Notes on simplicial objects and things
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Introduction

These notes were produced while preparing a talk for the LNTSG on the derived structures in the Langlands
programme. They are not meant to be in anyway comprehensive. They should serve as a quick survey of
basic definitions and results. For a more extensive discussion we refer the reader to | ].

1 Basic definitions

Definition 1.1 (Simplex category). The simplex category, denoted by A, is the category with
o the totally ordered sets (tosets)
[n]={0<1l<2<---<n}, ¥Yn=0,
as objects
e and the order preserving maps, that is, maps of posets, as morphisms.

Remark 1.2. Notice that the tosets [n], as all posets, can be considered categories themselves. In this sense,
A can be thought of as a subcategory of Cat, the category of all small categories. This point of view can
sometimes be helpful, see Example 2.5 below.

Lemma 1.3 (Combinatorial lemma). Any morphism f: [n] — [m] in A can be written as the composition of maps
of two kinds:

e the coface maps &°: [n — 1] — [n], “missingi”,0 <i < n,



e the codegeneracy maps o': [n] — [n — 1] sending i,i + 1toi, 0 < i < n.

Sketch of proof. We won't include a full proof, but we remark that it can be obtained by enumerating the
image of the map f. O

Definition 1.4 (Simplicial object). A simplicial object in a small category € is a functor A" — C.

Notation 1.5. We will usually write
sC = Fct(AP, @)

for the category of simplicial objects in C.
Notice that giving a simplicial object C € sC is the same as giving:
1. a sequence of objects {C), } >0 in C,

2. face maps d;: C,, — C,,_1 and degeneracy maps s;: Cp—1 — Ch,.

2 Important examples

We are mainly interested in simplicial sets, that is, elements of sSet.

Example 2.1 (Standard n-simplex). The standard n-simplex A™ is the simplicial set given by
A" = Homp (-, [n]) = hpu: A% — Set.
We remark that, by Yoneda’s Lemma, for any S € sSet we have
Sn = Homgget (A", S).

Example 2.2 (Boundary of the n-simplex). The boundary 0A™ of A™ is the subobject of A™ generated by the
(n—1)-simplices 6" : [n— 1] — [n], for all k. Notice that id,; ¢ (0A™),,, so the boundary is strictly contained
in A"

Example 2.3 (i" Horn). The i" horn A? of the standard simplex A" is the smallest subobject, that is, sub-
functor, of A™ containing the (n — 1)-simplices

§F e Homa ([n — 1], [n]), K #i.

Notice that §° ¢ (A7),,_1, 50, in particular, A} is strictly contained in dA™, so we have the strict inclusions of
simplicial sets
A} € AT c A™.

Example 2.4 (The singular simplicial set). Let X € Top be any topological space. The singular simplicial set
S(X), sometimes Sing(X), is defined by setting

S(X)n == Homrop (A", X),
where |A"| = {(zo,z1,...,2,) € R | 2; = 0,21 z; = 1} is the geometric n-simplex. Any morphism
f:[n] — [m] defines a natural map between the standard bases of R" and R™, which can be extended

by linearity and then restricted to |A™| — |A™|. These give the face and degeneracy maps on S(X) by
precomposition.

Example 2.5 (Nerve of a category). The nerve NC of a small category € is the simplicial set defined by
(N€), = Fet([n], €) = Homcai([n], €) = he([n])

:{Coﬁcl~>~~~%cn,ci€e}.

Face and degeneracy maps are again defined by precomposition and, if need be, can be described explicitly.



3 Geometric realisation

We start this section with two lemmata.
Lemma 3.1. Let C, D be two categories. Suppose that C is small. If D admits small (co)limits, then so does Fct(C, D).
Proof. We prove the statement for colimits only, but the proof in the case of limits is analogous. Let (F});cr be

functors indexed by I — Fct(C, D), with I small. Then <lim Fi) (C) = lim (F;(C)) e D, forallCeD. O

Lemma 3.2. Let F': € — Set be a functor from a small category C. Consider the small category
Dr = {(07 ¢) | Ce ev(b: hc = Hom@(C, ) - F}7
with morphisms given by those C — C” of C such that

’

hC

hC
commutes. Then the natural map

limh¢ — F

—

is an isomorphism, the colimit on the left being indexed by Dp.

Sketch of proof. Everything boils down to the fact that, by Yoneda, we have the bijection
Hom(h%, F) = F(C).

Therefore, whenever we are given another functor G: € — Set that can take the place of F’ in the diagram
above, we immediately get maps F(C) — G(C) for any C € C, naturally in C, that is, inducing F — G
uniquely. O

Remark 3.3. Lemma 3.2 can be described by the following slogan: gluing the C-points of F, for all C' € €,
one gets F' back.

Notice that by taking ¢ = AP in Lemma 3.2 we get that

lim A" — S,
A::S
for any S € sSet.
Definition 3.4 (Geometric realisation). The geometric realisation of a simplicial set S is defined as the colimit
|S| == lim |A"|e Top.
Aﬂr—;s
This defines a functor |-|: sSet — Top.

Example 3.5 (or rather an observation). Since, by Yoneda again, the object ([n],id},;) is final in the index
category Dan, we have
lim |A™| = ]A"],
A"”?A"
which also shows that the notation |S| for the geometric realisation is compatible with the definition of
geometric n-simplex given above.



Proposition 3.6 (Adjunction). We have
Homrop (|7'],Y) = Homsge (7', S(Y)),
naturally in T € sSet, Y € Top.
Proof. Tt is just a formal consequence of the definitions and the properties of limits and colimits.

Homrop (S, ) = Homyp( lim A", )

AN T
>~ I‘El HomTop(‘AnLY)
AT T
= {in Homgget (A", S(Y))
AT T
=~ Homgges ( lim A", S5(Y))
AN T

= Homgget (T, S(Y)).

Remark 3.7. One can make the description of | S| more explicit, presenting it as some quotient

|5 = [ ] Sn A"

n=0

where the equivalence relation ~ is “generated” by the identifications induced by face and degeneracy
maps. This perhaps resembles more closely the intuitive idea of the geometric realisation as a “gluing-up
of simplices”.

4 Kan fibrations

Definition 4.1 (Kan fibration). A map f: S — T in sSet is called a (Kan) fibration if it satisfies the right lifting
property (RLP) described by the following commutative diagram:

A} —— S

P
3, ,
[

A" —— T,

Remark 4.2. Recall that, according to one out of many equivalent definitions, a Serre fibration is a continuous
map f: X — Y of topological spaces with the RLP given by:

A7 —— X

,,
3 .
[ 27

A" —— Y.

So, by the adjunction 3.6, f: X — Y is a Serre fibration if and only if S(f): S(X) — S(Y) is a Kan fibration.
Notation 4.3. We will use o to denote both the simplicial set A and the “one point” topological space.

Lemma 4.4. For any topological space X, the unique map S(X) — o = A® = S(e) is a fibration.



Proof. If, using adjunction, we work in Top, then we only need to prove that we can find the diagonal map
in the diagram

A7 —— X

AT —— o,

but the existence of such a map follows at once from the fact that |[A?| is a strong deformation retract of
|A™]. m

This leads to a definition whose importance will become clear in the discussion on simplicial homotopy.
Definition 4.5 (Kan complex). A simplicial set is called fibrant, or a Kan complex, if S — e is a fibration.

Remark 4.6 (Fibrations & pull-backs). Notice that, whenever we have a Cartesian diagram

F— S

[

o — T

)

if f is a fibration, then F' (the fibre) is fibrant, as one can verify immediately using the universal property
of the pull-back and and the RLP of fibrations. More generally, the family of Kan fibrations is closed under
pull-backs.

5 Self-enrichment

Remark 5.1. One of the implicit consequences of Lemma 3.1, which is worth spelling out here, is that one
can define (fibred) products of simplicial sets in a rather natural way, that is, for S, T € sSet we have

(S X T)n = Sp X T,
with face and degeneracy maps defined componentwise.

Let S, T be two simplicial sets. We can define a simplicial object Hom(S, T'), called the function complex,
by setting
Hom(S,T),, := Homgget (S x A", T).

Given any f: A™ — A", we can define the corresponding morphism Hom(S,T'),, — Hom(S,T'),, by pre-
composition withid x f: S x A™ — § x A",
One interesting thing about this simplicial set is that it comes with a natural evaluation map defined by

ev: S x Hom(S,T) — T,
(80, fr)nz0 = ((fa)n(Sn, id[n]))nzo-
One can check that this is actually a morphism of simplicial sets and that the following holds.

Proposition 5.2 (Exponential law). Let U be another simplicial set. The function
evy : Homgget (U, Hom(S, T')) — Homgget (S x U, T),
g— (S x U S x Hom(S,T) =% T),

is a bijection which is natural in all of S, T and U.



Proof. One can verify that inverse of ev, is defined by sending amap f: S x U — T to f: U — Hom(S,T)
which, for any 2: A™ — U, acts as

Fal@) = (S x A" ¥ g U L 7).

We state without proof an interesting consequence of the Exponential law, which we will use later.

Lemma 5.3 ([ , Cor. 1.5.3)). IfU < Sand T is fibrant, then the induced map Hom(S,T) — Hom(U,T) is a
fibration.

6 Simplicial homotopy

Definition 6.1 (Homotopy in sSet). Let f,g: S — T be two morphisms in sSet. We say that f and g are homo-
topic if we can find a morphism h: S x A' — T that fits in the following diagram

SxAV~g

lid XN‘

S x Al 3T

g
idX&UT /

S x AV~ g

Ome denotes this relation between f and g as f ~ g. Moreover, if U < S is a sub-simplicial set and f|y = g|y, we
say that f and g are homotopic relative to U, denoted f ~ g (relU ), if the map h described before also makes the
following diagram commute:

SxAl — ", g

LXidAl]\ QT

UxAl 25,
where o = flu = glu-
Notice that, in general, being homotopic is not an equivalence relation.

Lemma 6.2. Suppose that S € sSet is fibrant. Then the simplicial homotopy of vertices A° — S is an equivalence
relation.

Sketch of proof. Letx,y: A® — S be two vertices. First notice that, rewriting the definition, z ~ y if and only
if there is some v: A! — S such thatdiy = z, dyy = ¥.
We prove that ~ is a symmetric relation. Suppose that + ~ y and let v be the path we just described.
Then maps
A — S

are in bijection with couples of 1-simplices (y0,71) of S sharing a common vertex, that is, d1yy = doy1. The
couple (soz, ) is one of these and since S is fibrant we can lift the corresponding morphism to a 2-simplex
[+ A% - Ssuch that daf = soz, dif = 7. One can check that dof: A! — S gives the homotopy relation
Yy~ T. O

Corollary 6.3. Let T' € sSet be fibrant and U < S be an inclusion in sSet. Then:

1. homotopy of maps S — T is an equivalence relation,



2. homotopy of maps S — T (relU ) is an equivalence relation.

Sketch of proof. It is enough to prove 2. To do that we point out that an homotopy of maps S — T (relU )
corresponds, via the Exponential law 5.2, to an homotopy of vertices in the fibres of the Kan fibration
(Lemma 5.3)

Hom(S,T) —> Hom(U, T).

So, to conclude, it is enough to use Remark 4.6 and Lemma 6.2. O
Fix now a simplicial set S and a vertex v: AY — S.

Definition 6.4 (n'" Homotopy group). Let m,(S,v) denote, for n > 0, the set of the homotopy classes of maps
a: A" — S (rel OA™) that fit into the commutative diagram

A" S

]

OA" —— o,

We also write mo(S,v) = {A® — S}/ ~.

Assume for a moment thatn > 1 and let «, 5: A™ — S represent two classes in 7, (S, v). A construction
similar to the one used in the proof of Lemma 6.2, gives us another w: A™ — S, as a face of an (n + 1)-
simplex in S having «, § and some degenerations of v as other faces. One can prove that this construction
gives a well defined element [w]. € 7,(S,v) which does not depend on the representatives o and § in
(S, v). In short, we have a binary operation

Tn (S, ) X 7, (S, v) = m,(S, v).
We conclude this section with the following fundamental result.

Theorem 6.5 ([ , Thm. 1.7.2]). The couple (m,,, *) is a group for n = 1, which is moreover abelian for n > 2.

7 Some remarks on simplicial groups
We begin by mentioning, without proof, the following.

Lemma 7.1 (Moore, [ , Lem. L]). The underlying simplicial set of any simplicial group G is fibrant.

This, in particular, implies that for any simplicial group G, with 1 € Gy the identity, it makes sense to
consider the homotopy groups 7, (G, 1).
If Ais a simplicial Abelian group, we let

n—1
(NA), = () ker(d;) < A
=0

Because of the identity d,,_1d,, = d,,—1d,,—1, the maps

(NA), L (NA),,

make (NA), into a complex of Abelian groups. This defines a functor

sAb > Ch. (Ab).



Proposition 7.2 (Dold-Kan correspondence, [ , Cor. I11.2.3]). The functor N induces an equivalence of cate-
gories.

Given A € sAb one can also define another complex by taking

An _?7) Anfla
with @ = >} (—1)%d;. The two constructions are not unrelated and in fact we have the following.

Proposition 7.3 ([ , Thm. I11.2.4, 2.5]). The natural inclusion of complexes NA, — A, is a chain-homotopy
equivalence, which is natural in A.

Moreover, we have natural isomorphisms
m(A,0) =~ H,(NA,) ~ H,(A.)
foranyn = 0.

Remark 7.4. Notice that the simplicial group structure of A induces an alternative group operation on
7 (A, 0) with the same identity as #, the vertex 0. One can prove that these two operations are naturally
compatible, hence equal (this is known as the “Eckmann-Hilton argument”). This group structure can also
be defined on 7 (A) and it fits naturally in the isomorphisms described by Proposition 7.3 for n = 0.
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