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1 Introduction

I am going to start by recapping some of the things that happened in the study group so far. Let G/Q
be a split reductive algebraic group that is semi-simple and simply-connected and let π be a cuspidal,
cohomological and tempered automorphic representation of G(A). Then π contributes to the cohomology
of the locally symmetric space Y (K) for G, where K ⊂ G(A∞) is a neat compact open subgroup such
that πK 6= 0. If we let T be the Hecke algebra of level K and χ : T→ C be the character associated to π
(taking operators to their eigenvalues on π) then we have seen that

H∗(Y (K),C)χ = 0 if i 6∈ [q0, q0 + l0]

and

dimCH
q0+i(Y (K),C)χ =

(
l0
i

)
Hq0(Y (K),C)χ.

Venkatesh then conjectures that this should be explained by a ’natural’ action of an exterior algebra on
a vector space of dimension l0 (and much more). In the Hecke track we defined a derived Hecke algebra
H which acts by degree increasing endomorphisms on H∗(Y (K)),Zp) for primes p. However, we cannot
prove much about the action without using the existence of sufficiently nice Galois representations (c.f.
the section of assumptions). Let m be the maximal ideal of the Hecke algebra T associated to the mod p
Galois representation ρ associated to π, then we can prove that the action of Hm makes

H∗(Y (K),Zp)m

into a free module generated in degree q0 (the fact that we can prove this integrally should be an artefact
of the our simplifying assumptions). Under these same assumptions we proved that

Hm ≈
∗∧
V

where

V = H1
f (Z[ 1S ],Ad ρO)
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is a Bloch-Kato Selmer group, which is conjecturally of dimension l0 (this is not quite right, see the
discussion after Proposition 8.6 in the newest version of [Ven16]). Meanwhile in the Galois track we
introduced a derived deformation ring RS and we showed last week that it (to be precise its associated
graded ring) also acts on

H∗(Y (K),Zp)m,

by degree decreasing endomorphisms. We did this by identifying π∗RS with

TorS∞∗ (R∞,Zp)

which acts on H∗(Y (K),Zp)m. Here the rings R∞, S∞ are outputs of the Calegari-Geraghty method and
depend on the choices made, which means that we cannot prove that the action of π∗RS is canonical.
Now we note that

V ∼=
(
TorS∞∗ (R∞,Zp)

)∗
and so we get an isomorphism

π∗RS ∼=
∗∧
V ∗. (1)

The goal of today’s talk is to show that this isomorphism is canonical, i.e., does not depend on the choice
of Taylor-Wiles data. We will achieve this by defining a canonical map

π1RS → V ∗

and showing that it agrees with (1) in degree one. This then shows that the action of π∗RS on
H∗(Y (K),Zp)m is canonical and ”dual” to the action of Hm.

2 Notation and patching

3 A canonical map

In this section we will describe a canonical map

π1RS → V ∗

which we will later compare to the non-canonical isomorphism coming from patching. We start by
discussing a slightly generalised theory of tangent complexes. Just as with complete local Noetherian
rings R over W (k) it can be useful to consider tangent spaces at points R → A for A some Artinian
quotient of W (k), it will be useful for us to discuss A-valued tangent complex of deformation functor.
Now let R be a pro object of sArtk and fix a point

φ : π0R → A,

then there is a good theory of tangent complexes tφ relative to φ. In particular we should have that

π−it
A
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is given by homotopy classes of maps

R → A⊕A[i]

inducing φ on π0 (here we consider A as a simplicial artin ring). We will be most interesting in this theory
when A = Wn the length n Witt vectors of k in which case we will write

tnR.

I completely made up all this notation by the way, but it will save us a lot of space later (I will refrain
from writing π−itn as tin).

Lemma 1 (Lemma 15.1 in [GV18]). Let RS be the crystalline derived deformation ring. Fix a lift
ρn : GQ,S → G(Wn), classified by a map φ : π0RStoWn. Then the set of homotopy classes of maps

RS →Wn ⊕Wn[1]

which lift φ is in bijection with

H2
f (Ad ρn).

Proof. When A = k and M = k then the set of homotopy classes of maps is just π−1(tRS) which we
have identified with H2

f (Ad ρ). The proof in our case is exactly the same, given a good theory of tangent
complexes tn as above.

The second bit of homotopy theory that we will need is that there is a natural map

π−itnR → hom(πiR,Wn)

which is given by taking the map

R →Wn ⊕Wn[1]

and evaluating it on loops in R. To be precise the map

π0R →Wn

is fixed and then a homotopy class of maps

R →Wn ⊕Wn[1]

gives a map from the 1-simplices of R to Wn, which induces a map π1R → Wn. Combining this with
Lemma ?? we get a natural map

H2
f (Ad ρn)→ hom(π1R,Wn)

which induces (in the limit over n) a map

V → hom(π1R,W ).
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4 The reciprocity law revisited

In this section we will recall some things from section 8 of [Ven16]. In particular, we will review the
construction of the isomorphism

tRn/tSn
∼= V/pn

because we need to compare it with the isomorphism π∗RS =
∧∗ V ∗ later. Let Qn by a collection of

Taylor-Wiles primes of level n and let v ∈ Qn, then we define

Tv := A(Fq)/pn, Tn :=
∏
q∈Qn

Tq

where A is a maximal torus of G. Then there are isomorphisms (the first comes from section 6.4 and the
second holds by definition)

tSn
∼= Ext1Sn

(Z/pn,Z/pn) ∼= H1(Tn,Z/pn).

We also get an isomorphism, which depends on the choice of strongly regular element, (this is basically
an identification of Sn with the framed deformation ring of the Ad ρ into the torus)

tSn
∼=
⊕
q∈Qn

H1(Qq,Ad ρn)

H1
ur(Qq,Ad ρn)

which we will use to describe a canonical surjection

ψ : tSn � V/pn

with kernel tRn . Consider the following diagram

tRn tSn tSn/tRn

H1
f (Z[1/SQn],Ad ρn)

⊕
q∈Qn

H1(Qq ,Ad ρn)
H1

ur(Qq ,Ad ρn)
tSn/tRn

∼= ∼=

φ

where φ is the restriction map in Galois cohomology, the first vertical isomorphism is just the computation
of the tangent space to a deformation ring and the bottom-right horizontal map is the induced one. This
gives us a pairing

H1
f (Z[1/S],Ad ρ∗n(1))× tRn/tSn → Z/pn (2)

by

(α, (βv)v∈Qn) 7→
∑
v

(αv, βv)v.

The local pairing (αv, βv)v is just the cup product pairing

H1(Qv,Ad ρ∗n(1))×H1(Qv,Ad ρ)→ H2(µpn) = Z/pn.
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Since the classes αv are unramified, it means they pair trivially with

H1
ur(Qv,Ad ρn),

so the pairing (2) is well defined. Using the condition that the v ∈ Qn are Taylor-Wiles primes Venkatesh
then proves that the pairing (2) is perfect which gives us an isomorphism

tRn/tSn
∼= V/pn,

using the fact that V is torsion-free. The goal of the next section is to show that the isomorphism

π∗RS ∼= TorS∞∗ (R∞,W ) ∼= (tS∞/tR∞)∗ ∼=
∗∧
V ∗

is induced by the canonical map π1RS → V ∗. Here the last identification comes from the maps

tRn/tSn → V/pn

described above.

5 Comparison and conclusion

We will work to identify the dual of the map constructed in Section 3. As always, we will work mod pm

and at Taylor-Wiles level n, with n� m. There is a natural map

π0( lifts to RS →Wm ⊕Wm[1])→ hom(π1RS ,Wm)

and Lemma 1 shows that the left hand side is naturally identified with

H2
f (Z[1/S],Ad ρm),

which is just a mod pn version of the standard tangent complex computation. Now consider the maps

RS → Rn⊗S◦nWn ← R∞⊗S◦∞W

from which we construct the following diagram

π0

(
lifts to R∞⊗S◦∞W →Wm ⊕Wm[1]

)
hom(R∞⊗S◦∞W,Wm)

π0

(
lifts to Rn⊗S◦nWn →Wm ⊕Wm[1]

)
hom(π1RSRn⊗S◦nWn),Wm)

π0 ( lifts to RS →Wm ⊕Wm[1]) hom(π1RS ,Wm).

We have already identified the bottom left space with H2
f (Z[1/S],Ad ρm) and we are going to identify the

other two spaces in a similar way. For this we have to compute with the mod pm tangent complex of the
rather terrifying looking rings

R∞⊗S◦∞W,Rn⊗S◦nWn. (3)
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Fortunately there is a ”Mayer-Vietoris sequence” in the homology groups of (mod pm) tangent complexes
associated to derived tensor products

D = A⊗BC

which looks like

· · · → π−ntD → π−ntA⊕ tC → π−ntB → · · ·

We are interested in computing π−1 of the tangent complexes of the rings in (3) and the relevant parts of
the long exact sequences look like (recall that W and Wn have trivial tangent spaces)

· · · tRn ⊗Wm → tSn ⊗Wm → π−1

(
t
(
Rn⊗S◦nWn

))
→ · · ·

and

· · · tR∞ ⊗Wm → tS∞ → π−1

(
t
(
R∞⊗S◦∞W

))
→ · · ·

Putting all of this together we get the following diagram

(tS∞/tR∞)⊗Wm hom(π1(R∞⊗S◦∞W ),Wm)

(tRn/tSn)⊗Wm hom(π1(Rn⊗S◦nWn),Wm)

H2
f (Z[1/S],Ad ρm) hom(π1RS ,Wm).

∼=

h

θ

f

g

We note that the top vertical map is just the mod pm reduction of the dual of the isomorphism

(tS∞/tR∞)∗ ∼= TorS∞1 (R∞,W ).

After passing to the inverse limit we get isomorphisms

(tS∞/tR∞)⊗Wm hom(π1(R∞⊗S◦∞W ),Wm)

hom(π1(RS),Wm) H2
f (Z[1/S],Ad ρm)

∼=

F G

and we would like to show that the induced isomorphism G agrees with ψ. This means we have to identify
θ with the map φ from the previous section

5.1 Conclusion

The action of V on H∗(Y (K),Zp)m, defined via the Taylor-Wiles method in section 8 of [Ven16], does
not depend on the choices of Taylor-Wiles data. This means that the action of π∗RS on the same space,
defined in section 13 of [GV18], does not depend on any choices either.
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