
MODEL CATEGORIES

CHRIS BIRKBECK

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019.
These are notes taken by Ashwin Iyengar (ashwin.iyengar@kcl.ac.uk).

The point is to understand the model categorical language in [GV].

Notation: throughout, C will be a category. Map(C) will be the ”arrow category” of C, in which objects are
morphisms, and morphisms are commutative squares.

Definition 0.1.

• A map f ∈Map(C) is a retract of a map g if we have a diagram

B A B

B′ A′ B′,

id

f g f

id

• A functorial factorization is a ordered pair (α, β) of functors Map(C) → Map(C) such that
f = β(f) ◦ α(f) for all f ∈Map(C).

• If i : A → B and p : X → Y are maps in C then i has the left lifting property (LLP) with
respect to p and p has the right lifting property (RLP) with respect to i if you have a lift h in
the diagram

A X

B Y

i ph

for any maps A→ X and B → Y .

Definition 0.2. A model structure on C is a choice of three subcategories of Map(C) called weak
equivalences, cofibrations, and fibrations and two functorial factorizations (α, β) and (γ, δ) satisfying:

(1) 2-of-3 property: if f, g ∈ Map(C) are such that g ◦ f defined and if any two of f, g, g ◦ f are weak
equivalences, then so is the third.

(2) If f, g are morphisms and f is a retract of g and g is a weak equivalence (respectively fibration,
cofibration), then so is f .

(3) We say that a weak equivalence which is also a cofibration (resp. fibration) is a trivial cofibration
(resp. trivial fibration). Then trivial cofibrations have the LLP with respect to fibrations, and
trivial fibrations have the RLP with respect to cofibrations.

(4) For any morphism f ∈ Map(C), we have α(f) is a cofibration, β(f) is a trivial fibration, γ(f) is a
trivial cofibration, and δ(f) is a fibration.
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Definition 0.3. A model category is a category C with all small limits and colimits together with a model
structure.

Note that a model category C has all small limits and colimits, and therefore has an initial object ∗ and a
terminal object •.

Definition 0.4. We say that an object b ∈ C is cofibrant if ∗ → b is a cofibration, and fibrant if b→ • is
a fibration.

Lemma 0.5. Let C be a model category. A map f is a cofibration if and only if it has the LLP with respect
to all trivial fibrations. Similarly, f is a fibration if and only if it has the right lifting property with respect
to all trivial cofibrations.

In practice, this means that a model structure only depends on the weak equivalences and either the fibrations,
or cofibrations.

1. Examples

(1) (Trivial example) Let C be a category with small limits and colimits. Then set one of the distinguished
classes to be isomorphisms, and the others to be all maps. This determines a model structure.

(2) Let Top denote the category of topological spaces. Define a model structure as follows:

• The weak equivalences are weak homotopy equivalences (i.e. induce isomorphisms on homotopy
groups),

• The fibrations are Serre fibrations (i.e. maps with the RLP with respect to Dn → Dn × I, x 7→
(x, 0) for all n where Dn is a topological n-disk and I is an interval), and

• The cofibrations are uniquely determined.

Here all objects are fibrant, and the cofibrant objects are the CW complexes.

(3) Simplicial sets:

• Weak equivalences are weak homotopy equivalences (i.e. morphisms whose geometric realizations
are weak homotopy equivalences,

• Fibrations are Kan fibrations, defined last week.

• Cofibrations are monomorphisms in sSet, equivalently level-wise injective maps.

Fibrant objects are Kan complexes (by definition), and all simplicial sets are cofibrant because the
initial object in sSet is empty, levelwise.

(4) Chain complexes. Let R be a (not necessarily commutative) ring and Ch(R) the category of chain
complexes (bounded above) of left R-modules.

• The weak equivalences are quasi-isomorphisms of chain complexes (i.e. isomorphisms on homol-
ogy groups),

• f : M → N is a fibration if for all k, fk : Mk → Nk is surjective, and

• f : M → N is a cofibration if for all k, fk : Mk → Nk is injective and the cokernel is a projective
R-module.

Here, all fibrant objects are fibrant, and cofibrant R-modules are exactly the projective R-modules.

Lemma 1.1 (Ken Brown’s Lemma). Let C be a model category and D be a category with a chosen class of
weak equivalences. Let F : C → D be a functor. Then
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• If F sends trivial cofibrations between cofibrant objects to weak equivalences, then it sends all weak
equivalences between cofibrant objects to weak equivalences.

• If F sends trivial fibrations between fibrant objects to weak equivalences, then it sends all weak equiv-
alences between fibrant objects to weak equivalences.

Proof Sketch. Let f : A → B be a weak equivalence between cofibrant objects. We can factor (f, idB) :
A tB → B as

A tB q−→ C
p−→ B

with q a cofibration and p a trivial fibration. Then using that cofibrations are closed under pushouts, we

have from the diagram ∗ → A ∗ → B B
i1−→ A tB A

i2−→ A tB that i1, i2 are cofibrations, and by the 2-of-3
property, we get f ◦ i1 and g ◦ i2 are weak equivalences, and thus trivial cofibrations. So by hypothesis we
have F (f ◦ i1) and F (f ◦ i2) are weak equivalences, and

F (p ◦ q ◦ i2) = F (idB)

is also a weak equivalence, so F (p) is a weak equivalence. Thus, F (f) = F (p◦q◦i1) is a weak equivalences. �

2. Homotopy Category

Definition 2.1. Let C be a category with a subset W of weak equivalences (i.e. satisfying 2-of-3 property).
Then the homotopy category of (C,W ) is defined as follows:

• First construct the free category F (C,W−1), whose objects are objects of C, and whose morphisms
are strings of composable morphisms in C and inverses of morphisms in W .

• Then take the quotient of F (C,W−1) by the relations

– idA = (idA)

– (f, g) = (g ◦ f)

– If w : c→ c′ is a morphism, then idc = (w,w−1) and idc′ = (w−1, w).

Proposition 2.2. Let C be a model category, and let Cc, Cf , Ccf denote the subcategories of cofibrant objects,
fibrant objects, and fibrant-cofibrant (i.e. both) objects. Then the inclusions

Ho(Ccf )→ Ho(Cc)→ Ho(C)

and

Ho(Ccf )→ Ho(Cf )→ Ho(C)

are equivalences of categories.

Recall that if C is a model category, we have functorial factorizations β, α such that α gives cofibrations and
β gives trivial fibrations. We can use this factorization to to factor ∗ → b for any b ∈ C as

∗ α(f)−−−→ Q(b)
β(f)−−−→ b.

We call Q(b) the cofibrant replacement functor. Dually, we can use (δ, γ) to get a fibrant replacement
functor R.

Definition 2.3. Let C be a model category. Let f, g : B → X be two maps.

(1) A cylinder object B′ of B is a factorization of B tB (idB ,idB)−−−−−−→ B as

B tB i1ti2−−−→ B′
s−→ B

with (i1, i2) a cofibration and s a weak equivalence.
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(2) A path object X ′ for X is a factorization of the diagonal map X
(idX × idX)−−−−−−−→ X ×X

X → X ′
j1×j2−−−−→ X ×X

with X → X ′ a weak equivalence and X ′ → X ×X a fibration.

(3) A left homotopy from f to g is a map H : B′ → X (for B′ a cylinder object of B) such that

Hi1 = f and Hi2 = g.

We write this as f ∼` g.

(4) A right homotopy from f to g is a map H : B → X ′ (for X ′ a path object for X) such that

j1H = f and j2H = g.

We write this as f ∼r g.

(5) If f ∼` g and f ∼r g, then we say that f ∼ g, i.e. f is homotopic to g.

(6) We say f is a homotopy equivalence if there exists h : X → B such that hf ∼ idB and fh ∼ idX .

Theorem 2.4 (Whitehead). Let C be a model category, and let γ : C → Ho(C) denote the quotient map.

(1) A map of Ccf is a weak equivalence if and only if it is a homotopy equivalence. Moreover, there is a
unique isomorphism between Ccf/ ∼ (quotient by the relation of homotopy) and Ho(Ccf ).

(2) The inclusion Ccf → C induces an equivalence of categories

Ccf/ ∼→ Ho(C).

(3) There are natural isomorphisms

C(Q(R(X)), Q(R(Y ))/ ∼ ∼−→ Ho(C)(γ(X), γ(Y ))
∼−→ C(R(Q(X)), R(Q(Y )))/ ∼ .

Moreover, there is a natural isomorphisms Ho(C)(γ(X), γ(Y ))
∼−→ C(Q(X), R(Y ))/ ∼. If X is

cofibrant and Y is fibrant, then there is a natural isomorphism

C(X,Y )/ ∼ ∼−→ Ho(C)(γ(X), γ(Y )).

(4) If f : A→ B is a map such that γ(f) is an isomorphism, then f must be a weak equivalence.

3. Quillen Functors

Let C,D be model categories.

(1) A functor F : C → D is a left Quillen functor if F is a left adjoint and it preserves cofibrations
and trivial cofibrations.

(2) A functor U : D → C is a right Quillen functor if it is a right adjoint and preserves fibrations and
trivial fibrations.

(3) Note (F,U) is a Quillen adjunction if (F,U) if (F,U) is an adjoint pair and either F or U is a
Quillen functor (these are equivalent).

(4) If F is a left Quillen functor, we define the total left derived functor LF : Ho(C) → Ho(D) as
the composition

Ho(C)
Ho(Q)−−−−→ Ho(Cc)

Ho(F )−−−−→ Ho(D).

Similarly, U defines a total right derived functor RU : Ho(D)→ Ho(C) as the composition

Ho(D)
Ho(R)−−−−→ Ho(Df )

Ho(U)−−−−→ Ho(C).

Lemma 3.1. If (F,U) is a Quillen adjunction, then (LF,RU) is an adjoint pair on the homotopy categories.
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As an example, recall the functor X 7→ Sing(X) taking a topological space X to its singular simplicial set, and
the functor S 7→ |S|, the geometric realization. In fact, the pair (| · |,Sing(·)) is a Quillen adjunction.

We can use Quillen adjunctions to transport model structures as follows. Let C be a model category, and let
(F : C → D,U : D → C) be an adjoint pair for some category D. Assuming U preserves filtered colimits,
we can define a model structure on D from the one on C as follows.

(1) A weak equivalence in D is a map whose image under U is a weak equivalence in C.

(2) A fibration in D is a map whose image under U is a fibration in C.

(3) Cofibrations are then determined by the LLP with respect to trivial fibrations.

This is Theorem 5.1 of [1].
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