
DERIVED GALOIS DEFORMATION RINGS

REBECCA BELLOVIN

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019.
These are notes taken by Ashwin Iyengar: all errors are due to him (ashwin.iyengar@kcl.ac.uk).

1. Simplicial Galois Representations

1.1. Motivation. First we need to discuss how to define a derived version of a deformation of a Galois
representation. Since the coefficients are now allowed to be simplicial Artin rings, we need a new definition.
So what do we mean by

GK,S → G(A)?

Here GK,S is the Galois group of the maximal algebraic extension of K unramified outside a finite set of place
S, G is a reductive group (later we may take G to be adjoint), and A ∈ sArtk (the category of simplicial
local Artin rings, as defined in Raffael’s talk).

The naive idea (which doesn’t work) is to define G(A) directly.

(1) Let A ∈ sArtk. We could just say [p] 7→ G(Ap), which will define a simplicial group. Unfortunately,
this is not homotopy invariant: to see this note that

G(Ap) = HomCR(OG, Ap) = HomsCR(OG, A
∆p

) = HomsCR(OG, A)p,

where we view OG as a constant simplicial ring in the third and fourth term and the underline denotes
simplicial enrichment. Therefore, our attempt is just

A 7→ HomsCR(OG, A).

But OG (viewed as a discrete simplicial ring) will almost never be cofibrant, so there’s no reason to
expect that we should get something homotopy invariant.

(2) So instead we could define G(A) := HomsCR(c(OG), A). This is now homotopy invariant, but unfor-
tunately it’s not a simplicial group, because cofibrant replacement won’t respect the Hopf algebra
structure of OG, so this isn’t quite what we want.

(3) (comment/speculation from the audience) maybe we could put a model structure on the category of
simplicial Hopf algebras and then try to cofibrantly replace OG, now viewed as a constant simplicial
Hopf algebra? Unclear.

So instead of trying to define G(A) directly, we make the observation that actually GK,S = πét1 (Z[ 1
S ], ∗). But

this profinite group can be viewed as the fundamental group of a pro-(pointed simplicial set) X (in fact there
are two ways of doing this, which we will describe in a moment). Then we make the observation that in the
discrete case, i.e when A is an ordinary ring,

{ρ : GK,S → G(A)} = {G(A)-torsors over |X|} = HomTop(|X|, BG(A))/ ∼
where |X| denotes the geometric realization of the pro-(simplicial set) X, BG(A) is the classifying space of
the group G(A), and ∼ means that we’re taking homotopy classes of morphisms.

So what are these spaces X? One candidate is the étale topological type defined in [? ] following [? ]. This
is a pro-(simplicial set) (Xi)i indexed by étale hypercoverings of the scheme Spec Z[ 1

S ], whose π1(X, ∗) :=
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limi π1(Xi, ∗) recovers the étale fundamental group of Spec Z[ 1
S ]. For our purposes we can do something

simpler, which is to note that GK,S = limαGα is a profinite group, and then we can take X to be the pro-
system (Xα)α = (N(Gα))α, where N denotes the nerve of a group, viewed as a one-object groupoid.

1.2. Defining BG. So we now need to define some notion ofBG(A) forA ∈ sArtk. For ordinary commutative
rings A, note BG(A) is the geometric realization of the nerve of G(A): i.e. if Np(G(A)) denotes the p-simplices
of the nerve, then the functor of points

A 7→ NpG(A)

is represented by G×p. Why is this true? To construct BG for a discrete group, we construct EG a
contractible space and has a free action of G, and then we take BG = EG/G.

To do this, let C be the category whose objects are indexed by elements of G, and whose morphisms are
g → gh. Let D have one object, with morphisms labelled by G and composition is multiplication. Then
there’s a map C → D.

In general, if C is a small category, then NC is a simplicial set where the 0-simplices are objects of C, and
for k > 0, the k-simplices are k-tuples of composable morphisms.

So essentially, the nerve of C (above) is contractible, and if we quotient by G, then we get the nerve of
D.

With this in mind, we can now define BG for a simplicial ring.

Definition 1.1. Consider the bisimplicial set [p] 7→ HomsCR(c(ONpG), A). Then BG(A) is Ex∞ (fibrant
replacement) of the geometric realization of HomsCR(c(ONpG), A): note the geometric realization can be
computed either by taking the ”total simplicial set” of the bisimplicial set, or by taking the diagonal: in fact
these are homotopy equivalent (this is not easy: see [? ]).

Concretely, if A is discrete, then BG(A) is weakly equivalent to NG(π0(A)). In the definition, we need
the cofibrant replacements and the Ex∞ fibrant replacement in order for this thing to behave well, at least
homotopy theoretically.

1.3. Galois Deformations. Now we can talk about Galois deformations. So let (Xα)α be either the
étale topological type for Spec Z[ 1

S ], or the pro-simplicial set NGα where α varies over the finite Galois
groups.

Definition 1.2. Now fix a map ρ : X → BG(k) in pro− sSet. Then define the unframed deformation functor

FZ[ 1
S ],ρ = Hompro− sSet(X,BG(A))×hHompro− sSet(X,BG(k)) ρ

where Hompro− sSet(X,BG(A)) = colimα HomsSet(Xα, BG(A)) and ρ is really ∆0 with the map to Hompro− sSet(X,BG(k))
given by ρ. There is also a framed version, where one replaces pro− sSet with pro− sSet∗, the pro-category
of pointed simplicial sets (and choosing basepoints for X and BG). Keeping track of this basepoint can be
roughly thought of as keeping track of a basis, which explains why this is the framed thing.

2. Pro-Representability

Recall the derived Schlessinger criterion from last week. This says that if F : sArtk → sSet is formally
cohesive, then it is pro-representable if and only if πi(tF ) = 0 for i > 0, where tF is the tangent complex of
F as defined by Dougal last week.

But in our situation, BG(k) will not be contractible, so BG won’t be formally cohesive. So instead of having a
tangent complex, we get a local system tBG on BG(k) , i.e. a functor L : Simp(BG(k))→ Ch(k) sending all
morphisms to quasi-isomorphisms (this was defined by Dougal last week). Recall the following result:
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Proposition 2.1. If F : sArtk → sSet is now any homotopy invariant functor which preserves pullbacks (in
the sense of Dougal’s talk), and given ρ : X → F (k), consider the new functor

FX,ρ(A) := hofibρ(HomsSet(X,F (A))→ HomsSet(X,F (k))).

This is formally cohesive, and the tangent complex is

tFX,ρ ∼= C∗(X, ρ∗tF )

where C∗ is the cochains construction introduced last week.

So all we need to know is that BG is homotopy invariant and preserves homotopy pullbacks, and then we
can hope to apply the Derived Schlessinger Criterion by computing the homotopy groups of tFX,ρ.

Note BG is homotopy invariant because of the fibrant replacement we took in the definition. There’s a
criterion to check that BG preserves homotopy pullbacks.

Proposition 2.2. If F : sArtk → sSet is homotopy invariant, F (A) is path-connected for all A, A 7→ ΩF (A)
(loop space) preserves homotopy pullbacks, and π0ΩF (A)→ π0ΩF (B) is surjective whenever π0A→ π0B is
surjective, then F preserves homotopy pullbacks.

To apply this, we use that G(A) := HomsCR(c(OG), A) → ΩBG(A) is a weak equivalence, which should
heuristically be true by looking at the homotopy groups.

Lemma 2.3. The tangent complex of A 7→ BG(A) is a local system on BG(k) whose homology is g, the
Lie algebra of G(k), concentrated in degree 1 with a G(k)-action (via the adjoint action, conjugation) at a
basepoint.

Note the G(k)-action arises because for any Z a simplicial set and L : Simp(Z)→ Ch(k) a local system, one
can check directly that π1(Z, z) naturally acts on H∗(Lz), where z : ∆0 → Z is some basepoint.

Proposition 2.4. The tangent complex tFZ[ 1
S ],ρ is quasi-isomorphic to C∗+1(X, ρ∗g), and

π−i(tFZ[ 1
S ],ρ)

∼= Hi+1(X, ρ∗g) = Hi+1(Z[
1

S
], ad ρ)

for i ≥ −1 (for i > 1 we have πi(tFZ[ 1
S ],ρ) = 0).

The last identification with étale cohomology (i.e. continuous group cohomology in this case) can be seen by
identifying the cochains construction with étale cochains.

So if G is an adjoint group (i.e. has trivial centralizer) and ρ is Schur (i.e. the centralizer of ρ is the center of
the group), then this is telling us that H0(Z[ 1

S ], ad ρ) = 0, so we’re pro-representable by derived Schlessinger’s
criterion. In general, one can modify this construction to take into account groups whose center is non-trivial
(like GLn): for the purposes of this study group, we’ll ignore this, but the details are worked out in Section
5.4 of [? ].

Lemma 2.5. The functor π0FZ[ 1
S ],ρ : Artk → Set is isomorphic to the usual deformation functor if ρ is

Schur, i.e. the centralizer of ρ is Z(G).

We get a similar result for the framed deformations, without assuming the Schur condition.

Proof. This is basically unwinding definitions. We’re asking about components of HomsSet(X,BG(A)), which
correspond to isomorphism classes of G(A)-torsors over X, which in turn correspond to conjugacy classes of
Galois representations ρ : Z[1/S]→ G(A).
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To dig a bit into why this should be true, consider the following equalities in the framed case. Suppose
A ∈ Artk is an ordinary (underived) Artin ring with residue field k. Then if GK,S = limαGα

π0 Hompro−(sSet∗)
((N(Gα), ∗)α, (BG(A), ∗)) = π0 colimα HomsSet∗

((N(Gα), ∗), (BG(A), ∗))
= colimα π0 HomsSet∗

((N(Gα), ∗), (BG(A), ∗))
= colimα π0 HomsSet∗

((N(Gα), ∗), (N(G(A)), ∗))
= colimα HomGrp(Gα, G(A))

= Hompro−(FinGrp)((Gα)α, G(A))

= Homcont(lim←−
α

Gα, G(A)).

The first equality is the definition of Hom sets in the pro-category, the second is the fact that π0 commutes
with filtered colimits, the third is the equivalence of BG(A) with N(G(A)) when A is discrete, the fourth is
the adjunction between π1 and the classifying space (in the homotopy category), the fifth is the definition
of Hom in a pro-category again, and the sixth is the fact that pro-(finite groups) are the same as profinite
groups with the profinite topology. �

3. Local Conditions

Let ρ : π1 Spec Z[ 1
S ]→ G(k) be a fixed Galois representation. If v ∈ S is some finite place, let FQv,ρ denote

the deformation functor for ρ pulled back to π1 Spec Qv. We then get a natural transformation

FZ[ 1
S ],ρ → FQv,ρ

Definition 3.1. A local condition is a simplicially enriched functor Dv : sArtk → sSet equipped with a
natural transformation

Dv → FQv,ρ.

The corresponding global deformation functor with local conditions is defined to be

FDZ[ 1
S ],ρ := FZ[ 1

S ],ρ ×hFQv,ρ
Dv

Remark 3.2. We don’t necessarily need a map Dv → FQv,ρ: we can take a zig-zag instead, where the maps
going the “wrong way” are weak equivalences, and still make the theory work. See the remark after (9.1) in
[? ].

Example 3.3 (Sanity Check). Suppose ρ is actually unramified at v, and let S′ = S \ {v}. Then we have a
natural transformation

FZv,ρ → FQv,ρ.

If we take Dv = FZv,ρ, then the global deformation functor

FDZ[ 1
S ],ρ = FZ[ 1

S ],ρ ×hFQv,ρ
Dv

is weakly equivalent to FZ[ 1
S′ ],ρ

: in [? ] they prove this by noting that each functor is formally cohesive, so

it suffices to check that the induced fiber sequence of tangent complexes is an isomorphism: see Section 8 of
their paper for the details.

In practice, Galatius and Venkatesh want to turn underived local conditions into derived local conditions.
Assume FQv,ρ is pro-representable (this is the only case they will care about later) with simplicial pro-ring
Rv. Then we have maps

Rv → π0Rv =: Rv � RDv ,

where RDv is the underived local condition. Now let

Dv := Hom(c(RDv ),−).
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We then get a zig-zag
Rv

∼←− c(Rv)→ c(Rv)→ c(RDv ),

and by taking Hom we get

HomsSet(c(R
D
v ),−)→ HomsSet(c(Rv),−)→ Hompro− sSet(c(Rv)),−)

∼←− Hompro− sSet(Rv,−).

Now use Remark 3.2 to obtain a local condition.

Theorem 3.4. Suppose RDv is formally smooth. Then tiFD
Z[ 1
S ],ρ
∼= Hi+1

D (Z[ 1
S ], ad ρ).

Proof Sketch. We have a map tDv → tFQv,ρ and a quasi-isomorphism τ≥0(tDv)→ tDv. Therefore,

tFDZ[ 1
S ],ρ

∼−→ hofib(tFZ[ 1
S ],ρ ⊕ τ≥0(tDv)→ tFQv,ρ).

is a natural weak equivalence.

But we have a factorization τ≥0(Dv) → τ≥0(tFQv,ρ) → tFQv,ρ. The source and target of the first map have
homotopy only in degree 0, so the first map induces a quasi-isomorphism onto the subcomplex τ≥0(tFQv,ρ)
whose cohomology is H1

D(Qv, ad ρ). Note the fact that this is true is not obvious �

Going forward, we have some extra assumptions on ρ:

(1) H0(Qp, ad ρ) = H2(Qp, ad ρ) = 0: this means that at p, the universal deformation problem is pro-
representable and formally smooth.

(2) For v ∈ S \ {p}, Hj(Qv, ad ρ) = 0 for j = 0, 1, 2: this means that we have trivial deformation theory
away from p in S.

(3) (big image) The image of ρ|Q(ζp∞ ) contains the image of Gsc(k) (simply connected cover) in G(k).

(4) At p, ρ is torsion crystalline, and there is an unobstructed subfunctor Defcris ⊂ Defp such that the
tangent space is H1

f (Qv, ad ρ).
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