The GLn eigenvariety and the p-adic realisation of Venkatesh's conjecture

Ana Caraiani notes by Pol van Hoften (and all errors due to him)

October 29, 2019

1 Setup and Motivation

The main reference for this talk is [HansenThorne]. Let $\mathcal{G} = \operatorname{GL}_n / \mathbb{Z}$ for $n \geq 2$ and in practice we will work with n > 3. Let π be a regular and (C)-algebraic cuspidal automorphic representation of $\operatorname{GL}_n(\mathbb{A})$. This means that π contributes to the cohomology of the locally symmetric space associated to G, with coefficients in a local system with weight the highest weight of. Let E_{π}/\mathbb{Q} be the number field over which π is defined. For all places l of E_{π} we have Galois representations (constructed by [HLTT])

$$\rho_{\pi,l}: G_{\mathbb{Q}} = \operatorname{Gal}(\mathbb{Q}/\mathbb{Q}) \to \operatorname{GL}_n(E_{\pi,l}).$$

These are not known to be geometric, but expected to come from a motive $M(\pi)$ over \mathbb{Q} , giving rise to the compatible system $(\rho_{\pi,l})_l$. Let $Y_{\mathcal{K}}$ be the locally symmetric space for \mathcal{G} defined by

$$G(\mathbb{Q}) \setminus \mathcal{G}(\mathbb{A}) / \mathcal{K}\mathcal{K}_{\infty} \mathbb{R}_{>0}$$

If \mathcal{K} is neat, then Y(K) has the structure of a Riemannian manifold. The representation π contributes to the Betti/singular cohomology of $Y_{\mathcal{K}}$:

$$H^*(\mathcal{K}, \mathcal{L}_{\lambda, L}) := H^*(Y_{\mathcal{K}'}, \Lambda_{\lambda, L})^{\mathcal{K}}$$

where $\mathcal{K}' \subset \mathcal{K}$ is sufficiently small. Fix a torus and Borel $\mathcal{T} \subset \mathcal{B} \subset \mathcal{G}$ and a dominant weight $\lambda \in X^*(T)^+$. Then we can define a local system of *L*-vector spaces $\mathcal{L}_{\lambda,L}$ on $Y_{\mathcal{K}}$ where *L* is a number field or a *p*-adic field. The Hecke algebra \mathbb{T}_K of level *K* acts on $H^*(\mathcal{K}, \mathcal{L}_{\lambda,L})$

More precisely, since π_{∞} is tempered we know that it contributes to

$$H^{i}(\mathcal{K}, \mathcal{L}_{\lambda, L})$$
 for $i \in [q_{0}, q_{0} + l_{0}]$

where $q_0 = \frac{1}{2} (\dim_{\mathbb{R}} Y_{\mathcal{K}} - l_0)$ and l_0 is the defect of \mathcal{G} which is equal to $\lfloor \frac{n-1}{2} \rfloor$. Moreover the contribution in degree $q_0 + i$ has dimension

$$\binom{l_0}{i} \cdot \dim(\pi_f)^{\mathcal{K}}$$

Conjecture 1. There is a natural action of

$$\bigwedge^* \operatorname{Ext}_{MM_{\mathbb{Z}}}(M(\pi), M(\pi)(1))$$

on $H^*(K, \mathcal{L}_{\lambda,l}[\mathfrak{m}])$. Here the ext-group is taken in the category of mixed motives over \mathbb{Z} , i.e., it is a motivic cohomology group. It has expected dimension l_0 (by the Block-Kato conjecture) and should make

$$\bigwedge^* \operatorname{Ext}_{\operatorname{MM}_{\mathbb{Z}}}(M(\pi), M(\pi)(1))$$

into a free module of rank 1 (or $\dim(\pi_f)^K$ over

$$\bigwedge^* \operatorname{Ext}_{\operatorname{MM}_{\mathbb{Z}}}(M(\pi), M(\pi)(1).$$

The goal of this talk is to study the *p*-adic realisation of this conjecture, via properties of eigenvarieties.

2 Eigenvarieties

The idea of eigenvarieties goes back to Hida and Coleman and is (roughly speaking) that classical modular forms of weight $k \ge 2$ can be but into *p*-adic families that vary continuously with respect to the weight, in the case that they have finite slope (valuation of the U_p eigenvalue). We will use Hansen's construction of eigenvarieties in [**MR3692014**], which gives a pair of rigid spaces over \mathbb{Q}_p

$$w: \mathcal{X} \to \mathcal{W}$$

where \mathcal{W} is the weight space, which represents the functor

$$X \mapsto \operatorname{Hom}_{\operatorname{cts}}(T(\mathbb{Z}_p), \mathcal{O}(X)^{\times}).$$

The eigenvariety \mathcal{X} of tame level K^p is a rigid space whose closed points are in bijection with systems of Hecke eigenvalues occurring in

$$H^*(K^pI, \mathcal{D}_{\lambda})$$

where I is the Iwahori subgroup of $\mathcal{G}(\mathbb{Q}_p)$ and \mathcal{D}_{λ} is some big p-adic coefficient system. Moreover the map w is finite locally on \mathcal{X} and has discrete fibers. The Hecke algebra that acts is

$$\mathbb{T}^{(N,p)} := \mathcal{H}^{(Np)} \otimes_{\mathbb{Z}} \mathbb{Z}[X_*(T)^{-}]$$

where $\mathcal{H}(Np)$ is the spherical Hecke algebra away from Np.

An example of a point is a pair (π, \mathcal{A}) where π is as before and \mathcal{A} is a "refinement" ordering of the eigenvalues of Satake parameters of π_p .

3 Main theorems

Assume that the pair (π, \mathcal{A}) satisfies

- A 1 π is unramified at p and the Satake parameters of π_p are regular semisimple.
- A 2 \mathcal{A} is an ordering of the eigenvalues of π_p that has "small slope" (for n=2 this is just val $(a_p) < k-1$, which is related to Coleman classicality).

A 3 Parity condition on π_{∞} .

Assumption A1 is necessary to prove that the Hecke eigenvalues occur in $l_0 + 1$ degrees of cohomology, assumption A3 is not very serious.

If $x = (\pi, \mathcal{A})$ is above then $x \in \mathcal{X}(L)$ with L/\mathbb{Q}_p finite and assumed sufficiently large. We choose tame level $K_1(N)$ where N is the conductor of π and $K_1(N)$ is some mirabolic subgroup. We have complete local Noetherian L-algebras

$$\mathcal{T}_x := \hat{\mathcal{O}}_{\mathcal{X},x}$$

 $\Lambda := \hat{\mathcal{O}}_{\mathcal{W},\lambda}$

where $\lambda = w(x)$ and we note that \mathcal{T}_x is a finite Λ -algebra.

Theorem 1 (Hansen-Thorne). Under assumptions A1, A2, A3 we have

$$\dim \mathbb{T}_x \ge \dim \Lambda - l_0 \tag{1}$$

and if equality holds we moreover have:

- The natural map $\Lambda \to \mathbb{T}_x$ is surjective and \mathbb{T}_x is a complete intersection ring
- Let $\mathfrak{m} \subset \mathbb{T}^{(N),p}$ be the maximal ideal corresponding to (π, \mathcal{A}) . Let $L_{\lambda,L}$ be the algebraic coefficient system of L-vector spaces of weight λ on $Y_{\mathcal{K}'}$ with $\mathcal{K}' \subset K_1(N)^p I$. Let

$$V_x := \ker(\Lambda \to \mathbb{T}_x) \otimes_{\Lambda} L$$

which has dimension l_0 by (1). Then

$$H^*(K_1(N)^p I, \mathcal{L}_{\lambda, L}[\mathfrak{m}])$$

has a canonical structure of a $\bigwedge^* V_x$ -module that is free of rank 1.

Remark 1. The equality in (1) was conjecture by Hida/Urban and is a non-abelian analogue of the Leopoldt conjecture (also see Calegari-Emerton conjectures for completed cohomology).

Let $\rho_{\pi}: G_{\mathbb{Q}} \to \operatorname{GL}_n(L)$ be the Galois representation associated to π which satisfies:

- It is unramified outside of Np.
- For $l \nmid Np$ the characteristic polynomial of $\rho_{\pi}(\text{Frob}_l)$ is determined by the Satake parameter of π_L .
- It is odd.

Conjecture 2. The representation ρ_{π} satisfies the further conditions:

- 1. It is absolutely irreducible
- 2. It satisfies local-global compatibility at p. More precisely it is crystalline with Hodge-Tate weights determined by λ and the Frobenius eigenvalues match the Satake parameters on the Weil Deligne representation associated to

$$\left. \rho_{\pi} \right|_{G_{\mathbb{Q}_p}}$$

3. There is an isomorphism

$$\mathbb{T}_x \cong R_{\rho_\pi, \alpha}$$

where the latter is a trianguline deformation ring (this is an $R = \mathbb{T}$ type result).

Remark 2. We are far from knowing assumptions 1, but it is a reasonable thing to assume. It should be possible to prove assumption 2 with state of the art techniques. Kare and Thorne [MR3702498] sketch an idea for proving a result like 3 in the ordinary case by implementing the Calegari-Geragthy method.

Recall the Bloch-Kato Selmber groups for Ad ρ_{π} and Ad $\rho_{\pi}(1)$ defined by

_

$$\ker \left[H^1(\mathbb{Z}[1/S], \operatorname{Ad} \rho_{\pi}) \to \frac{H^1(\mathbb{Q}_p, \operatorname{Ad} \rho_{\pi})}{H^1_f(\mathbb{Q}_p, \operatorname{Ad} \rho_{\pi})} \right] \oplus \bigoplus_{\substack{l \in S \\ l \neq p}} H^1(\mathbb{Q}_l^{\operatorname{ur}}, \operatorname{Ad} \rho_{\pi})$$

Remark 3. This is the tangent space of the universal deformation ring of ρ_{π} which classifies deformations ρ_A of ρ_{π} such that

$$\begin{split} \rho_A \big|_{G_{\mathbb{Q}_p}} & \text{ is crystalline } \\ \rho_A \big|_{G_{\mathbb{Q}_p}} = \rho_{\pi,l} \otimes_L A & \text{ for } l \nmid N \end{split}$$

Theorem 2. Let $x \in \mathcal{X}(L)$ correspond to (π, A) as in the previous theorem. Assume conjecture B and that dim $\mathbb{T}_x = \dim \Lambda - l_0$. Then

1. The dimension of $H^1_f(\mathbb{Q}, \operatorname{Ad} \rho_{\pi})$ is zero, the dimension of $H^1_f(\mathbb{Q}, \operatorname{Ad} \rho_{\pi}(1)) = l_0$ and we have a canonical exact sequence;

$$H^1_f(\mathbb{Q}, \operatorname{Ad} \rho_{\pi}(1)) \to \mathfrak{m}_{\Lambda}/\mathfrak{m}^2_{\Lambda} \to \mathfrak{m}_{\mathbb{T}_x}/\mathfrak{m}^2_{\mathbb{T}_x} \to 0$$
⁽²⁾

2. Suppose that \mathcal{X} is smooth at x. Then (2) is left exact inducing a canonical isomorphism

$$H^1_f(\mathbb{Q}, \operatorname{Ad} \rho_{\pi}(1)) \cong V_x.$$

Consequently, combining with Theorem 1

$$H^*(K_1(N;p),\mathcal{L}_{\lambda,L})[\mathfrak{m}]$$

has a canonical structure of a free

 $\bigwedge H^1_f(\mathbb{Q}_p, \operatorname{Ad} \rho_{\pi}(1))$

module of rank 1.

4 Idea of proof of Theorem A

We sketch the construction of \mathcal{X}, \mathcal{W} and the map w, following [MR3692014]. There is a homomorphism

$$\mathbb{T}^{(N),p} \to \mathcal{O}(\mathcal{X})$$

such that for all $\lambda \in \mathcal{W}(\overline{\mathbb{Q}_p})$ we have discrete set $w^{-1}(\lambda)$ which is in bijection with "finite slope eigenpackets" of weight λ , tame level $\mathcal{K}_1(N)$ such that for $x \in w^{-1}(\lambda)$ we have

$$\phi_{\mathcal{X},x}: \mathbb{T}^{(N),p} \to \mathcal{O}(\mathcal{X}) \to k(x).$$

If $\Omega \subset \mathcal{W}$ is an affinoid open subset then there is an

$$\mathcal{O}(\Omega)[\Delta_p]$$

module \mathcal{D}_{Ω} where Δ_p is the monoid

$$\Delta_P = \coprod_{\mu \in X_*(T)^-} I \mu I.$$

This module \mathcal{D}_{Ω} is a local system on $Y_{\mathcal{K}'}$ where $\mathcal{K}' \subset K_1(N)^p I$ as usual. This turns

$$H^*(K_1(N;p),\mathcal{D}_\Omega)$$

is a $\mathbb{T}_{\mathcal{O}(\Omega)}^{(N),p}$ -module. Now choose (Ω, h) a slope datum where h is a rational number. There is a Hecke-equivariant decomposition

$$(H^*(K_1(N;p),\mathcal{D}_\Omega)_{\leq h} \oplus (H^*(K_1(N;p),\mathcal{D}_\Omega)_{>h}))$$

and define

$$\mathbb{T}_{\Omega,h} := \operatorname{Im}\left(\mathbb{T}_{\mathcal{O}(\Omega)}^{(N),p} \to \operatorname{End}\left(H^*(K_1(N;p),\mathcal{D}_\Omega)_{\leq h}\right)\right)$$

Then locally on the eigenvariety, every point $x \in \mathcal{X}$ will have an affinoid neighborhood of the form

 $\operatorname{Sp} \mathbb{T}_{\Omega,h}.$

Moreover, if $\lambda \in \Omega(\overline{\mathbb{Q}_p})$ then

$$\mathcal{D}_{\lambda} := \mathcal{D}_{\Omega} \otimes_{\mathcal{O}(\Omega)} k(\lambda)$$

and there is a natural surjective map

$$D_{\lambda} \to \mathcal{L}_{\lambda,L} \otimes_L L(\lambda^{-1}),$$

which induces

$$H^*(K_1(N;p), \mathcal{D}_{\lambda}) \to H^*(K_1(N;p), \mathcal{L}_{\lambda,L} \otimes_L L(\lambda^{-1}))$$

that is $\mathbb{T}^{(N),p}$ -equivariant.

Definition 1. A finite slope eigenpacket

$$\phi_{\mathcal{X},x}: \mathbb{T}^{(N),p} \to k(x) = L$$

is

1. classical if it is in the support of

$$H^*(K_1(N;p), \mathcal{L}_{\lambda,L} \otimes_L L(\lambda^{-1}))$$

2. non-critical if

$$H^*(K_1(N;p),\mathcal{D}_{\lambda})_{\mathfrak{m}} \to H^*(K_1(N;p),\mathcal{L}_{\lambda,L}\otimes_L L(\lambda^{-1})_{\mathfrak{m}})$$

is an isomorphism, where $\mathfrak{m} = \ker \phi_{\mathcal{X},x}$. The latter is supported in degrees $q_0, \dots, q_0 + l_0$ The key point is now that there is a spectral sequence

$$\operatorname{Tor}_{-i}^{\Lambda}\left(\left(H^{j}(K_{1}(N;p),\mathcal{D}_{\Omega})_{\leq h},k(\lambda)\right) \Rightarrow H^{i+j}(K_{1}(N;p),\mathcal{D}_{\lambda})_{\leq h}\right)$$

and because $\mathcal{O}(\Omega) \to \Lambda$ is flat we get

$$\operatorname{Tor}_{-i}^{\Lambda}\left(\left(H^{j}(K_{1}(N;p),\mathcal{D}_{\Omega})_{\leq h}\otimes_{\mathcal{O}(\Omega)}\Lambda,k(\lambda)\right)\Rightarrow H^{i+j}(K_{1}(N;p),\mathcal{D}_{\lambda})_{\leq h}.$$

Now we can apply the Calegari-Geragthy commutative algebra Lemma (slightly improved by Hansen) to get Theorem 1.