MODEL CATEGORIES

CHRIS BIRKBECK

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019.
These are notes taken by Ashwin Iyengar (ashwin.iyengar@kcl.ac.uk).

The point is to understand the model categorical language in [GV].

Notation: throughout, C' will be a category. Map(C') will be the ”arrow category” of C, in which objects are
morphisms, and morphisms are commutative squares.

Definition 0.1.
e A map f € Map(C) is a retract of a map g if we have a diagram
id
B——A——DB
s
B —— A —— B,
\_/
id
e A functorial factorization is a ordered pair (o, () of functors Map(C) — Map(C) such that
f=08(f)oa(f) for all f € Map(C).

eIfi: A— Band p: X — Y are maps in C then i has the left lifting property (LLP) with
respect to p and p has the right lifting property (RLP) with respect to i if you have a lift h in
the diagram

I

~
\
X
Rl

Sy

for any maps A — X and B —» Y.
Definition 0.2. A model structure on C is a choice of three subcategories of Map(C) called weak
equivalences, cofibrations, and fibrations and two functorial factorizations («, 8) and (v, d) satisfying:

(1) 2-of-3 property: if f,g € Map(C) are such that g o f defined and if any two of f,g,g o f are weak
equivalences, then so is the third.

(2) If f,g are morphisms and f is a retract of g and ¢ is a weak equivalence (respectively fibration,
cofibration), then so is f.

(3) We say that a weak equivalence which is also a cofibration (resp. fibration) is a trivial cofibration
(resp. trivial fibration). Then trivial cofibrations have the LLP with respect to fibrations, and
trivial fibrations have the RLP with respect to cofibrations.

(4) For any morphism f € Map(C), we have «o(f) is a cofibration, 8(f) is a trivial fibration, v(f) is a
trivial cofibration, and 0(f) is a fibration.
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Definition 0.3. A model category is a category C' with all small limits and colimits together with a model
structure.

Note that a model category C' has all small limits and colimits, and therefore has an initial object * and a
terminal object e.

Definition 0.4. We say that an object b € C is cofibrant if * — b is a cofibration, and fibrant if b — e is
a fibration.

Lemma 0.5. Let C' be a model category. A map f is a cofibration if and only if it has the LLP with respect
to all trivial fibrations. Similarly, f is a fibration if and only if it has the right lifting property with respect
to all trivial cofibrations.

In practice, this means that a model structure only depends on the weak equivalences and either the fibrations,
or cofibrations.

1. EXAMPLES
(1) (Trivial example) Let C be a category with small limits and colimits. Then set one of the distinguished
classes to be isomorphisms, and the others to be all maps. This determines a model structure.
(2) Let Top denote the category of topological spaces. Define a model structure as follows:

e The weak equivalences are weak homotopy equivalences (i.e. induce isomorphisms on homotopy
groups),

e The fibrations are Serre fibrations (i.e. maps with the RLP with respect to D™ — D" x I,z —
(z,0) for all n where D™ is a topological n-disk and I is an interval), and

e The cofibrations are uniquely determined.
Here all objects are fibrant, and the cofibrant objects are the CW complexes.
(3) Simplicial sets:

e Weak equivalences are weak homotopy equivalences (i.e. morphisms whose geometric realizations
are weak homotopy equivalences,

e Fibrations are Kan fibrations, defined last week.
e Cofibrations are monomorphisms in sSet, equivalently level-wise injective maps.

Fibrant objects are Kan complexes (by definition), and all simplicial sets are cofibrant because the
initial object in sSet is empty, levelwise.

(4) Chain complexes. Let R be a (not necessarily commutative) ring and Ch(R) the category of chain
complexes (bounded above) of left R-modules.

e The weak equivalences are quasi-isomorphisms of chain complexes (i.e. isomorphisms on homol-
ogy groups),
e f: M — N is a fibration if for all k, fy : My — Ny is surjective, and

e f: M — N is a cofibration if for all k, fi : My — Ny is injective and the cokernel is a projective
R-module.

Here, all fibrant objects are fibrant, and cofibrant R-modules are exactly the projective R-modules.

Lemma 1.1 (Ken Brown’s Lemma). Let C' be a model category and D be a category with a chosen class of
weak equivalences. Let F': C — D be a functor. Then
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o If F sends trivial cofibrations between cofibrant objects to weak equivalences, then it sends all weak
equivalences between cofibrant objects to weak equivalences.

o If F sends trivial fibrations between fibrant objects to weak equivalences, then it sends all weak equiv-
alences between fibrant objects to weak equivalences.

Proof Sketch. Let f : A — B be a weak equivalence between cofibrant objects. We can factor (f,idg) :
AUB — B as

AuBLchH B
with g a cofibration and p a trivial fibration. Then using that cofibrations are closed under pushouts, we

have from the diagram * —+ A * — B B 4y AUB A2 AU B that 11,42 are cofibrations, and by the 2-of-3
property, we get f oi; and g o iy are weak equivalences, and thus trivial cofibrations. So by hypothesis we
have F(f oi1) and F(f oiy) are weak equivalences, and

F(pogoig) = F(idp)

is also a weak equivalence, so F'(p) is a weak equivalence. Thus, F(f) = F(pogoi;) is a weak equivalences. [

2. HomoTOPY CATEGORY

Definition 2.1. Let C be a category with a subset W of weak equivalences (i.e. satisfying 2-of-3 property).
Then the homotopy category of (C, W) is defined as follows:

e First construct the free category F(C,W 1), whose objects are objects of C, and whose morphisms
are strings of composable morphisms in C' and inverses of morphisms in W.

e Then take the quotient of F(C,W~1!) by the relations
~ida = (ida)
- (f,9)=1(gof)

— If w: ¢ — ¢ is a morphism, then id, = (w,w™!) and idy = (w™!

,W).

Proposition 2.2. Let C be a model category, and let C.,Cy,C.s denote the subcategories of cofibrant objects,
fibrant objects, and fibrant-cofibrant (i.e. both) objects. Then the inclusions

Ho(C.s) — Ho(C,) — Ho(C)

and
Ho(C.¢) — Ho(Cy) — Ho(C)

are equivalences of categories.

Recall that if C' is a model category, we have functorial factorizations 3, a such that « gives cofibrations and
B gives trivial fibrations. We can use this factorization to to factor * — b for any b € C' as

" a(f) Q) B(f) b.

We call Q(b) the cofibrant replacement functor. Dually, we can use (§,7) to get a fibrant replacement
functor R.

Definition 2.3. Let C' be a model category. Let f,g: B — X be two maps.
(1) A cylinder object B’ of B is a factorization of B U B M B as
BuUB 22, B 5 B

with (i1,42) a cofibration and s a weak equivalence.
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(idX X ldx)
SR

(2) A path object X’ for X is a factorization of the diagonal map X X xX

X o X2 ¥« X
with X — X’ a weak equivalence and X’ — X x X a fibration.
(3) A left homotopy from f to g is a map H : B’ — X (for B’ a cylinder object of B) such that
Hi; = f and His = g.
We write this as f ~ g.
(4) A right homotopy from f to g is a map H : B — X' (for X’ a path object for X) such that
j1H = f and joH = g.
We write this as f ~" g.
(5) If f ~* g and f ~" g, then we say that f ~ g, i.e. f is homotopic to g.
(6) We say f is a homotopy equivalence if there exists h : X — B such that hf ~ idg and fh ~ idx.
Theorem 2.4 (Whitehead). Let C' be a model category, and let v : C — Ho(C) denote the quotient map.

(1) A map of Ccy is a weak equivalence if and only if it is a homotopy equivalence. Moreover, there is a
unique isomorphism between Ceyp/ ~ (quotient by the relation of homotopy) and Ho(C.y).

(2) The inclusion Coy — C induces an equivalence of categories
Ccf/ ~— HO(C)

(3) There are natural isomorphisms
C(QR(X)), Q(R(Y))/ ~= Ho(C)(v(X),¥(Y)) = C(R(Q(X))

Moreover, there is a natural isomorphisms Ho(C)(v(X),y(Y)) = C(Q(X),R(Y))/ ~. If X is
cofibrant and Y is fibrant, then there is a natural isomorphism

C(X,Y)/ ~= Ho(C)(v(X), 1(Y)).

=
S
=
<
2

(4) If f : A — B is a map such that y(f) is an isomorphism, then f must be a weak equivalence.

3. QUILLEN FUNCTORS

Let C, D be model categories.

(1) A functor F : C — D is a left Quillen functor if F' is a left adjoint and it preserves cofibrations
and trivial cofibrations.

(2) A functor U : D — C'is a right Quillen functor if it is a right adjoint and preserves fibrations and
trivial fibrations.

(3) Note (F,U) is a Quillen adjunction if (F,U) if (F,U) is an adjoint pair and either F or U is a
Quillen functor (these are equivalent).

(4) If F is a left Quillen functor, we define the total left derived functor LF : Ho(C) — Ho(D) as
the composition

Ho(C) 22D, 1o(0,) 22 w1o(D).

Similarly, U defines a total right derived functor RU : Ho(D) — Ho(C) as the composition

Ho(R) Ho(U

Ho(D) Ho(D;) 229 Ho(0).

Lemma 3.1. If (F,U) is a Quillen adjunction, then (LF, RU) is an adjoint pair on the homotopy categories.
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As an example, recall the functor X — Sing(X) taking a topological space X to its singular simplicial set, and
the functor S — |S|, the geometric realization. In fact, the pair (] - |, Sing(+)) is a Quillen adjunction.

We can use Quillen adjunctions to transport model structures as follows. Let C' be a model category, and let
(F:C — D,U:D — C) be an adjoint pair for some category D. Assuming U preserves filtered colimits,
we can define a model structure on D from the one on C' as follows.

(1) A weak equivalence in D is a map whose image under U is a weak equivalence in C.
(2) A fibration in D is a map whose image under U is a fibration in C.
(3) Cofibrations are then determined by the LLP with respect to trivial fibrations.

This is Theorem 5.1 of [1].
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