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Introduction

These notes were produced while preparing a talk for the LNTSG on the derived structures in the Langlands
programme. They are not meant to be in anyway comprehensive. They should serve as a quick survey of
basic definitions and results. For a more extensive discussion we refer the reader to [GJ09GJ09].

1 Basic definitions

Definition 1.1 (Simplex category). The simplex category, denoted by ∆, is the category with

• the totally ordered sets (tosets)

rns “ t0 ă 1 ă 2 ă ¨ ¨ ¨ ă nu, @n ě 0,

as objects

• and the order preserving maps, that is, maps of posets, as morphisms.

Remark 1.2. Notice that the tosets rns, as all posets, can be considered categories themselves. In this sense,
∆ can be thought of as a subcategory of Cat, the category of all small categories. This point of view can
sometimes be helpful, see Example 2.52.5 below.

Lemma 1.3 (Combinatorial lemma). Any morphism f : rns Ñ rms in ∆ can be written as the composition of maps
of two kinds:

• the coface maps δi : rn´ 1s Ñ rns, “missing i”, 0 ď i ď n,
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• the codegeneracy maps σi : rns Ñ rn´ 1s sending i, i` 1 to i, 0 ď i ă n.

Sketch of proof. We won’t include a full proof, but we remark that it can be obtained by enumerating the
image of the map f .

Definition 1.4 (Simplicial object). A simplicial object in a small category C is a functor ∆op
Ñ C.

Notation 1.5. We will usually write
sC “ Fctp∆op,Cq

for the category of simplicial objects in C.

Notice that giving a simplicial object C P sC is the same as giving:

1. a sequence of objects tCnuně0 in C,

2. face maps di : Cn Ñ Cn´1 and degeneracy maps si : Cn´1 Ñ Cn.

2 Important examples

We are mainly interested in simplicial sets, that is, elements of sSet.

Example 2.1 (Standard n-simplex). The standard n-simplex ∆n is the simplicial set given by

∆n “ Hom∆p¨, rnsq “ hrns : ∆op
Ñ Set.

We remark that, by Yoneda’s Lemma, for any S P sSet we have

Sn “ HomsSetp∆n, Sq.

Example 2.2 (Boundary of the n-simplex). The boundary B∆n of ∆n is the subobject of ∆n generated by the
pn´1q-simplices δk : rn´1s Ñ rns, for all k. Notice that idrns  P pB∆nqn, so the boundary is strictly contained
in ∆n.

Example 2.3 (ith Horn). The ith horn Λni of the standard simplex ∆n is the smallest subobject, that is, sub-
functor, of ∆n containing the pn´ 1q-simplices

δk P Hom∆prn´ 1s, rnsq, k ‰ i.

Notice that δi  P pΛni qn´1, so, in particular, Λni is strictly contained in B∆n, so we have the strict inclusions of
simplicial sets

Λni Ă B∆n Ă ∆n.

Example 2.4 (The singular simplicial set). Let X P Top be any topological space. The singular simplicial set
SpXq, sometimes SingpXq, is defined by setting

SpXqn :“ HomTopp|∆n|, Xq,

where |∆n| “ tpx0, x1, . . . , xnq P Rn`1 | xi ě 0,
řn
i“0 xi “ 1u is the geometric n-simplex. Any morphism

f : rns Ñ rms defines a natural map between the standard bases of Rn and Rm, which can be extended
by linearity and then restricted to |∆n| Ñ |∆m|. These give the face and degeneracy maps on SpXq by
precomposition.

Example 2.5 (Nerve of a category). The nerve NC of a small category C is the simplicial set defined by

pNCqn “ Fctprns,Cq “ HomCatprns,Cq “ hCprnsq

“ tc0 Ñ c1 Ñ ¨ ¨ ¨ Ñ cn, ci P Cu.

Face and degeneracy maps are again defined by precomposition and, if need be, can be described explicitly.
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3 Geometric realisation

We start this section with two lemmata.

Lemma 3.1. Let C,D be two categories. Suppose that C is small. If D admits small (co)limits, then so does FctpC,Dq.

Proof. We prove the statement for colimits only, but the proof in the case of limits is analogous. Let pFiqiPI be

functors indexed by I Ñ FctpC,Dq, with I small. Then
ˆ

lim
ÝÑI

Fi

˙

pCq “ lim
ÝÑI

pFipCqq P D, for all C P D.

Lemma 3.2. Let F : CÑ Set be a functor from a small category C. Consider the small category

DF “ tpC, φq | C P C, φ : hC “ HomCpC, ¨q ÝÑ F u,

with morphisms given by those C τ
ÝÑ C 1 of C such that

hC
1

F

hC

˝τ

φ1

φ

commutes. Then the natural map
lim
ÝÑ

hC ÝÑ F

is an isomorphism, the colimit on the left being indexed by DF .

Sketch of proof. Everything boils down to the fact that, by Yoneda, we have the bijection

HomphC , F q „
ÝÑ F pCq.

Therefore, whenever we are given another functor G : C ÝÑ Set that can take the place of F in the diagram
above, we immediately get maps F pCq Ñ GpCq for any C P C, naturally in C, that is, inducing F ÝÑ G
uniquely.

Remark 3.3. Lemma 3.23.2 can be described by the following slogan: gluing the C-points of F , for all C P C,
one gets F back.

Notice that by taking C “ ∆op in Lemma 3.23.2 we get that

lim
ÝÑ

∆nÑS

∆n „
ÝÑ S,

for any S P sSet.

Definition 3.4 (Geometric realisation). The geometric realisation of a simplicial set S is defined as the colimit

|S| :“ lim
ÝÑ

∆nÑS

|∆n| P Top.

This defines a functor |¨| : sSet ÝÑ Top.

Example 3.5 (or rather an observation). Since, by Yoneda again, the object prns, idrnsq is final in the index
category D∆n , we have

lim
ÝÑ

∆mÑ∆n

|∆m| “ |∆n|,

which also shows that the notation |S| for the geometric realisation is compatible with the definition of
geometric n-simplex given above.

3



Proposition 3.6 (Adjunction). We have

HomTopp|T |, Y q – HomsSetpT, SpY qq,

naturally in T P sSet, Y P Top.

Proof. It is just a formal consequence of the definitions and the properties of limits and colimits.

HomTopp|S|, Y q “ HomTopp lim
ÝÑ

∆nÑT

|∆n|, Y q

– lim
ÐÝ

∆nÑT

HomTopp|∆n|, Y q

“ lim
ÐÝ

∆nÑT

HomsSetp∆n, SpY qq

– HomsSetp lim
ÝÑ

∆nÑT

∆n, SpY qq

“ HomsSetpT, SpY qq.

Remark 3.7. One can make the description of |S| more explicit, presenting it as some quotient

|S| “
ğ

ně0
Sn ˆ |∆n|L

„
,

where the equivalence relation „ is “generated” by the identifications induced by face and degeneracy
maps. This perhaps resembles more closely the intuitive idea of the geometric realisation as a “gluing-up
of simplices”.

4 Kan fibrations

Definition 4.1 (Kan fibration). A map f : S Ñ T in sSet is called a (Kan) fibration if it satisfies the right lifting
property (RLP) described by the following commutative diagram:

Λni S

∆n T.

f
D

Remark 4.2. Recall that, according to one out of many equivalent definitions, a Serre fibration is a continuous
map f : X Ñ Y of topological spaces with the RLP given by:

|Λni | X

|∆n| Y.

f
D

So, by the adjunction 3.63.6, f : X Ñ Y is a Serre fibration if and only if Spfq : SpXq Ñ SpY q is a Kan fibration.

Notation 4.3. We will use ‚ to denote both the simplicial set ∆0 and the “one point” topological space.

Lemma 4.4. For any topological space X , the unique map SpXq Ñ ‚ “ ∆0 “ Sp‚q is a fibration.
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Proof. If, using adjunction, we work in Top, then we only need to prove that we can find the diagonal map
in the diagram

|Λni | X

|∆n| ‚,

f
D?

but the existence of such a map follows at once from the fact that |Λni | is a strong deformation retract of
|∆n|.

This leads to a definition whose importance will become clear in the discussion on simplicial homotopy.

Definition 4.5 (Kan complex). A simplicial set is called fibrant, or a Kan complex, if S Ñ ‚ is a fibration.

Remark 4.6 (Fibrations & pull-backs). Notice that, whenever we have a Cartesian diagram

F S

‚ T,

f

if f is a fibration, then F (the fibre) is fibrant, as one can verify immediately using the universal property
of the pull-back and and the RLP of fibrations. More generally, the family of Kan fibrations is closed under
pull-backs.

5 Self-enrichment

Remark 5.1. One of the implicit consequences of Lemma 3.13.1, which is worth spelling out here, is that one
can define (fibred) products of simplicial sets in a rather natural way, that is, for S, T P sSet we have

pS ˆ T qn “ Sn ˆ Tn,

with face and degeneracy maps defined componentwise.

Let S, T be two simplicial sets. We can define a simplicial object HompS, T q, called the function complex,
by setting

HompS, T qn :“ HomsSetpS ˆ∆n, T q.

Given any f : ∆m Ñ ∆n, we can define the corresponding morphism HompS, T qn Ñ HompS, T qm by pre-
composition with idˆ f : S ˆ∆m Ñ S ˆ∆n.

One interesting thing about this simplicial set is that it comes with a natural evaluation map defined by

ev : S ˆHompS, T q ÝÑ T,

psn, fnqně0 ÞÝÑ ppfnqnpsn, idrnsqqně0.

One can check that this is actually a morphism of simplicial sets and that the following holds.

Proposition 5.2 (Exponential law). Let U be another simplicial set. The function

ev˚ : HomsSetpU,HompS, T qq ÝÑ HomsSetpS ˆ U, T q,

g ÞÝÑ pS ˆ U
idˆg
ÝÑ S ˆHompS, T q ev

ÝÑ T q,

is a bijection which is natural in all of S, T and U .
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Proof. One can verify that inverse of ev˚ is defined by sending a map f : S ˆU Ñ T to f˚ : U Ñ HompS, T q
which, for any x : ∆n Ñ U , acts as

f˚pxq ÞÑ pS ˆ∆n idˆx
ÝÑ S ˆ U

f
ÝÑ T q.

We state without proof an interesting consequence of the Exponential law, which we will use later.

Lemma 5.3 ([GJ09GJ09, Cor. I.5.3]). If U Ď S and T is fibrant, then the induced map HompS, T q Ñ HompU, T q is a
fibration.

6 Simplicial homotopy

Definition 6.1 (Homotopy in sSet). Let f, g : S Ñ T be two morphisms in sSet. We say that f and g are homo-
topic if we can find a morphism h : S ˆ∆1 Ñ T that fits in the following diagram

S ˆ∆0 – S

S ˆ∆1 T

S ˆ∆0 – S.

fidˆδ1

Dh

idˆδ0
g

One denotes this relation between f and g as f „ g. Moreover, if U Ď S is a sub-simplicial set and f |U “ g|U , we
say that f and g are homotopic relative to U , denoted f „ g p relU q, if the map h described before also makes the
following diagram commute:

S ˆ∆1 S

U ˆ∆1 U,

h

ιˆid∆1

πU

α

where α “ f |U “ g|U .

Notice that, in general, being homotopic is not an equivalence relation.

Lemma 6.2. Suppose that S P sSet is fibrant. Then the simplicial homotopy of vertices ∆0 Ñ S is an equivalence
relation.

Sketch of proof. Let x, y : ∆0 Ñ S be two vertices. First notice that, rewriting the definition, x „ y if and only
if there is some γ : ∆1 Ñ S such that d1γ “ x, d0γ “ y.

We prove that „ is a symmetric relation. Suppose that x „ y and let γ be the path we just described.
Then maps

Λ2
0 ÝÑ S

are in bijection with couples of 1-simplices pγ0, γ1q of S sharing a common vertex, that is, d1γ0 “ d0γ1. The
couple ps0x, γq is one of these and since S is fibrant we can lift the corresponding morphism to a 2-simplex
f : ∆2 Ñ S such that d2f “ s0x, d1f “ γ. One can check that d0f : ∆1 Ñ S gives the homotopy relation
y „ x.

Corollary 6.3. Let T P sSet be fibrant and U Ď S be an inclusion in sSet. Then:

1. homotopy of maps S Ñ T is an equivalence relation,
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2. homotopy of maps S Ñ T p relU q is an equivalence relation.

Sketch of proof. It is enough to prove 2. To do that we point out that an homotopy of maps S Ñ T p relU q
corresponds, via the Exponential law 5.25.2, to an homotopy of vertices in the fibres of the Kan fibration
(Lemma 5.35.3)

HompS, T q ÝÑ HompU, T q.

So, to conclude, it is enough to use Remark 4.64.6 and Lemma 6.26.2.

Fix now a simplicial set S and a vertex v : ∆0 Ñ S.

Definition 6.4 (nth Homotopy group). Let πnpS, vq denote, for n ą 0, the set of the homotopy classes of maps
α : ∆n Ñ S p rel B∆n q that fit into the commutative diagram

∆n S

B∆n ‚.

α

v

We also write π0pS, vq “ t∆0 Ñ Su
L

„.

Assume for a moment that n ě 1 and let α, β : ∆n Ñ S represent two classes in πnpS, vq. A construction
similar to the one used in the proof of Lemma 6.26.2, gives us another ω : ∆n Ñ S, as a face of an pn ` 1q-
simplex in S having α, β and some degenerations of v as other faces. One can prove that this construction
gives a well defined element rωs„ P πnpS, vq which does not depend on the representatives α and β in
πnpS, vq. In short, we have a binary operation

πnpS, vq ˆ πnpS, vq
˚
ÝÑ πnpS, vq.

We conclude this section with the following fundamental result.

Theorem 6.5 ([GJ09GJ09, Thm. I.7.2]). The couple pπn, ˚q is a group for n ě 1, which is moreover abelian for n ě 2.

7 Some remarks on simplicial groups

We begin by mentioning, without proof, the following.

Lemma 7.1 (Moore, [GJ09GJ09, Lem. I.]). The underlying simplicial set of any simplicial group G is fibrant.

This, in particular, implies that for any simplicial group G, with 1 P G0 the identity, it makes sense to
consider the homotopy groups πnpG, 1q.

If A is a simplicial Abelian group, we let

pNAqn “
n´1
č

i“0
kerpdiq Ď An.

Because of the identity dn´1dn “ dn´1dn´1, the maps

pNAqn
p´1qndn
ÝÑ pNAqn´1

make pNAq‚ into a complex of Abelian groups. This defines a functor

sAb N
ÝÑ Ch`pAbq.
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Proposition 7.2 (Dold-Kan correspondence, [GJ09GJ09, Cor. III.2.3]). The functor N induces an equivalence of cate-
gories.

Given A P sAb one can also define another complex by taking

An
B
ÝÑ An´1,

with B “
řn
i“0p´1qidi. The two constructions are not unrelated and in fact we have the following.

Proposition 7.3 ([GJ09GJ09, Thm. III.2.4, 2.5]). The natural inclusion of complexes NA‚ Ñ A‚ is a chain-homotopy
equivalence, which is natural in A.

Moreover, we have natural isomorphisms

πnpA, 0q – HnpNA‚q – HnpA‚q

for any n ě 0.

Remark 7.4. Notice that the simplicial group structure of A induces an alternative group operation on
πnpA, 0q with the same identity as ˚, the vertex 0. One can prove that these two operations are naturally
compatible, hence equal (this is known as the “Eckmann-Hilton argument”). This group structure can also
be defined on π0pAq and it fits naturally in the isomorphisms described by Proposition 7.37.3 for n “ 0.
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