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We want to prove an R = T theorem, where R is a Galois deformation ring and T is a Hecke-algebra. The
ring R will be a deformation ring which parametrizes lifts of ρ that should should arise from some space of
automorphic forms S (which essentially means the lifts are ’geometric’). The space of automorphic forms
S is acted on by a Hecke algebra T. If we can prove an R = T theorem then such a lift ρ : Gal(F/F )→
Gln(O) gives rise to T→ O which should correspond to an eigenform f ∈ S.

1 R

Let F be a totally real field of degree d = [F : Q], let p be an odd prime unramified in F and let

GF,ΣQ = Gal(FΣQ/F )

where FΣQ ⊂ F is the maximal unramified outside of ΣQ extension of F inside F . Let K/Qp be a field of
coefficients with ring of integers O and residue field k. Consider

ρ : GF,ΣQ → Gl2(k)

and assume that:

• The determinant of ρ is the inverse of the cyclotomic character ε.

• The representation ρ is unramified outside places v | p.

• The representation ρ
∣∣
GF (ζp)

is absolutely irreducible.

• The representation ρ
∣∣
GFv

is finite flat for all v | p (here GFv is the absolute Galois group of the

completion Fv of F at v). Finite flat means that there is a finite flat group scheme G/OFv such that

ε⊗ ρ
∣∣
GFv
∼ G(Fv).

This condition is satisfied if for example ρ
∣∣
GFv

is of the form(
1 ?
0 ε−1

)
split by Fv(µp, p

√
u1, · · · p

√
uk) for some ui ∈ O×F,v.
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Define Rρ,Q as in Misja’s talk parametrizing deformations ρ : GF,ΣQ → Gl2(A) satisfying:

• The determinant det ρ = ε−1.

• The restriction ρ
∣∣
GFv

is finite flat for all v | p, which means that ρ mod mn
A is finite flat in the

previous sense, for all n.

• The representation ρ is unramified outside ΣQ.

2 T

Let G = ResF/Q Gl2/F (or more generally consider multiplicative group associated to a quaternion algebra
D over F ramified precisely at 2m Archimedean primes and no finite primes, in which case replace d by
d′ := d− 2m below). Consider the associated symmetric space

Y (KQ) = G(Q) \X ×G(Af )/KQ =
∐
i

Γi \X

where X = (H±)d, H± is the disjoint union of the upper and lower half plane and where KQ is given by∏
v 6∈Q

Gl2(OFv)×
∏
v∈Q

Kv

where Kv is to be described later. (Actually we need to fix some auxiliary level away from Q to make
sure KQ is neat or equivalently that YKQ is smooth and that certain coverings will be étale.) Then
H i(Y (KQ),O) has a natural action of Hecke operators Tv for all places v 6∈ Q and operators Uv for v ∈ Q.
Let TQ be the O-subalgebra of

EndO(Hd(Y (KQ),O)

generated by the operators Tv, Uv. There is a Hecke-equivariant map

S(2,··· ,2)(KQ)→ Hd
cusp(YKQ ,C) ⊂ Hd(YKQ ,C)

where S(2,··· ,2)(KQ) is the space of parallel weight 2 Hilbert modular cuspforms of level KQ. So if f ∈ SQ
is an eigenform for the Hecke operators with eigenvalues in Of ⊂ C (and assume Of ⊂ O which can be
achieved by enlarging O), then we get a map

TQ → O
Tv 7→ av

where av is the Tv eigenvalue of f .

3 RQ → TQ

We start with a result due to Carayol and Taylor:
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Theorem 1. For f as above there is an associated Galois representation

ρf : GF,ΣQ → Gl2(O)

such that that for all v 6∈ ΣQ that characteristic polynomial of ρf (Frobv) is

X2 − avX + NmF/Q v.

Moreover the representation ρf
∣∣
GFv

is finite flat for all v | p and the Gl2(K) valued representation is

irreducible.

Assume that ρ = ρf for some f as above (in fact, then there is such an f with Q = ∅ by level lowering
results of Jarvis, Rajaei, Fujiwara, Gee). Then for any such f we get a diagram

Rρ,Q O k

TQ

such that Tv 7→ av 7→ Tr(ρ(Frobv). This map does not depend on f and gives us a kernel mQ ⊂ TQ.
Using the fact that ρ is irreducible be know by Dimitrov (but it is easy if d− 2m = 0, 1) that

H i(Y (KQ),O)mQ =

{
0 if i 6= q
Hd

cusp(Y (KQ),O)mQ if i = d

and moreover that this is torsionfree. But the Hecke algebra TQ,mQ acts faithfully on Hd(Y (KQ),O)mQ ,
so in fact every map

TQ,mQ → O

comes from f as above so we get a commutative diagram

Rρ,Q
∏
f O,

TQ,mQ

(using that TQ,mQ →
∏
f O is injective and Rρ,Q is generated by traces of images under the universal

deformation).

4 Taylor-Wiles primes

Suppose that v ∈ Q satisfy Nm(v) = 1 mod p and that ρ(Frobv) has distinct eigenvalues in k. Then

ρuniv
Q : GF,ΣQ → Gl2(Rρ,Q)

has the property that

ρuniv
Q |GFv ∼

(
χ 0
0 ε−1χ−1

)
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where (here IF,v ⊂ GFv is the inertia group)

χ
∣∣
IFv

factors as a character (the first map is local class field theory).

IFv → O×F,v → k×v → ∆v.

Where ∆v is the maximal pro-p quotient of k∗v , which is nontrivial because #k∗v is divisible by p. All in
all χ will determine a character ∆v → R×ρ,Q leading to a ring homomorphism

O[∆Q]→ Rρ,Q

where

∆Q =
∏
v∈Q

∆v.

Recall that we haven’t defined the groups Kv yet (for v ∈ Q). We define

Kv,0 =

(
∗ ∗
0 ∗

)
mod v

containing

Kv =

{(
a ∗
0 d

)
mod v

∣∣∣∣ ad−1 7→ 1 ∈ ∆v

}
.

Note that we trivially get Kv/Kv,0 = ∆v for all v ∈ Q. So now we get a ∆v torsor

Y (KQ)

Y (KQ,0)

inducing a map on cohomology

MQ := Hd(Y (KQ),O)mQ → Hd(Y (K0,Q,O)mQ .

This gives two actions of ∆Q on the space of modular forms MQ. One defined geometrically as above and
one via

O[∆Q]→ Rρ,Q → TQ,mQ .

The fact that the two actions coincide is local-global compatibility of Langlands correspondences at
v ∈ Q. Furthermore MQ is free over O[∆Q] (this is a general fact about Galois covers and proved using
the Hochschild-Serre spectral sequence).

4



5 Galois cohomology

Recall that Runiv
ρ,Q is generated by

dimkH
1(GF,ΣQ ,Ad ρ)

generators as an O-algebra. Once we start adding conditions we will need less generators:

• Fixing determinant det ρ = ε−1 means we replace Ad ρ with Ad0 ρ (space of trace zero endomor-
phisms).

• The finite flat (think crystalline) condition tells us we get classes with image in a certain subspace

Lv ⊂ H1(GF,v,Ad0 ρ)

of the local Galois cohomology groups.

Let us denote this subspace by H1
Q and its dimension by rQ. Local Tate duality tells us that

H i(GFv ,Ad0 ρ) ∼= H2−i(GFv ,Ad0 ρ(1))∨.

For i = 1 the former space contains Lv and we let L⊥v be its orthogonal complement, so we get Selmer
groups (global classes that map to Lv or L⊥v for all v)

H1
Q, H

1
Q⊥ .

For v ∈ Q we have that Lv = H1 and L⊥v = 0, and in this case dimH0 = 1 and dimH1 = 2 by the local
Euler characteristic formula

dimH1 − (dimH0 + dimH2) =

{
0 if v - p
j · 3 if v | p

where j = [Fv : Qp] and 3 = dim Ad0. For v|p, we have dimLv = [Fv : Qp] + dimH0. (This is harder and
uses that p is unramified in F .) Now global duality and Euler characteristic computations gives us the
formula of Wiles

#H1
Q/#H

1
Q⊥ =

#H0(GF ,Ad0 ρ)

#H0(Gf ,Ad0 ρ(1))
·
∏
v

#Lv

#H0(GF,v,Ad0 ρ)
.

The first fraction on the right hand side is zero by our irreducibility assumption on ρ. Putting everything
together we get

dimH1
Q − dimH1

Q⊥ =
∑
v|∞

(−1) +
∑
v

[Fv : Qp] + #Q.

The ’numerical coincidence’ occurs since we are working with Gl2 and since F is totally real we see that∑
v|∞

(−1) =
∑
v|p

[Fv : Qp]
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since they are both just equal to the the degree of F over Q. Let r = dimH1
∅ and use the Chebotarev

density theorem to choose for each n a set of Taylor-Wiles primes Qn = {v1, · · · , vr} such that Nm(v) ≡ 1
mod pn and

H1
∅⊥(GF ,Ad0 ρ)→

⊕
v∈Q

H1(GFv ,Ad0 ρ(1))

is an isomorphism. The idea for the proof is to realize this in terms of conditions on Frobv ∈ Gal(Ln/F )
where Ln = L(ζpn) and L is the splitting field of Ad0 ρ. Then

H1
Q⊥
n

= 0

and so

#H1
Qn = #H1

∅

and so

Rρ,Qn

is generated by r = #Qn elements.

6 Patching

Now for each n ≥ 1 we have a map

O[∆Qn ]→ Rρ,Qn → TQn → End(MQn)

which fits into a diagram as follows (taking compatible presentations of both Rρ,Qn and O[∆Qn ]):

O[∆Qn ] Rρ,Qn TQn End(MQn)

OJS1, · · · , SrK OJT1, · · · , TrK∃

with MQn/(S1, . . . , Sr) = M∅.

Now we essentially want to take the limit over n. Since there are only finitely many such data mod mn

there is a compatible subsequence and we can take limits to obtain

OJS1, · · · , SrK→ OJT1, · · · , TrK→ R∞ � T∞ � End(M∞)

with M∞/(S1, . . . , Sr) = M∅. Moreover we know that M∞ is free over the first ring (lets call it A and
lets call the second ring B), we want to show that M∞ is also free over B: The Auslander-Buchsbaum
formula tells us that

depthBM∞ + proj dimBM∞ = r + 1
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and since S1, · · · , Sr, $O is a regular sequence we know that

depthBM∞ = r + 1.

Hence the projective dimension is zero, i.e., M∞ is free over B. This means that M∞ is a faithful B-module
and so the map from B to EndM∞ is injective. This tells us immediately that

B ∼= R∞ ∼= T∞

over which M∞ is free. Going back down this gives R = T.

Remark 1. You don’t actually need to patch. See the paper by Brochard (Compositio, 2017) which proves
a commutative result that implies you only need Q1.
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