring parametrizing framed deformations of the representation∏

q∈Qn

(Iq/p
n × Ẑ) �

∏
q∈Qn

Ẑ

∏
ρT,ur
q−−−−−→ T (k)

Lemma 3.1. There is a diagram

S◦n S′n

W Sur
n

inducing an isomorphism Sur
n = S′n⊗̂S◦nW .

Proof. This is clear from the identities S◦n = W [[
∏
q∈Qn

Iq/p
n]] and S′n = Sur

n [[
∏
q∈Qn

Iq/p
n]]. �

Furthermore, we also have

Sur
n = S′n⊗̂S◦nWn,

where Wn denotes truncated Witt vectors, and (·) denotes reduction mod pn.

Note the map Iq × Ẑ � Iq/p
n × Ẑ induces a map Sn → S′n.
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Now we can finally construct the map we want:

φn : Rcris
S = Rcris

n ⊗L
Sn S

ur
n → Rcris

n ⊗L
Sn
Sur
n → Rn ⊗L

S′n
Sur
n = Rn ⊗L

S◦n
Wn
∼= R∞/an ⊗L

S◦∞/an
Wn

The equality (again, ignoring homotopy theoretic subtleties) in the second to last map follows from the
discussion above: a completed tensor product is presented by a level-wise tensor product of pro-objects, and
after passing to a derived setting this should still behave well.

Remark 3.2. What do we mean by derived tensor product of pro-objects in sArtk? Really it should be
some thing, well-defined up to homotopy, which represents the homotopy fiber product of the representing
functors. In practice, it is possible to give an explicit construction of this thing, but it’s not really useful to
think about the exact details, since it’s only well-defined up to weak equivalence. Therefore, all we will need
is that it represents the fiber product of the representing functors, and that if the indexing category of the
pro objects is the same, then the construction is functorial in all three variables. Alternatively, one could just
avoid working with rings almost entirely, and instead only consider maps between their representing functors,
but it’s somehow more instructive/familiar to think about the rings themselves.

Theorem 3.3. Assume n > m > 1. The map Rcris
S

φn−−→ Rn ⊗L
S′n
Sur
n

en,m−−−→ Rn/am ⊗L
S′n/am

Sur
n /am induces

an isomorphism on t0 and a surjection on t1.

Proof. The maps

π0Rcris
n � Rn � Rn/am

π0Sn � S′n � S′n/am

π0Surn � Sur
n � Sur

n /am

all induce isomorphisms on t0: they are injective on tangent spaces and the ideals defining these quotients
all live in the square of the maximal ideals: this is straightforward to check after unwinding the definitions,
because after choosing natural presentations for each of the rings, you only really quotient by pm and terms
looking like (1 + x)p

m − 1, which is in the square of the maximal ideal in the ring if m > 1.

The induced map between Mayer-Vietoris exact sequences for tangent complexes (see Section 4.30 (iv) in
[GV18]) gives

t0(Rn ⊗L
S′n
Sur
n ) t0(Rn)⊕ t0(Sur

n ) t0(S′n) t1(Rn ⊗L
S′n
Sur
n ) t1(Rn)⊕ t1(Sur

n )

t0(Rcris
n ⊗L

Sn S
ur
n ) t0(Rcris

n )⊕ t0(Surn ) t0(Sn) t1(Rcris
n ⊗L

Sn S
ur
n ) t1(Rcris

n )⊕ t1(Surn ) t1(Sn)

j1 f g j2

h

We want to show that j1 is an isomorphism and that j2 is surjective. Note f, g are isomorphisms by
assumption. Then modulo a diagram chase, it suffices to show that h is injective.

Note Surn is formally smooth (we’re deforming representations of Z into T (k)) so t1(Surn ) = 0. It suffices to
show that t1(Rcris

n )→ t1(Sn) is an isomorphism. But by definition

t1Rcris
n t1Sn

H2
f (GQ,SQn , ad ρ)

⊕
q∈Qn

H2(GQq , ad ρTq )
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Here H2
f (GQ,S , ad ρ) fits into the exact sequence (again see appendix B for the construction of this, this again

comes from a Selmer complex mapping cone type construction)

H1
f (GQ,SQn

, ad ρ)→ H1(GQ,SQn
, ad ρ)→

H1(GQp , ad ρp)

H1
f (GQp

, ad ρp)
→ H2

f (GQ,SQn
, ad ρ)→ H2(GQ,SQn

, ad ρ)→ H2(GQp
, ad ρp)

But H2(GQp
, ad ρp) = 0 by assumption and the second map is surjective by definition of a Taylor-Wiles

datum, so H2
f (GQ,SQn

, ad ρ) = H2(GQ,SQn
, ad ρ). The proof that diagram (b) is a homotopy fiber product

from earlier shows that H2(GQq
, ad ρTq ) = H2(GQq

, ad ρq), so we are left with

H2(GQ,SQn
, ad ρ)

B−→
⊕
q∈Qn

H2(GQq
, ad ρq),

which is an injective again by definition of a Taylor-Wiles datum. �

4. Derived Patching

We come to the main result.

Theorem 4.1. There is an isomorphism of graded rings

π∗Rcris
S
∼= Tor

S◦∞
∗ (R◦∞,W )

Proof. Let Cn := R∞/an ⊗L
S◦∞/an

Wn. First, Galatius and Venkatesh show that the fact that π∗t(Rcris
S ) is

finite dimensional implies that

[Rcris
S , Cn] := π0 Hompro− sArtk

(Rcris
S , Cn)

is finite. Thus by compactness (i.e. the axiom of choice), there is a compatible system of maps in the profinite
set limn[Rcris

S , Cn]t, where the subscript t denotes the subset of maps inducing a an isomorphism on t0 and a
surjection on t1.

So there are maps gn ∈ [Rcris
S , Cn]t compatible up to homotopy, which defines a map

hocolimn Hom(Cn,−)→ Hom(Rcris
S ,−).

which is still an iso on t0 and surjective on t1. But note that the homotopy colimit and colimit are weakly
equivalent for filtered indexing categories, so we can just take colim. Note if we define C = (n 7→ Cn) ∈
pro− sArtk, then we really have a map

Hom(C,−)→ Hom(Rcris
S ,−)

We claim that this actually induces a quasi-isomorphism of tangent complexes, for which is suffices to show
that both sides vanish outside degrees 0, 1 and that both sides have the same “Euler characteristic”, i.e.
dim t1 − dim t0 is the same on both sides. which induces a map (up to replacing things by weakly equivalent
things etc etc) Rcris

S → C. Think of this as the map

Rcris
S → R∞ ⊗L

S◦∞
W.

Note tiRcris
S vanishes for i 6= 0, 1 because the Galois cohomology is concentrated in degrees 0, 1, 2, but actually

vanishes at degree 0 because ρ is Schur and G is adjoint. The homotopy groups of the tangent complex of
the other side is colimn t

iCn by definition. But taking the Mayer-Vietoris sequence again gives

· · · → tiCn → ti(R∞/an)⊕ ti(Wn)→ ti(S◦∞/an)→ ti+1Cn → . . .

Taking the colimit we get

· · · → colimn t
iCn → ti(R∞)⊕ ti(W )→ ti(S◦∞)→ colimn t

i+1Cn → . . .

This uses the fact that the descending sequence of ideals an defines the maximal ideal topology on both R∞
and S∞, which one can check directly. But ti(W ) = 0 (e.g. this parametrizes deformations of the trivial
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group and thus has trivial cohomology), and ti(R∞) = ti(S◦∞) = 0 for i 6= 0 since these are power series rings,
and thus formally smooth. Thus the exact sequence above tells us that colimn t

iCn vanishes if i 6= 0, 1.

For the Euler characteristic part, note that

dim t1Rcris
S − dim t0Rcris

S = dimH2
f (GQ,S , ad ρ)− dimH1

f (GQ,S , ad ρ) = `0

by the numerical criterion in the Calegari-Geraghty method (and the fact that H2
f is dual to the dual Selmer

group H1
f⊥ : see appendix B for a proof). But since the Mayer-Vietoris sequence for the other side is just (as

above)
· · · → 0→ colimn t

0Cn → t0(R∞)→ t0(S◦∞)→ colimn t
1Cn → 0→ · · ·

So by exactness we have

dim t1C − dim t0C = dim colimn t
1Cn − dim colimn t

0Cn = dim t0S◦∞ − dim t0R∞ = `0

because t0 = H1, and R∞ and S◦∞ are power series rings in s− `0 and s variables, respectively.

Therefore the pro-objects Rcris
S and C living in pro− sArtk represent equivalent functors and therefore the

induced map
π∗RS → πiC = lim

n
π∗Cn

is an isomorphism. But

πiC = lim
n
πiCn = lim

n
Tor

S◦∞/an

i (R∞/an,Wn) ∼= Tor
S◦∞
i (R∞,W ).

The first equality is Theorem 6 of [Qui67], and Lemma 7.6 in [GV18] gives the second equality. This concludes
the proof. �
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