The Taylor-Wiles method (the unobstructed case)

Fred Diamond

Notes by Pol van Hoften (checked by FD)

January 30, 2019

We want to prove an $R = \mathbb{T}$ theorem, where R is a Galois deformation ring and \mathbb{T} is a Hecke-algebra. The ring R will be a deformation ring which parametrizes lifts of $\overline{\rho}$ that should should arise from some space of automorphic forms S (which essentially means the lifts are 'geometric'). The space of automorphic forms S is acted on by a Hecke algebra \mathbb{T} . If we can prove an $R = \mathbb{T}$ theorem then such a lift $\rho : \operatorname{Gal}(\overline{F}/F) \to$ $\operatorname{Gl}_n(\mathcal{O})$ gives rise to $\mathbb{T} \to \mathcal{O}$ which should correspond to an eigenform $f \in S$.

$\mathbf{1} \quad R$

Let F be a totally real field of degree $d = [F : \mathbb{Q}]$, let p be an odd prime unramified in F and let

$$G_{F,\Sigma_Q} = \operatorname{Gal}(F_{\Sigma_Q}/F)$$

where $F_{\Sigma_Q} \subset \overline{F}$ is the maximal unramified outside of Σ_Q extension of F inside \overline{F} . Let K/\mathbb{Q}_p be a field of coefficients with ring of integers \mathcal{O} and residue field k. Consider

$$\overline{\rho}: G_{F,\Sigma_O} \to \mathrm{Gl}_2(k)$$

and assume that:

- The determinant of $\overline{\rho}$ is the inverse of the cyclotomic character $\overline{\epsilon}$.
- The representation $\overline{\rho}$ is unramified outside places $v \mid p$.
- The representation $\overline{\rho}|_{G_{F(\zeta_n)}}$ is absolutely irreducible.
- The representation $\overline{\rho}|_{G_{F_v}}$ is finite flat for all $v \mid p$ (here G_{F_v} is the absolute Galois group of the completion F_v of F at v). Finite flat means that there is a finite flat group scheme $\mathcal{G}/\mathcal{O}_{F_v}$ such that

$$\overline{\epsilon} \otimes \overline{\rho} \big|_{G_{F_v}} \sim \mathcal{G}(\overline{F_v}).$$

This condition is satisfied if for example $\overline{\rho}|_{G_{F_{r}}}$ is of the form

$$\begin{pmatrix} 1 & \star \\ 0 & \overline{\epsilon}^{-1} \end{pmatrix}$$

split by $F_v(\mu_p, \sqrt[p]{u_1}, \cdots, \sqrt[p]{u_k})$ for some $u_i \in \mathcal{O}_{F,v}^{\times}$.

Define $R_{\overline{\rho},Q}$ as in Misja's talk parametrizing deformations $\rho: G_{F,\Sigma_{Q}} \to \operatorname{Gl}_{2}(A)$ satisfying:

- The determinant det $\rho = \epsilon^{-1}$.
- The restriction $\rho|_{G_{F_v}}$ is finite flat for all $v \mid p$, which means that $\rho \mod \mathfrak{m}_A^n$ is finite flat in the previous sense, for all n.
- The representation ρ is unramified outside Σ_Q .

$2 \quad \mathbb{T}$

Let $G = \operatorname{Res}_{F/\mathbb{Q}} \operatorname{Gl}_{2/F}$ (or more generally consider multiplicative group associated to a quaternion algebra D over F ramified precisely at 2m Archimedean primes and no finite primes, in which case replace d by d' := d - 2m below). Consider the associated symmetric space

$$Y(K_Q) = G(\mathbb{Q}) \setminus X \times G(\mathbb{A}_f) / K_Q = \prod_i \Gamma_i \setminus X$$

where $X = (\mathbb{H}^{\pm})^d$, \mathbb{H}^{\pm} is the disjoint union of the upper and lower half plane and where K_Q is given by

$$\prod_{v \notin Q} \operatorname{Gl}_2(\mathcal{O}_{F_v}) \times \prod_{v \in Q} K_v$$

where K_v is to be described later. (Actually we need to fix some auxiliary level away from Q to make sure K_Q is neat or equivalently that Y_{K_Q} is smooth and that certain coverings will be étale.) Then $H^i(Y(K_Q), \mathcal{O})$ has a natural action of Hecke operators T_v for all places $v \notin Q$ and operators U_v for $v \in Q$. Let \mathbb{T}_Q be the \mathcal{O} -subalgebra of

$$\operatorname{End}_{\mathcal{O}}(H^d(Y(K_Q),\mathcal{O}))$$

generated by the operators T_v, U_v . There is a Hecke-equivariant map

$$S_{(2,\dots,2)}(K_Q) \to H^d_{\operatorname{cusp}}(Y_{K_Q},\mathbb{C}) \subset H^d(Y_{K_Q},\mathbb{C})$$

where $S_{(2,\dots,2)}(K_Q)$ is the space of parallel weight 2 Hilbert modular cuspforms of level K_Q . So if $f \in S_Q$ is an eigenform for the Hecke operators with eigenvalues in $\mathcal{O}_f \subset \mathbb{C}$ (and assume $\mathcal{O}_f \subset \mathcal{O}$ which can be achieved by enlarging \mathcal{O}), then we get a map

$$\mathbb{T}_Q \to \mathcal{O} \\
T_v \mapsto a_v$$

where a_v is the T_v eigenvalue of f.

3 $R_Q \to \mathbb{T}_Q$

We start with a result due to Carayol and Taylor:

Theorem 1. For f as above there is an associated Galois representation

$$\rho_f: G_{F,\Sigma_O} \to \operatorname{Gl}_2(\mathcal{O})$$

such that for all $v \notin \Sigma_Q$ that characteristic polynomial of $\rho_f(\operatorname{Frob}_v)$ is

$$X^2 - a_v X + \operatorname{Nm}_{F/\mathbb{Q}} v$$

Moreover the representation $\rho_f|_{G_{F_v}}$ is finite flat for all $v \mid p$ and the $Gl_2(K)$ valued representation is irreducible.

Assume that $\overline{\rho} = \overline{\rho_f}$ for some f as above (in fact, then there is such an f with $Q = \emptyset$ by level lowering results of Jarvis, Rajaei, Fujiwara, Gee). Then for any such f we get a diagram

such that $T_v \mapsto a_v \mapsto \operatorname{Tr}(\overline{\rho}(\operatorname{Frob}_v))$. This map does not depend on f and gives us a kernel $\mathfrak{m}_Q \subset \mathbb{T}_Q$. Using the fact that $\overline{\rho}$ is irreducible be know by Dimitrov (but it is easy if d - 2m = 0, 1) that

$$H^{i}(Y(K_{Q}), \mathcal{O})_{\mathfrak{m}_{Q}} = \begin{cases} 0 & \text{if } i \neq q \\ H^{d}_{\text{cusp}}(Y(K_{Q}), \mathcal{O})_{\mathfrak{m}_{Q}} & \text{if } i = d \end{cases}$$

and moreover that this is torsionfree. But the Hecke algebra $\mathbb{T}_{Q,\mathfrak{m}_Q}$ acts faithfully on $H^d(Y(K_Q), \mathcal{O})_{\mathfrak{m}_Q}$, so in fact every map

$$\mathbb{T}_{Q,\mathfrak{m}_{O}} \to \mathcal{O}$$

comes from f as above so we get a commutative diagram

$$\begin{array}{ccc} R_{\overline{\rho},Q} & \longrightarrow & \prod_{f} \mathcal{O}, \\ & & & \\ & & & \\ & & & \\ \mathbb{T}_{Q,\mathfrak{m}_Q} \end{array}$$

(using that $\mathbb{T}_{Q,\mathfrak{m}_Q} \to \prod_f \mathcal{O}$ is injective and $R_{\overline{\rho},Q}$ is generated by traces of images under the universal deformation).

4 Taylor-Wiles primes

Suppose that $v \in Q$ satisfy $Nm(v) = 1 \mod p$ and that $\overline{\rho}(Frob_v)$ has distinct eigenvalues in k. Then

$$\rho_Q^{\text{univ}}: G_{F, \Sigma_Q} \to \text{Gl}_2(R_{\overline{\rho}, Q})$$

has the property that

$$ho_Q^{\mathrm{univ}}|_{G_{F_v}} \sim \begin{pmatrix} \chi & 0 \\ 0 & \epsilon^{-1}\chi^{-1} \end{pmatrix}$$

where (here $I_{F,v} \subset G_{F_v}$ is the inertia group)

 $\chi |_{I_{F_v}}$

factors as a character (the first map is local class field theory).

$$I_{F_v} \to \mathcal{O}_{F,v}^{\times} \to k_v^{\times} \to \Delta_v.$$

Where Δ_v is the maximal pro-*p* quotient of k_v^* , which is nontrivial because $\#k_v^*$ is divisible by *p*. All in all χ will determine a character $\Delta_v \to R_{\overline{\rho},Q}^{\times}$ leading to a ring homomorphism

$$\mathcal{O}[\Delta_Q] \to R_{\overline{\rho},Q}$$

where

$$\Delta_Q = \prod_{v \in Q} \Delta_v.$$

Recall that we haven't defined the groups K_v yet (for $v \in Q$). We define

$$K_{v,0} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod v$$

containing

$$K_v = \left\{ \begin{pmatrix} a & * \\ 0 & d \end{pmatrix} \mod v \ \middle| \ ad^{-1} \mapsto 1 \in \Delta_v \right\}.$$

Note that we trivially get $K_v/K_{v,0} = \Delta_v$ for all $v \in Q$. So now we get a Δ_v torsor

$$Y(K_Q) \\ \downarrow \\ Y(K_{Q,0})$$

inducing a map on cohomology

$$M_Q := H^d(Y(K_Q), \mathcal{O})_{\mathfrak{m}_Q} \to H^d(Y(K_{0,Q}, \mathcal{O})_{\mathfrak{m}_Q})$$

This gives two actions of Δ_Q on the space of modular forms M_Q . One defined geometrically as above and one via

$$\mathcal{O}[\Delta_Q] \to R_{\overline{\rho},Q} \to \mathbb{T}_{Q,\mathfrak{m}_Q}.$$

The fact that the two actions coincide is local-global compatibility of Langlands correspondences at $v \in Q$. Furthermore M_Q is *free* over $\mathcal{O}[\Delta_Q]$ (this is a general fact about Galois covers and proved using the Hochschild-Serre spectral sequence).

5 Galois cohomology

Recall that $R_{\overline{\rho},Q}^{\text{univ}}$ is generated by

$$\dim_k H^1(G_{F,\Sigma_O}, \operatorname{Ad} \overline{\rho})$$

generators as an \mathcal{O} -algebra. Once we start adding conditions we will need less generators:

- Fixing determinant det $\rho = \epsilon^{-1}$ means we replace $\operatorname{Ad} \overline{\rho}$ with $\operatorname{Ad}^{0} \overline{\rho}$ (space of trace zero endomorphisms).
- The finite flat (think crystalline) condition tells us we get classes with image in a certain subspace

$$L_v \subset H^1(G_{F,v}, \operatorname{Ad}^0 \overline{\rho})$$

of the local Galois cohomology groups.

Let us denote this subspace by H_Q^1 and its dimension by r_Q . Local Tate duality tells us that

$$H^{i}(G_{F_{v}}, \operatorname{Ad}^{0}\overline{\rho}) \cong H^{2-i}(G_{F_{v}}, \operatorname{Ad}^{0}\overline{\rho}(1))^{\vee}$$

For i = 1 the former space contains L_v and we let L_v^{\perp} be its orthogonal complement, so we get Selmer groups (global classes that map to L_v or L_v^{\perp} for all v)

$$H^1_Q, H^1_{Q^\perp}$$

For $v \in Q$ we have that $L_v = H^1$ and $L_v^{\perp} = 0$, and in this case dim $H^0 = 1$ and dim $H^1 = 2$ by the local Euler characteristic formula

$$\dim H^1 - (\dim H^0 + \dim H^2) = \begin{cases} 0 & \text{if } v \nmid p \\ j \cdot 3 & \text{if } v \mid p \end{cases}$$

where $j = [F_v : \mathbb{Q}_p]$ and $3 = \dim \operatorname{Ad}^0$. For v|p, we have $\dim L_v = [F_v : \mathbb{Q}_p] + \dim H^0$. (This is harder and uses that p is unramified in F.) Now global duality and Euler characteristic computations gives us the formula of Wiles

$$#H_Q^1/#H_{Q^\perp}^1 = \frac{#H^0(G_F, \operatorname{Ad}^0 \overline{\rho})}{#H^0(G_f, \operatorname{Ad}^0 \overline{\rho}(1))} \cdot \prod_v \frac{#L_v}{#H^0(G_{F,v}, \operatorname{Ad}^0 \overline{\rho})}$$

The first fraction on the right hand side is zero by our irreducibility assumption on $\overline{\rho}$. Putting everything together we get

$$\dim H^1_Q - \dim H^1_{Q^{\perp}} = \sum_{v \mid \infty} (-1) + \sum_v [F_v : \mathbb{Q}_p] + \#Q.$$

The 'numerical coincidence' occurs since we are working with Gl_2 and since F is totally real we see that

$$\sum_{v|\infty} (-1) = \sum_{v|p} [F_v : \mathbb{Q}_p]$$

since they are both just equal to the the degree of F over \mathbb{Q} . Let $r = \dim H^1_{\emptyset}$ and use the Chebotarev density theorem to choose for each n a set of Taylor-Wiles primes $Q_n = \{v_1, \dots, v_r\}$ such that $\operatorname{Nm}(v) \equiv 1 \mod p^n$ and

$$H^1_{\emptyset^{\perp}}(G_F, \operatorname{Ad}^0 \overline{\rho}) \to \bigoplus_{v \in Q} H^1(G_{F_v}, \operatorname{Ad}^0 \overline{\rho}(1))$$

is an isomorphism. The idea for the proof is to realize this in terms of conditions on $\operatorname{Frob}_v \in \operatorname{Gal}(L_n/F)$ where $L_n = L(\zeta_{p^n})$ and L is the splitting field of $\operatorname{Ad}^0 \overline{\rho}$. Then

$$H^1_{O^\perp} = 0$$

and so

$$#H_{Q_n}^1 = #H_{\emptyset}^1$$

and so

 $R_{\overline{\rho},Q_n}$

is generated by $r = \#Q_n$ elements.

6 Patching

Now for each $n \ge 1$ we have a map

$$\mathcal{O}[\Delta_{Q_n}] \to R_{\overline{\rho},Q_n} \to \mathbb{T}_{Q_n} \to \operatorname{End}(M_{Q_n})$$

which fits into a diagram as follows (taking compatible presentations of both $R_{\overline{\rho},Q_n}$ and $\mathcal{O}[\Delta_{Q_n}]$):

with $M_{Q_n}/(S_1,\ldots,S_r) = M_{\emptyset}$.

Now we essentially want to take the limit over n. Since there are only finitely many such data mod \mathfrak{m}^n there is a compatible subsequence and we can take limits to obtain

$$\mathcal{O}[\![S_1,\cdots,S_r]\!] \to \mathcal{O}[\![T_1,\cdots,T_r]\!] \to R_\infty \twoheadrightarrow \mathbb{T}_\infty \twoheadrightarrow \mathrm{End}(M_\infty)$$

with $M_{\infty}/(S_1, \ldots, S_r) = M_{\emptyset}$. Moreover we know that M_{∞} is free over the first ring (lets call it A and lets call the second ring B), we want to show that M_{∞} is also free over B: The Auslander-Buchsbaum formula tells us that

$$\operatorname{depth}_B M_{\infty} + \operatorname{proj} \dim_B M_{\infty} = r + 1$$

and since $S_1, \dots, S_r, \varpi_{\mathcal{O}}$ is a regular sequence we know that

$$\operatorname{depth}_B M_{\infty} = r + 1.$$

Hence the projective dimension is zero, i.e., M_{∞} is free over B. This means that M_{∞} is a faithful B-module and so the map from B to $\operatorname{End}_{M_{\infty}}$ is injective. This tells us immediately that

$$B \cong R_{\infty} \cong \mathbb{T}_{\infty}$$

over which M_{∞} is free. Going back down this gives $R = \mathbb{T}$.

Remark 1. You don't actually need to patch. See the paper by Brochard (Compositio, 2017) which proves a commutative result that implies you only need Q_1 .