Notes on simplicial objects and things

Lorenzo La Porta

Contents

1	Basic definitions	1
2	Important examples	2
3	Geometric realisation	3
4	Kan fibrations	4
5	Self-enrichment	5
6	Simplicial homotopy	6
7	Some remarks on simplicial groups	7

Introduction

These notes were produced while preparing a talk for the LNTSG on the derived structures in the Langlands programme. They are not meant to be in anyway comprehensive. They should serve as a quick survey of basic definitions and results. For a more extensive discussion we refer the reader to [GJ09].

1 Basic definitions

Definition 1.1 (Simplex category). *The* simplex category, *denoted by* Δ *, is the category with*

• the totally ordered sets (tosets)

 $[n] = \{0 < 1 < 2 < \dots < n\}, \quad \forall n \ge 0,$

as objects

• and the order preserving maps, that is, maps of posets, as morphisms.

Remark 1.2. Notice that the tosets [n], as all posets, can be considered categories themselves. In this sense, $\underline{\Delta}$ can be thought of as a subcategory of \underline{Cat} , the category of all small categories. This point of view can sometimes be helpful, see Example 2.5 below.

Lemma 1.3 (Combinatorial lemma). Any morphism $f : [n] \to [m]$ in Δ can be written as the composition of maps of two kinds:

• *the* coface maps $\delta^i : [n-1] \rightarrow [n]$, "missing i", $0 \le i \le n$,

• the codegeneracy maps $\sigma^i \colon [n] \to [n-1]$ sending i, i+1 to $i, 0 \leq i < n$.

Sketch of proof. We won't include a full proof, but we remark that it can be obtained by *enumerating* the image of the map f.

Definition 1.4 (Simplicial object). A simplicial object in a small category \mathcal{C} is a functor $\underline{\Delta}^{op} \to \mathcal{C}$.

Notation 1.5. We will usually write

$$\mathrm{s}\mathfrak{C}=\mathrm{Fct}(\underline{\Delta}^{op},\mathfrak{C})$$

for the category of simplicial objects in C.

Notice that giving a simplicial object $C \in sC$ is the same as giving:

- 1. a sequence of objects $\{C_n\}_{n \ge 0}$ in \mathcal{C} ,
- 2. *face maps* $d_i : C_n \to C_{n-1}$ and *degeneracy maps* $s_i : C_{n-1} \to C_n$.

2 Important examples

We are mainly interested in simplicial sets, that is, elements of sSet.

Example 2.1 (Standard *n*-simplex). The standard *n*-simplex Δ^n is the simplicial set given by

$$\Delta^n = \operatorname{Hom}_{\underline{\Delta}}(\cdot, [n]) = h_{[n]} \colon \underline{\Delta}^{\operatorname{op}} \to \underline{\operatorname{Set}}.$$

We remark that, by Yoneda's Lemma, for any $S \in \underline{sSet}$ we have

$$S_n = \operatorname{Hom}_{\mathrm{sSet}}(\Delta^n, S).$$

Example 2.2 (Boundary of the *n*-simplex). The *boundary* $\partial \Delta^n$ of Δ^n is the subobject of Δ^n generated by the (n-1)-simplices $\delta^k \colon [n-1] \to [n]$, for all k. Notice that $\operatorname{id}_{[n]} \notin (\partial \Delta^n)_n$, so the boundary is *strictly* contained in Δ^n .

Example 2.3 (*i*th Horn). The *i*th horn Λ_i^n of the standard simplex Δ^n is the smallest subobject, that is, subfunctor, of Δ^n containing the (n-1)-simplices

$$\delta^k \in \operatorname{Hom}_{\Delta}([n-1], [n]), \quad k \neq i.$$

Notice that $\delta^i \notin (\Lambda_i^n)_{n-1}$, so, in particular, Λ_i^n is strictly contained in $\partial \Delta^n$, so we have the strict inclusions of simplicial sets

$$\Lambda^n_i \subset \partial \Delta^n \subset \Delta^n$$

Example 2.4 (The singular simplicial set). Let $X \in \underline{\text{Top}}$ be any topological space. The *singular simplicial set* S(X), sometimes $\underline{\text{Sing}}(X)$, is defined by setting

$$S(X)_n \coloneqq \operatorname{Hom}_{\operatorname{Top}}(|\Delta^n|, X),$$

where $|\Delta^n| = \{(x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} \mid x_i \ge 0, \sum_{i=0}^n x_i = 1\}$ is the *geometric n-simplex*. Any morphism $f: [n] \to [m]$ defines a natural map between the standard bases of \mathbb{R}^n and \mathbb{R}^m , which can be extended by linearity and then restricted to $|\Delta^n| \to |\Delta^m|$. These give the face and degeneracy maps on S(X) by precomposition.

Example 2.5 (Nerve of a category). The nerve NC of a small category C is the simplicial set defined by

$$(\mathrm{N}\mathfrak{C})_n = \mathrm{Fct}([n], \mathfrak{C}) = \mathrm{Hom}_{\underline{\mathrm{Cat}}}([n], \mathfrak{C}) = h_{\mathfrak{C}}([n])$$
$$= \{c_0 \to c_1 \to \cdots \to c_n, c_i \in \mathfrak{C}\}.$$

Face and degeneracy maps are again defined by precomposition and, if need be, can be described explicitly.

3 Geometric realisation

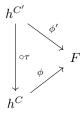
We start this section with two lemmata.

Lemma 3.1. Let \mathbb{C} , \mathbb{D} be two categories. Suppose that \mathbb{C} is small. If \mathbb{D} admits small (co)limits, then so does $\operatorname{Fct}(\mathbb{C}, \mathbb{D})$. *Proof.* We prove the statement for colimits only, but the proof in the case of limits is analogous. Let $(F_i)_{i \in I}$ be functors indexed by $I \to \operatorname{Fct}(\mathbb{C}, \mathbb{D})$, with I small. Then $\left(\lim_{I \to I} F_i\right)(C) = \lim_{I \to I} (F_i(C)) \in \mathbb{D}$, for all $C \in \mathbb{D}$. \Box

Lemma 3.2. Let $F: \mathcal{C} \to \underline{Set}$ be a functor from a small category \mathcal{C} . Consider the small category

$$\mathcal{D}_F = \{ (C, \phi) \mid C \in \mathcal{C}, \phi \colon h^C = \operatorname{Hom}_{\mathcal{C}}(C, \cdot) \longrightarrow F \},\$$

with morphisms given by those $C \xrightarrow{\tau} C'$ of \mathfrak{C} such that



commutes. Then the natural map

$$\lim h^C \longrightarrow F$$

is an isomorphism, the colimit on the left being indexed by \mathcal{D}_F .

Sketch of proof. Everything boils down to the fact that, by Yoneda, we have the bijection

$$\operatorname{Hom}(h^C, F) \xrightarrow{\sim} F(C).$$

Therefore, whenever we are given another functor $G: \mathcal{C} \longrightarrow \underline{Set}$ that can take the place of F in the diagram above, we immediately get maps $F(C) \rightarrow G(C)$ for any $C \in \mathcal{C}$, naturally in C, that is, inducing $F \longrightarrow G$ uniquely.

Remark 3.3. Lemma 3.2 can be described by the following slogan: gluing the *C*-points of *F*, for all $C \in C$, one gets *F* back.

Notice that by taking $\mathcal{C} = \underline{\Delta}^{op}$ in Lemma 3.2 we get that

$$\lim_{\Delta^n \to S} \Delta^n \xrightarrow{\sim} S$$

for any $S \in \underline{sSet}$.

Definition 3.4 (Geometric realisation). The geometric realisation of a simplicial set S is defined as the colimit

$$|S| := \lim_{\Delta^n \to S} |\Delta^n| \in \underline{\mathrm{Top}}.$$

This defines a functor $|\cdot| : \underline{sSet} \longrightarrow Top$.

Example 3.5 (or rather an observation). Since, by Yoneda again, the object $([n], id_{[n]})$ is final in the index category \mathcal{D}_{Δ^n} , we have

$$\lim_{\Delta^m \to \Delta^n} |\Delta^m| = |\Delta^n|,$$

which also shows that the notation |S| for the geometric realisation is compatible with the definition of geometric *n*-simplex given above.

Proposition 3.6 (Adjunction). We have

$$\operatorname{Hom}_{\operatorname{Top}}(|T|, Y) \cong \operatorname{Hom}_{\operatorname{sSet}}(T, S(Y)),$$

naturally in $T \in \underline{Set}, Y \in Top$.

Proof. It is just a formal consequence of the definitions and the properties of limits and colimits.

$$\begin{split} \operatorname{Hom}_{\underline{\operatorname{Top}}}(|S|,Y) &= \operatorname{Hom}_{\underline{\operatorname{Top}}}(\lim_{\Delta^n \to T} |\Delta^n|,Y) \\ &\cong \lim_{\Delta^n \to T} \operatorname{Hom}_{\underline{\operatorname{Top}}}(|\Delta^n|,Y) \\ &= \lim_{\Delta^n \to T} \operatorname{Hom}_{\underline{\operatorname{SEet}}}(\Delta^n,S(Y)) \\ &\cong \operatorname{Hom}_{\underline{\operatorname{SEet}}}(\lim_{\Delta^n \to T} \Delta^n,S(Y)) \\ &= \operatorname{Hom}_{\underline{\operatorname{SEet}}}(T,S(Y)). \end{split}$$

Remark 3.7. One can make the description of |S| more explicit, presenting it as some quotient

$$|S| = \bigsqcup_{n \ge 0} S_n \times |\Delta^n|_{/\sim}$$

where the equivalence relation \sim is "generated" by the identifications induced by face and degeneracy maps. This perhaps resembles more closely the intuitive idea of the geometric realisation as a "gluing-up of simplices".

4 Kan fibrations

Definition 4.1 (Kan fibration). A map $f: S \to T$ in sSet is called a (Kan) fibration if it satisfies the right lifting property (RLP) described by the following commutative diagram:

Remark 4.2. Recall that, according to one out of many equivalent definitions, a *Serre fibration* is a continuous map $f: X \to Y$ of topological spaces with the RLP given by:

$$\begin{split} |\Lambda_i^n| & \longrightarrow X \\ & & \downarrow & \downarrow^{f} \\ |\Delta^n| & \longrightarrow Y. \end{split}$$

So, by the adjunction 3.6, $f: X \to Y$ is a Serre fibration if and only if $S(f): S(X) \to S(Y)$ is a Kan fibration. Notation 4.3. We will use • to denote both the simplicial set Δ^0 and the "one point" topological space. Lemma 4.4. For any topological space X, the unique map $S(X) \to \bullet = \Delta^0 = S(\bullet)$ is a fibration. *Proof.* If, using adjunction, we work in <u>Top</u>, then we only need to prove that we can find the diagonal map in the diagram

but the existence of such a map follows at once from the fact that $|\Lambda_i^n|$ is a strong deformation retract of $|\Delta^n|$.

This leads to a definition whose importance will become clear in the discussion on simplicial homotopy.

Definition 4.5 (Kan complex). A simplicial set is called fibrant, or a Kan complex, if $S \rightarrow \bullet$ is a fibration.

Remark 4.6 (Fibrations & pull-backs). Notice that, whenever we have a Cartesian diagram

if *f* is a fibration, then *F* (the fibre) is fibrant, as one can verify immediately using the universal property of the pull-back and and the RLP of fibrations. More generally, the family of Kan fibrations is closed under pull-backs.

5 Self-enrichment

Remark 5.1. One of the implicit consequences of Lemma 3.1, which is worth spelling out here, is that one can define (fibred) products of simplicial sets in a rather natural way, that is, for $S, T \in \underline{sSet}$ we have

$$(S \times T)_n = S_n \times T_n,$$

with face and degeneracy maps defined componentwise.

Let S, T be two simplicial sets. We can define a simplicial object $\underline{Hom}(S, T)$, called the *function complex*, by setting

$$\underline{\operatorname{Hom}}(S,T)_n := \operatorname{Hom}_{\mathrm{sSet}}(S \times \Delta^n, T).$$

Given any $f: \Delta^m \to \Delta^n$, we can define the corresponding morphism $\underline{\operatorname{Hom}}(S,T)_n \to \underline{\operatorname{Hom}}(S,T)_m$ by precomposition with $\operatorname{id} \times f: S \times \Delta^m \to S \times \Delta^n$.

One interesting thing about this simplicial set is that it comes with a natural evaluation map defined by

ev:
$$S \times \underline{\operatorname{Hom}}(S,T) \longrightarrow T$$
,
 $(s_n, f_n)_{n \ge 0} \longmapsto ((f_n)_n(s_n, \operatorname{id}_{[n]}))_{n \ge 0}.$

One can check that this is actually a morphism of simplicial sets and that the following holds.

Proposition 5.2 (Exponential law). Let U be another simplicial set. The function

$$ev_* \colon \operatorname{Hom}_{s\underline{\operatorname{Set}}}(U, \underline{\operatorname{Hom}}(S, T)) \longrightarrow \operatorname{Hom}_{s\underline{\operatorname{Set}}}(S \times U, T),$$
$$g \longmapsto (S \times U \xrightarrow{\operatorname{id} \times g} S \times \underline{\operatorname{Hom}}(S, T) \xrightarrow{\operatorname{ev}} T),$$

is a bijection which is natural in all of S, T and U.

Proof. One can verify that inverse of ev_* is defined by sending a map $f: S \times U \to T$ to $f_*: U \to \underline{Hom}(S, T)$ which, for any $x: \Delta^n \to U$, acts as

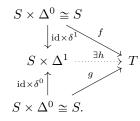
$$f_*(x) \mapsto (S \times \Delta^n \xrightarrow{\mathrm{id} \times x} S \times U \xrightarrow{f} T)$$

We state without proof an interesting consequence of the Exponential law, which we will use later.

Lemma 5.3 ([G]09, Cor. I.5.3]). If $U \subseteq S$ and T is fibrant, then the induced map $\underline{\text{Hom}}(S,T) \rightarrow \underline{\text{Hom}}(U,T)$ is a fibration.

6 Simplicial homotopy

Definition 6.1 (Homotopy in sSet). Let $f, g: S \to T$ be two morphisms in sSet. We say that f and g are homotopic if we can find a morphism $h: S \times \Delta^1 \to T$ that fits in the following diagram



One denotes this relation between f and g as $f \sim g$. Moreover, if $U \subseteq S$ is a sub-simplicial set and $f|_U = g|_U$, we say that f and g are homotopic relative to U, denoted $f \sim g$ (rel U), if the map h described before also makes the following diagram commute:

$$S \times \Delta^{1} \xrightarrow{h} S$$
$$\iota \times \mathrm{id}_{\Delta^{1}} \uparrow \qquad \alpha \uparrow$$
$$U \times \Delta^{1} \xrightarrow{\pi_{U}} U,$$

where $\alpha = f|_U = g|_U$.

Notice that, in general, being homotopic is *not* an equivalence relation.

Lemma 6.2. Suppose that $S \in \underline{sSet}$ is fibrant. Then the simplicial homotopy of vertices $\Delta^0 \to S$ is an equivalence relation.

Sketch of proof. Let $x, y: \Delta^0 \to S$ be two vertices. First notice that, rewriting the definition, $x \sim y$ if and only if there is some $\gamma: \Delta^1 \to S$ such that $d_1\gamma = x$, $d_0\gamma = y$.

We prove that ~ is a symmetric relation. Suppose that $x \sim y$ and let γ be the path we just described. Then maps

$$\Lambda_0^2 \longrightarrow S$$

are in bijection with couples of 1-simplices (γ_0, γ_1) of *S* sharing a common vertex, that is, $d_1\gamma_0 = d_0\gamma_1$. The couple (s_0x, γ) is one of these and since *S* is fibrant we can lift the corresponding morphism to a 2-simplex $f: \Delta^2 \to S$ such that $d_2f = s_0x$, $d_1f = \gamma$. One can check that $d_0f: \Delta^1 \to S$ gives the homotopy relation $y \sim x$.

Corollary 6.3. Let $T \in \underline{sSet}$ be fibrant and $U \subseteq S$ be an inclusion in \underline{sSet} . Then:

1. homotopy of maps $S \rightarrow T$ is an equivalence relation,

2. homotopy of maps $S \to T(\operatorname{rel} U)$ is an equivalence relation.

Sketch of proof. It is enough to prove 2. To do that we point out that an homotopy of maps $S \rightarrow T(\operatorname{rel} U)$ corresponds, via the Exponential law 5.2, to an homotopy of vertices in the fibres of the Kan fibration (Lemma 5.3)

$$\underline{\operatorname{Hom}}(S,T) \longrightarrow \underline{\operatorname{Hom}}(U,T).$$

So, to conclude, it is enough to use Remark 4.6 and Lemma 6.2.

Fix now a simplicial set *S* and a vertex $v: \Delta^0 \to S$.

Definition 6.4 (*n*th Homotopy group). Let $\pi_n(S, v)$ denote, for n > 0, the set of the homotopy classes of maps $\alpha \colon \Delta^n \to S(\operatorname{rel} \partial \Delta^n)$ that fit into the commutative diagram

We also write $\pi_0(S, v) = \{\Delta^0 \to S\} / \sim$.

Assume for a moment that $n \ge 1$ and let $\alpha, \beta \colon \Delta^n \to S$ represent two classes in $\pi_n(S, v)$. A construction similar to the one used in the proof of Lemma 6.2, gives us another $\omega \colon \Delta^n \to S$, as a face of an (n + 1)-simplex in S having α, β and some degenerations of v as other faces. One can prove that this construction gives a well defined element $[\omega]_{\sim} \in \pi_n(S, v)$ which does not depend on the representatives α and β in $\pi_n(S, v)$. In short, we have a binary operation

$$\pi_n(S,v) \times \pi_n(S,v) \xrightarrow{*} \pi_n(S,v).$$

We conclude this section with the following fundamental result.

Theorem 6.5 ([GJ09, Thm. I.7.2]). The couple $(\pi_n, *)$ is a group for $n \ge 1$, which is moreover abelian for $n \ge 2$.

7 Some remarks on simplicial groups

We begin by mentioning, without proof, the following.

Lemma 7.1 (Moore, [GJ09, Lem. I.]). The underlying simplicial set of any simplicial group G is fibrant.

This, in particular, implies that for any simplicial group G, with $1 \in G_0$ the identity, it makes sense to consider the homotopy groups $\pi_n(G, 1)$.

If A is a simplicial Abelian group, we let

$$(\mathbf{N}A)_n = \bigcap_{i=0}^{n-1} \ker(d_i) \subseteq A_n.$$

Because of the identity $d_{n-1}d_n = d_{n-1}d_{n-1}$, the maps

$$(\mathbf{N}A)_n \xrightarrow{(-1)^n d_n} (\mathbf{N}A)_{n-1}$$

make $(NA)_{\bullet}$ into a complex of Abelian groups. This defines a functor

$$s\underline{Ab} \xrightarrow{N} Ch_+(\underline{Ab}).$$

ът

Proposition 7.2 (Dold-Kan correspondence, [GJ09, Cor. III.2.3]). *The functor N induces an equivalence of categories.*

Given $A \in \underline{sAb}$ one can also define another complex by taking

$$A_n \xrightarrow{\partial} A_{n-1},$$

with $\partial = \sum_{i=0}^{n} (-1)^{i} d_{i}$. The two constructions are not unrelated and in fact we have the following.

Proposition 7.3 ([GJ09, Thm. III.2.4, 2.5]). The natural inclusion of complexes $NA_{\bullet} \rightarrow A_{\bullet}$ is a chain-homotopy equivalence, which is natural in A.

Moreover, we have natural isomorphisms

$$\pi_n(A,0) \cong H_n(\mathbf{N}A_{\bullet}) \cong H_n(A_{\bullet})$$

for any $n \ge 0$.

Remark 7.4. Notice that the simplicial group structure of *A* induces an alternative group operation on $\pi_n(A, 0)$ with the same identity as *, the vertex 0. One can prove that these two operations are naturally compatible, hence equal (this is known as the "Eckmann-Hilton argument"). This group structure can also be defined on $\pi_0(A)$ and it fits naturally in the isomorphisms described by Proposition 7.3 for n = 0.

References

[GJ09] Paul G. Goerss and John F. Jardine. *Simplicial homotopy theory*. Modern Birkhäuser Classics. Reprint of the 1999 edition [MR1711612]. Birkhäuser Verlag, Basel, 2009, pp. xvi+510.