
DERIVED DEFORMATION THEORY IN GENERAL

DOUGAL DAVIS

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019.
These are notes taken by Ashwin Iyengar (ashwin.iyengar@kcl.ac.uk).

1. Introduction

Last week, Raffael told us about simplicial Artinian rings (category sArtk). He wrote down what it means
for a functor

F : sArtk → sSet

to be pro-representable.

This week is more or less about working out whether a given functor is pro-representable. So we will talk
about a derived version of Schlessinger’s criterion.

So the plan is

(1) A bit of extra background (homotopy limits/colimits) which we will need.

(2) Derived Schlessinger’s criterion, and how to formulate it.

(3) Some examples of functors F .

(4) Sketch of proof of the derived Schlessinger’s criterion.

2. Homotopy Limits and Colimit

Let C be a nice model category and I be a small category. Then let CI denote the category of functors
I → C, i.e. the category of diagrams of shape I. Then there is also a model structure on CI (in fact there
are several) such that the map

colim : CI → C

is a left Quillen functor.

That means there is a left derived functor hocolim : CI → C, which is “well-defined up to homotopy”.

Dually, there’s another model structure with the same weak equivalences (but different fibrations and cofi-
brations), such that lim : CI → C is right Quillen, with derived functor

holim : CI → C.

We won’t need this much generality though: instead, we focus on the following special cases:

(1) Homotopy pullback. Here we take I to be the category

•

• •
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So given a diagram Z → Y ← X, we write X ×hY Z for the homotopy limit. Then given a diagram

W X

Z Y

we say that W is a homotopy pullback if W → X ×hY Z is a weak equivalence. But actually the
situation simplifies if X,Y, Z are all fibrant and X → Y is a fibration: in this case

X ×Y Z X

Z Y

is a homotopy pullback already.

(2) If R is a commutative ring, then there is a nice model structure on Ch(R) (unbounded chain complexes
of R-modules) such that a weak equivalence is a quasi-isomorphism. Suppose X ∈ sSet and

D : Simp(X)→ Ch(R)

is a diagram (where Simp(X) is the category of simplices of X whose objects are maps ∆n → X
and whose morphisms are maps ∆n → ∆m respecting the map to X), then the homotopy limit is
holim(D) ∼= C∗(X,D), where

Cn(X,D) =
∏

p+q=n,∆p→X
D(σ)q

and (dα)p,q,σ = (−1)pd(αp,q−1,σ) +
∑p
i=0(−1)idiαp−1,q,diσ.

So for example if D(σ) = R, then C∗(X,D) = C∗(X,R) (ordinary singular cochains).

2.1. Facts. If F : C → D is a right/left Quillen functor, then F preserves homotopy limits/homotopy
colimits. For example,

HomsSet(−,−) : sSetop× sSet→ sSet

sends hocolims in the first factor and holims in the second factor to holims in sSet.

3. Derived Schlessinger Criterion

Definition 3.1. Let F : sArtk → sSet be a homotopy invariant functor. We say that F preserves pullbacks
if for every homotopy pullback square

D B

C A

such that B → A is surjective, then

F (D) F (B)

F (C) F (A)

is a homotopy pullback square. We say that F is formally cohesive if F preserves pullbacks and F (k) is
contractible.
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Formally cohesive functors have a good theory of tangent spaces (this is analogous to the underived setting:
recall the conditions for F (k[ε]/ε2) to have a canonical k-vector space structure if F : Artk → Set is a classical
deformation functor).

Recall: There is an equivalence of categories

DK : Ch≥0(k)→ sVect

given by the Dold-Kan correspondence. Furthermore this respects the homotopy theory, i.e.

πn(DK(V )) = Hn(V ).

Let Ch≥0(k)fd ⊆ Ch≥0(k) be the full subcategory of V such that dimH∗(V ) ≤ ∞. If V ∈ Ch≥0(k)fd then
define

k ⊕ V := k ⊕DK(V )

with product (a, u) · (b, v) = (ab, av + bu). In fact, this thing is an object of sArtk (note k ⊕ k = k[ε]/ε2, the
ring of dual numbers in the classical, underived setting).

Proposition 3.2. Let F : sArtk → sSet be a formally cohesive functor. Then there exists some complex
tF ∈ Ch(k), unique up to quasi-isomorphism, together with a natural weak equivalence

F (k ⊕ V )
∼−→ DK(τ≥0(tF ⊗ V )).

of functors Ch≥0(k)fd → sSet.

Definition 3.3. We call tF the tangent complex of F .

Why does this make sense? Note there is a weak equivalence

F (k ⊕ k[n])
∼−→ DK(τ≥0(tF ⊗ k[n])),

so πiF (k ⊕ k[n]) = Hi−n(tF ). In particular,

H0(tF ) = π0(F ⊕ k) = π0(F (k[ε]/ε2)).

Remark 3.4 (GV). Galatius and Venkatesh don’t state Proposition 3.2 (they use spectra instead, which are
not allowed in this study group) but they more or less prove it by constructing tF directly.

Now we may state the main theorem.

Theorem 3.5 (Basically due to Lurie, Derived Schlessinger). Let F : sArtk → sSet be homotopy invariant.
Then F is pro-representable if and only if

(1) F is formally cohesive, and

(2) Hn(tF ) = 0 for n > 0.

Moreover, if H∗(tF ) has countable dimension, then you can take a countable indexing category for the repre-
senting pro-object.

Slogan:

{pro-representable functors} ⊆ {formally cohesive functors}
is like

{schemes} ⊆ {stacks}.
I.e. the homological vanishing condition in Theorem 3.5 should be thought of as having no infinitesimal
automorphisms.
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4. Examples

Here’s an example. Let R ∈ sCR be a cofibrant simplicial ring with a map R→ k. Then we can define

FR : sArtk → sSet, FR(A) = HomsCR /k(R,A).

This is formally cohesive because Hom preserves limits in the second variable (as stated previously), so in
particular it preserves pullbacks. Furthermore, FR(k) = • by definition, so it’s contractible.

The tangent complex is is

tD = DK(Ω1
R/Z ⊗R k)∨.

This has homology only in negative degrees because we took the dual of something which had nonzero
homology in positive degrees, and the fact that homotopy groups are the homology groups under Dold-Kan.
Therefore, FR is pro-representable by the “completion of R”.

If πn(R) = 0 for n > 0, and π0(R) is formally smooth over Z, then in fact

tFR = (Ω1
π0(R)/Z ⊗π0(R) k)∨,

the usual tangent space of R. On the other hand, if π0(R) is not formally smooth, then you need to replace
Ω1
π0(R)/Z with the cotangent complex of R.

Here’s another example. If F, F ′, F ′′ are formally cohesive and

G F ′

F ′′ F

is a homotopy pullback, thenG is formally cohesive. What about the tangent complex? For V ∈ Ch≥0(k)fd,

G(k ⊕ V ) = F ′(k ⊕ V )×hF (k⊕V ) F
′′(k ⊕ V )

= DK(τ≥0(tF ′ ⊗ V ))×hDK(τ≥0(tF⊗V )) DK(τ≥0(tF ′′ ⊗ V ))

= DK(τ≥0((tF ′ ×hTF tF ′′)⊗ V ))

So tG = tF ′ ×htF tF ′′.

Now take resolutions so that tF ′ → tF is surjective (hence a fibration). Then we have a short exact
sequence

0→ tG→ tF ′ ⊕ tF ′′ → tF → 0,

with associated long exact sequence

· · · → Hn+1(tF )→ Hn(tG)→ Hn(tF ′)⊕Hn(tF ′′)→ · · · .
So if F, F ′, F ′′ pro-representable, then so is G (by Theorem 3.5).

In particular this gives us a way to talk about the completed tensor product without computing it explicitly.
I.e. if F, F ′, F ′′ are pro-represented by R = (Rj)j∈J R

′ = (R′j)j∈J′ , R
′′ = (R′′j )j∈J′′ , then G is pro-represented

by R⊗RR
′′ (if you read Galatius and Venkatesh, they construct an explicit pro-system realizing this).

Let F : sArtk → sSet be a functor preserving pullbacks, but could have F (k) not contractible. Now let X be
a simplicial set, and let

ρ : X → F (k)

be some map. Now define a functor

FX,ρ : sArtk → sSet

by FX,ρ(A) = Hom(X,F (A))×hHom(X,F (k)) {ρ}. Then FX,ρ is formally cohesive. But now how do we compute

tFX,ρ?
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If σ : ∆n → F (k), then Fσ(A) = F (A) ×hF (k),σ ∆n defines a formally cohesive functor. So we get a

functor

tF : Simp(F (k))→ Ch(k), σ 7→ tFσ,

which sends all morphisms to quasi-isomorphisms. Think of this a “derived local system on F (k)”.

(Exercise: convince yourself that a functor Simp(F (k)) → Vectk sending all morphisms to isomorphisms is
the same as a local system on F (k).)

Thus, I get a functor ρ∗tF : Simp(X)
ρ−→ Simp(F (k))

tF−→ Ch(k).

Claim: tFX,ρ = C∗(X, ρ∗tF ).

Proof. Write X = colim∆n→X ∆n = hocolim∆n→X ∆n (basically the diagram you get is already cofibrant,
with the projective model structure, so no replacement is needed). Then for V ∈ Ch≥0(k)fd,

FX,ρ(k ⊕ V ) = Hom(X,F (k ⊕ V ))×hHom(X,F (k)) {ρ}

But this is just

holimσ:∆n→X Hom(∆n, F (k ⊕ V ))×hHom(∆n,F (k)) {ρ ◦ σ} = holimσ:∆n→X F (k ⊕ V )×hF (k),ρ◦σ ∆n

But by definition this is

holimσ:∆n→X Fσ(k ⊕ V )

which is

holimσDK(τ≥0(tFσ ⊗ V ))

which is

DK(τ≥0((holimσ tFσ)⊗ V ))

So tFX,ρ = holimσ tFσ = C∗(X, ρ∗tF ). �

So why did we care about this? Well, given a finite group H, we set X = BH, which is the classifying space
of H. Then let

F (A) = BGLn(A).

Then F preserves pullbacks, but F (k) = BGLn(k) is not contractible. But

{ρ∗BH → F (k) = BGLn(k)}/homotopy = {n-dimensional reps of H}/ ∼ .

For A ∈ Artk,

FX,ρ(A) = {lifts ρ : H → GLn(A) of ρ}/ ∼ .
(but you need to use something with trivial center for this ever to be pro-representable).

5. Why does Derived Schlessinger Work

Key fact: If B,A ∈ sArtk are cofibrant and a map B → A is surjective, and given some n ≥ 0 such
that

(1) πi(B) = πi(A) = 0 for i > n,

(2) πi(B)
∼−→ πi(A) for i < n, and

(3) πn(B)→ πn(A) surjective with kernel I satsifying mπ0(B)I = 0.

Then there exists a morphism A→ k ⊕ I[n+ 1] and a homotopy pullback
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B k ⊕ ˜I[n+ 1]

A k ⊕ I[n+ 1]

Lemma 5.1. Let F,G be formally cohesive and ϕ : F → G a natural transformation. Then ϕ is a natural
weak equivalence if and only if TF → TG is a quasi-isomorphism.

Sketch of proof of Derived Schlessinger. Step 0: Given R ∈ sArtk and η ∈ F (R), then we get η : FR → F .
Set Cη = cone(tFR → RF ).

Step 1: Suppose we have R and η ∈ F (R) as in Step 0 and some n ≥ 0 such that Hi(Cη) = 0 for i > −n.
Given k ↪→ H−n(Cη) ↪→ H−(n+1)(tFR), we get a homotopy pullback

R′ k ⊕ ˜k[n+ 1]

R k ⊕ k[n+ 1]

But F preserves homotopy pullbacks, so we get

F (R′) F (k ⊕ ˜k[n+ 1])

F (R) F (k ⊕ k[n+ 1]).

By construction, the image of η in F (k⊕ k[n+ 1]) is homotopic to zero, so can be lifted to F (k⊕ ˜k[n+ 1]) '
F (k) up to homotopy. So we get a lift η to η′ ∈ F (R′) such that

k ↪→ H−n(Cη)→ H−n(Cη′)

is 0.

Step 2: Do this infinitely many times, starting with R = k and n = 0. �


