Derived Deformation Theory and the Derived Hecke Algebra
 These notes are in fairly rough shape, tread with caution

Pol van Hoften
pol.van_hoften@kcl.ac.uk

May 29, 2019

1 Introduction

I am going to start by recapping some of the things that happened in the study group so far. Let \mathbf{G} / \mathbb{Q} be a split reductive algebraic group that is semi-simple and simply-connected and let π be a cuspidal, cohomological and tempered automorphic representation of $\mathbf{G}(\mathbb{A})$. Then π contributes to the cohomology of the locally symmetric space $Y(K)$ for G, where $K \subset \mathbf{G}\left(\mathbb{A}^{\infty}\right)$ is a neat compact open subgroup such that $\pi^{K} \neq 0$. If we let \mathbb{T} be the Hecke algebra of level K and $\chi: \mathbb{T} \rightarrow \mathbb{C}$ be the character associated to π (taking operators to their eigenvalues on π) then we have seen that

$$
H^{*}(Y(K), \mathbb{C})_{\chi}=0 \text { if } i \notin\left[q_{0}, q_{0}+l_{0}\right]
$$

and

$$
\operatorname{dim}_{\mathbb{C}} H^{q_{0}+i}(Y(K), \mathbb{C})_{\chi}=\binom{l_{0}}{i} H^{q_{0}}(Y(K), \mathbb{C})_{\chi} .
$$

Venkatesh then conjectures that this should be explained by a 'natural' action of an exterior algebra on a vector space of dimension l_{0} (and much more). In the Hecke track we defined a derived Hecke algebra \mathcal{H} which acts by degree increasing endomorphisms on $\left.H^{*}(Y(K)), \mathbb{Z}_{p}\right)$ for primes p. However, we cannot prove much about the action without using the existence of sufficiently nice Galois representations (c.f. the section of assumptions). Let \mathfrak{m} be the maximal ideal of the Hecke algebra \mathbb{T} associated to the $\bmod p$ Galois representation ρ associated to π, then we can prove that the action of $\mathcal{H}_{\mathfrak{m}}$ makes

$$
H^{*}\left(Y(K), \mathbb{Z}_{p}\right)_{\mathfrak{m}}
$$

into a free module generated in degree q_{0} (the fact that we can prove this integrally should be an artefact of the our simplifying assumptions). Under these same assumptions we proved that

$$
\mathcal{H}_{\mathfrak{m}} \approx \bigwedge^{*} V
$$

where

$$
V=H_{f}^{1}\left(\mathbb{Z}\left[\frac{1}{S}\right], \operatorname{Ad} \rho_{\mathcal{O}}\right)
$$

is a Bloch-Kato Selmer group, which is conjecturally of dimension l_{0} (this is not quite right, see the discussion after Proposition 8.6 in the newest version of (Ven16]). Meanwhile in the Galois track we introduced a derived deformation ring \mathcal{R}_{S} and we showed last week that it (to be precise its associated graded ring) also acts on

$$
H^{*}\left(Y(K), \mathbb{Z}_{p}\right)_{\mathfrak{m}}
$$

by degree decreasing endomorphisms. We did this by identifying $\pi_{*} \mathcal{R}_{S}$ with

$$
\operatorname{Tor}_{*}^{S_{\infty}}\left(R_{\infty}, \mathbb{Z}_{p}\right)
$$

which acts on $H^{*}\left(Y(K), \mathbb{Z}_{p}\right)_{\mathfrak{m}}$. Here the rings R_{∞}, S_{∞} are outputs of the Calegari-Geraghty method and depend on the choices made, which means that we cannot prove that the action of $\pi_{*} \mathcal{R}_{S}$ is canonical. Now we note that

$$
V \cong\left(\operatorname{Tor}_{*}^{S_{\infty}}\left(R_{\infty}, \mathbb{Z}_{p}\right)\right)^{*}
$$

and so we get an isomorphism

$$
\begin{equation*}
\pi_{*} \mathcal{R}_{S} \cong \bigwedge^{*} V^{*} \tag{1}
\end{equation*}
$$

The goal of today's talk is to show that this isomorphism is canonical, i.e., does not depend on the choice of Taylor-Wiles data. We will achieve this by defining a canonical map

$$
\pi_{1} \mathcal{R}_{S} \rightarrow V^{*}
$$

and showing that it agrees with (1) in degree one. This then shows that the action of $\pi_{*} \mathcal{R}_{S}$ on $H^{*}\left(Y(K), \mathbb{Z}_{p}\right)_{\mathfrak{m}}$ is canonical and "dual" to the action of $\mathcal{H}_{\mathfrak{m}}$.

2 Notation and patching

3 A canonical map

In this section we will describe a canonical map

$$
\pi^{1} \mathcal{R}_{S} \rightarrow V^{*}
$$

which we will later compare to the non-canonical isomorphism coming from patching. We start by discussing a slightly generalised theory of tangent complexes. Just as with complete local Noetherian rings R over $W(k)$ it can be useful to consider tangent spaces at points $R \rightarrow A$ for A some Artinian quotient of $W(k)$, it will be useful for us to discuss A-valued tangent complex of deformation functor. Now let \mathcal{R} be a pro object of $\mathbf{s A r t}_{\mathbf{k}}$ and fix a point

$$
\phi: \pi_{0} \mathcal{R} \rightarrow A,
$$

then there is a good theory of tangent complexes \mathfrak{t}^{ϕ} relative to ϕ. In particular we should have that

$$
\pi_{-i} \mathrm{t}^{A}
$$

is given by homotopy classes of maps

$$
\mathcal{R} \rightarrow A \oplus A[i]
$$

inducing ϕ on π_{0} (here we consider A as a simplicial artin ring). We will be most interesting in this theory when $A=W_{n}$ the length n Witt vectors of k in which case we will write

$$
\mathfrak{t}_{n} \mathcal{R} .
$$

I completely made up all this notation by the way, but it will save us a lot of space later (I will refrain from writing $\pi_{-i} \mathfrak{t}_{n}$ as $\left.\mathfrak{t}_{n}^{i}\right)$.
Lemma 1 (Lemma 15.1 in GV18]). Let \mathcal{R}_{S} be the crystalline derived deformation ring. Fix a lift $\rho_{n}: G_{\mathbb{Q}, S} \rightarrow G\left(W_{n}\right)$, classified by a map $\phi: \pi_{0} \mathcal{R}_{S}$ to W_{n}. Then the set of homotopy classes of maps

$$
\mathcal{R}_{S} \rightarrow W_{n} \oplus W_{n}[1]
$$

which lift ϕ is in bijection with

$$
H_{f}^{2}\left(\operatorname{Ad} \rho_{n}\right)
$$

Proof. When $A=k$ and $M=k$ then the set of homotopy classes of maps is just $\pi_{-1}\left(\mathfrak{t} \mathcal{R}_{S}\right)$ which we have identified with $H_{f}^{2}(\operatorname{Ad} \rho)$. The proof in our case is exactly the same, given a good theory of tangent complexes \mathfrak{t}^{n} as above.

The second bit of homotopy theory that we will need is that there is a natural map

$$
\pi_{-i} \mathfrak{t}_{n} \mathcal{R} \rightarrow \operatorname{hom}\left(\pi_{i} \mathcal{R}, W_{n}\right)
$$

which is given by taking the map

$$
\mathcal{R} \rightarrow W_{n} \oplus W_{n}[1]
$$

and evaluating it on loops in \mathcal{R}. To be precise the map

$$
\pi_{0} \mathcal{R} \rightarrow W_{n}
$$

is fixed and then a homotopy class of maps

$$
\mathcal{R} \rightarrow W_{n} \oplus W_{n}[1]
$$

gives a map from the 1 -simplices of \mathcal{R} to W_{n}, which induces a map $\pi_{1} \mathcal{R} \rightarrow W_{n}$. Combining this with Lemma ?? we get a natural map

$$
H_{f}^{2}\left(\operatorname{Ad} \rho_{n}\right) \rightarrow \operatorname{hom}\left(\pi_{1} \mathcal{R}, W_{n}\right)
$$

which induces (in the limit over n) a map

$$
V \rightarrow \operatorname{hom}\left(\pi_{1} \mathcal{R}, W\right)
$$

4 The reciprocity law revisited

In this section we will recall some things from section 8 of Ven16]. In particular, we will review the construction of the isomorphism

$$
\mathfrak{t}_{R_{n}} / \mathfrak{t}_{S_{n}} \cong V / p^{n}
$$

because we need to compare it with the isomorphism $\pi_{*} \mathcal{R}_{S}=\Lambda^{*} V^{*}$ later. Let Q_{n} by a collection of Taylor-Wiles primes of level n and let $v \in Q_{n}$, then we define

$$
T_{v}:=\mathbb{A}\left(\mathbb{F}_{q}\right) / p^{n}, T_{n}:=\prod_{q \in Q_{n}} T_{q}
$$

where \mathbb{A} is a maximal torus of \mathbb{G}. Then there are isomorphisms (the first comes from section 6.4 and the second holds by definition)

$$
\mathfrak{t}_{S_{n}} \cong \operatorname{Ext}_{S_{n}}^{1}\left(\mathbb{Z} / p^{n}, \mathbb{Z} / p^{n}\right) \cong H^{1}\left(T_{n}, \mathbb{Z} / p^{n}\right)
$$

We also get an isomorphism, which depends on the choice of strongly regular element, (this is basically an identification of S_{n} with the framed deformation ring of the $\operatorname{Ad} \rho$ into the torus)

$$
\mathfrak{t}_{S_{n}} \cong \bigoplus_{q \in Q_{n}} \frac{H^{1}\left(\mathbb{Q}_{q}, \operatorname{Ad} \rho_{n}\right)}{H_{u r}^{1}\left(\mathbb{Q}_{q}, \operatorname{Ad} \rho_{n}\right)}
$$

which we will use to describe a canonical surjection

$$
\psi: \mathfrak{t}_{S_{n}} \rightarrow V / p^{n}
$$

with kernel $\mathfrak{t}_{R_{n}}$. Consider the following diagram

where ϕ is the restriction map in Galois cohomology, the first vertical isomorphism is just the computation of the tangent space to a deformation ring and the bottom-right horizontal map is the induced one. This gives us a pairing

$$
\begin{equation*}
H_{f}^{1}\left(\mathbb{Z}[1 / S], \operatorname{Ad} \rho_{n}^{*}(1)\right) \times \mathfrak{t}_{R_{n}} / \mathfrak{t}_{S_{n}} \rightarrow \mathbb{Z} / p^{n} \tag{2}
\end{equation*}
$$

by

$$
\left(\alpha,\left(\beta_{v}\right)_{v \in Q_{n}}\right) \mapsto \sum_{v}\left(\alpha_{v}, \beta_{v}\right)_{v} .
$$

The local pairing $\left(\alpha_{v}, \beta_{v}\right)_{v}$ is just the cup product pairing

$$
H^{1}\left(\mathbb{Q}_{v}, \operatorname{Ad} \rho_{n}^{*}(1)\right) \times H^{1}\left(\mathbb{Q}_{v}, \operatorname{Ad} \rho\right) \rightarrow H^{2}\left(\mu_{p^{n}}\right)=\mathbb{Z} / p^{n}
$$

Since the classes α_{v} are unramified, it means they pair trivially with

$$
H_{u r}^{1}\left(\mathbb{Q}_{v}, \operatorname{Ad} \rho_{n}\right)
$$

so the pairing (2) is well defined. Using the condition that the $v \in Q_{n}$ are Taylor-Wiles primes Venkatesh then proves that the pairing (2) is perfect which gives us an isomorphism

$$
\mathfrak{t}_{R_{n}} / \mathfrak{t}_{S_{n}} \cong V / p^{n}
$$

using the fact that V is torsion-free. The goal of the next section is to show that the isomorphism

$$
\pi_{*} \mathcal{R}_{S} \cong \operatorname{Tor}_{*}^{S_{\infty}}\left(R_{\infty}, W\right) \cong\left(\mathfrak{t}_{S_{\infty}} / \mathfrak{t}_{R_{\infty}}\right)^{*} \cong \bigwedge^{*} V^{*}
$$

is induced by the canonical map $\pi_{1} \mathcal{R}_{S} \rightarrow V^{*}$. Here the last identification comes from the maps

$$
\mathfrak{t}_{R_{n}} / \mathfrak{t}_{S_{n}} \rightarrow V / p^{n}
$$

described above.

5 Comparison and conclusion

We will work to identify the dual of the map constructed in Section 3. As always, we will work mod p^{m} and at Taylor-Wiles level n, with $n \gg m$. There is a natural map

$$
\pi_{0}\left(\text { lifts to } \mathcal{R}_{S} \rightarrow W_{m} \oplus W_{m}[1]\right) \rightarrow \operatorname{hom}\left(\pi_{1} \mathcal{R}_{S}, W_{m}\right)
$$

and Lemma 1 shows that the left hand side is naturally identified with

$$
H_{f}^{2}\left(\mathbb{Z}[1 / S], \operatorname{Ad} \rho_{m}\right),
$$

which is just a mod p^{n} version of the standard tangent complex computation. Now consider the maps

$$
\mathcal{R}_{S} \rightarrow \bar{R}_{n} \underline{\otimes}_{S_{n}^{\circ}} W_{n} \leftarrow R_{\infty} \underline{\otimes}_{S_{\infty}^{\circ}} W
$$

from which we construct the following diagram

We have already identified the bottom left space with $H_{f}^{2}\left(\mathbb{Z}[1 / S], \operatorname{Ad} \rho_{m}\right)$ and we are going to identify the other two spaces in a similar way. For this we have to compute with the mod p^{m} tangent complex of the rather terrifying looking rings

$$
\begin{equation*}
R_{\infty} \underline{\otimes}_{S_{\infty}^{\circ}} W, \bar{R}_{n} \underline{\otimes}_{\overline{S_{n}^{\circ}}} W_{n} . \tag{3}
\end{equation*}
$$

Fortunately there is a "Mayer-Vietoris sequence" in the homology groups of ($\bmod p^{m}$) tangent complexes associated to derived tensor products

$$
D=A \underline{\otimes}_{B} C
$$

which looks like

$$
\cdots \rightarrow \pi_{-n} \mathfrak{t} D \rightarrow \pi_{-n} \mathfrak{t} A \oplus \mathfrak{t} C \rightarrow \pi_{-n} \mathfrak{t} B \rightarrow \cdots
$$

We are interested in computing π_{-1} of the tangent complexes of the rings in (3) and the relevant parts of the long exact sequences look like (recall that W and W_{n} have trivial tangent spaces)

$$
\cdots \mathfrak{t}_{R_{n}} \otimes W_{m} \rightarrow \mathfrak{t}_{S_{n}} \otimes W_{m} \rightarrow \pi_{-1}\left(\mathfrak{t}\left(\bar{R}_{n} \underline{\otimes}_{S_{n}^{\circ}} W_{n}\right)\right) \rightarrow \cdots
$$

and

$$
\cdots \mathfrak{t}_{R_{\infty}} \otimes W_{m} \rightarrow \mathfrak{t}_{S_{\infty}} \rightarrow \pi_{-1}\left(\mathfrak{t}\left(R_{\infty} \underline{\otimes}_{S_{\infty}^{\circ}} W\right)\right) \rightarrow \cdots
$$

Putting all of this together we get the following diagram

We note that the top vertical map is just the $\bmod p^{m}$ reduction of the dual of the isomorphism

$$
\left(\mathfrak{t}_{S_{\infty}} / \mathfrak{t}_{R_{\infty}}\right)^{*} \cong \operatorname{Tor}_{1}^{S_{\infty}}\left(R_{\infty}, W\right)
$$

After passing to the inverse limit we get isomorphisms

and we would like to show that the induced isomorphism G agrees with ψ. This means we have to identify θ with the map ϕ from the previous section

5.1 Conclusion

The action of V on $H^{*}\left(Y(K), \mathbb{Z}_{p}\right)_{\mathfrak{m}}$, defined via the Taylor-Wiles method in section 8 of [Ven16], does not depend on the choices of Taylor-Wiles data. This means that the action of $\pi_{*} \mathcal{R}_{S}$ on the same space, defined in section 13 of [GV18], does not depend on any choices either.

References

[Ven16] Akshay Venkatesh. "Derived Hecke algebra and cohomology of arithmetic groups". In: arXiv e-prints, arXiv:1608.07234 (Aug. 2016), arXiv:1608.07234. arXiv: 1608.07234 [math.NT].
[GV18] S. Galatius and A. Venkatesh. "Derived Galois deformation rings". In: Adv. Math. 327 (2018), pp. 470-623. ISSN: 0001-8708. DOI: $10.1016 / \mathrm{j}$.aim.2017.08.016. URL: https://doi.org/10. 1016/j.aim.2017.08.016

