
DERIVED HECKE ALGEBRAS FOR WEIGHT 1 MODULAR FORMS

ALICE POZZI

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019.
These are notes taken by Ashwin Iyengar (ashwin.iyengar@kcl.ac.uk).

The plan for today is the following:

(1) Formulation of the conjecture

(2) Numerical evidence for the conjecture

Venkatesh predicts an action of certain motivic cohomology groups on H∗(Y (K),Q). I’ll talk about an
analogue for coherent cohomology, motivated by the appearance of the same systems of Hecke eigenvalues,
but now coming from weight 1 modular forms.

Here is a rough table of analogies.

Singular Cohomology Coherent Cohomology
Derived Hecke Operators Usual definition via correspon-

dences, but we add in a cup prod-
uct with a congruence class

Same thing, but now a cup prod-
uct with a “Shimura class”

Action of a rational group Conjecturally, a motivic coho-
mology group

Stark unit

Evidence for the conjecture Tori, complex realization case,
not much else

Numerical evidence from ?,
Proofs for forms of dihedral
projective image in soon-to-
be-published work of Darmon,
Harris, Rotger, and Venkatesh.

1. Formulation

1.1. Setup. Let g be a weight 1 newform of level N and Nebentypus character χ. Write

g =
∑
n≥0

anq
n

where an ∈ E/Q land in some number field E with ring of integers O. We can define an odd Galois
representation

ρg : GQ → GL2(O)

attached to g (by work of Deligne-Serre in weight 1). Actually ρg factors through a finite extension L (we
call this the splitting field of ρg):

ρg : GQ → GL/Q → GL2(O).

Let Ad0 ρ = {ϕ ∈ End(O2) : Trϕ = 0} denote the representation of GL/Q acting by conjugation, and let

Ad∗ ρ = HomO(Ad0 ρ,O).

Concrete example: L is a Galois closure of a cubic field, and we have Gal(L/Q) ∼= S3 ↪→ GL2(Z).
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1.2. The Stark Unit. Let

Ug = (UL ⊗Ad∗ ρ)GL/Q = HomO[GL/Q](Ad0 ρ, UL ⊗ O)

where UL = O×L . This is the ”Ad0 ρ-isotypic part of the unit group.”

Claim 1.2.1.

(1) dimE(Ug ⊗Q) = 1.

(2) Furthermore, if we assume that Q(µp) 6⊂ L, then Ug ⊗ Zp is a free O ⊗ Zp-module.

Proof.

dimE(UL ⊗Ad∗ ρ) = dim(Ad∗ ρ)c=1 − dim(Ad∗ ρ)GL/Q = 1− 0 = 1

The second part follows from the fact that Ug has no p-torsion (?) �

In ?, there was an action of a Bloch-Kato Selmer group on cohomology. We can try to do the same thing
here. Take p a prime dividing p - N , and unramified in E. Then consider the representation

ρp : GL/Q → GL2(Op).

Assuming p - Cl(L) and p - [L : Q],

H1
f (Q,Ad ρp(1)) ∼= Ug,p.

Note this can also be compared with motivic cohomology. Denote by Mg the Chow motive attached to Ad∗ ρ
(which exists in this case, because ρ is an Artin representation), then we have a map

H1
mot(Mg,Q(1))→ Ug ⊗Q.

Harris and Venkatesh believe this is an isomorphism.

1.3. Taylor-Wiles Primes. Choose a prime p in E, p - p ≥ 5, assume Q(µp) 6⊂ L, p - #GL/Q. Then one
can look at

ρ : GL/Q → GL2(Fp).

Also assume that all weight 1 forms of level Γ1(N) over Fp lift to characteristic 0. (will check)

Definition 1.3.1. As usual, a Taylor-Wiles prime q of level n for (g, p) is a prime q such that

• (q,N) = 1 and pn | q − 1, and

• we fix an ordering α 6= β ∈ Fp such that

ρ(Frobq) ∼
(
α 0
0 β

)

Now let k = O/pn, and (Z/qZ)×p the p-part of the units, k〈1〉 = (Z/qZ)×p ⊗k, and k〈−1〉 = Hom((Z/qZ)×p , k).
Note k〈1〉, k〈−1〉 are non-canonically isomorphic to k. Finally, for M an abelian group, denote

M〈n〉 = M ⊗ k〈n〉,

where k〈n〉 = k〈1〉⊗n.
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1.4. Reduction of Ug at Taylor-Wiles primes. Now fix a prime q of L lying over a Taylor-Wiles prime
q, and pick Φq a Frobenius element for q. Fix lifts

ρ(Φq) =

(
α̃ 0

0 β̃

)
Then

Ad∗ ρ(Φq) =

α̃/β̃ 0 0

0 β̃/α̃ 0
0 0 1


and let

eq = 2ρ(Φq)− Tr ρ(Φq) ∈ (Ad0 ρ)Φq=1.

We have a map

θq : Ug = (UL ⊗Ad∗ ρ)GL/Q → (F×q ⊗Ad∗ ρ)Φq=1 eq−→ (F×q ⊗ k)Φq=1 = Fq ⊗ k = k〈1〉,

which should be thought of as reduction at the Taylor-Wiles prime q.

By dualizing, we get a map

θ∨q : k〈−1〉 → U∨g ⊗ k.

Then choose u ∈ Ug such that gcd([Ug : Ou], p) = 1, and choose u∗ ∈ U∨g such that gcd(〈u, u∗〉, p) = 1. Then
the map is

z 7→ u∗ ⊗ 〈θq(u), z〉
〈u, u∗〉

1.5. Derived Hecke Operators. We have the usual covering X1(q)→ X0(q), defined over Z[1/N ], and we
let X1(q)∆ be the subcovering whose Galois group over X0(q) is (Z/qZ)×p , which defines an étale covering
over Z[1/qN ].

This covering corresponds to a class σ ∈ H1
et(X0(q)k, k〈1〉). But we have a map k → Ga of étale sheaves over

X0(q)k, so we get a map

H1
et(X0(q)k, k〈1〉)→ H1

et(X0(q)k,Ga〈1〉) = H1
Zar(X0(q)k,O〈1〉)

Now we can define the Hecke operator. Let X = X(Γ1(N))
π1←− X(Γ0(q)∩Γ0(N))

π2−→ X. Let σX denote the
pullback of σ in H1(X(Γ1(N) ∩ Γ0(q))k,O〈1〉). Then we have (for z ∈ k〈1〉)

Γq,z : H0(Xk, ω)
π∗1−→ H0(X0(qN), ω)

∪σXz−−−−→ H1(X01(qN), ω)
π2−→ H1(Xk, ω)

Remark 1.5.1. This is really a construction that works over characteristic p fields.

Conjecture 1.5.1 (?). Denote H∗(X,ω)[g] the eigenspace for the system of Hecke eigenvalues of g. Then
there exists an action ? of U∨g on H∗(X,ω)[g] such that (let g denote the reduction to k)

Tq,zg = α(θ̃∨q (z) ? g)

where the tilde over θ∨q (z) denotes an arbitrary lift, and α ∈ E is independent of (p, n, q, z).

Remark 1.5.2. To be clear, if x, y ∈ V a k-vector space, then x = αy for α ∈ E if there exist elements
A,B ∈ O such that α = A/B with A,B not both divisible by p, with Ay = Bx.
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2. Numerical Evidence for the Conjecture

Say x ∼ y if there exists α ∈ E such that x = αy, as previously defined.

Then the conjecture says that Tq,zg ∼ θ̃∨q ? g.

Let g′ =
∑
n anq

n denote the mod p reduction of g. We have

[·, ·]R : H1(XR, ω)×H0(XR, ω(−1))→ H1(XR,Ω
1) ∼= R

where Ω1 = ω⊗2(−D) for D a cusp divisor, and R is some Z[1/N ]-algebra.

Then

[θ̃∨q ? g, g
′]k = [θ̃∨q ? g, g

′]k = 〈θq(u), z〉 ·
[u∗g, g′]O[ 1

N ]

〈u, u∗〉
Furthermore,

[Tq,zg, g
′]k ∼ 〈θq(u), z〉.

But this is
[π2,∗(π

∗
1g ∪ zσX), g′]k = [π∗1g ∪ zσX , π∗2g′]k = 〈π∗1g · π∗2g′, zσX〉k = 〈Gproj, zσ〉

where 〈·, ·〉k : H0(Xk,Ω
1)×H1(Xk,O)→ k is the usual Serre duality pairing, and Gproj is the pushforward

of π∗1g · π∗2g to level Γ0(q).

So now we have 〈Gproj, zσ〉k ∼ 〈θq(u), z〉k, and we may as well get rid of the z, so 〈Gproj, σ〉k ∼ θq(u) in
k〈1〉.

Now we’ve reduced the situation to something a bit more easily computable.

2.1. Morel’s Computation. Denote by E2 the Eisenstein cusp form of weight 2 over k. Then E2 ∈
H0(X0(q)k,Ω

1). We want to use the pairing

〈σ,E2〉k = computed explicitly over Fp

and compare this with the pairing 〈σ,Gproj〉k that we care about.

We denote $Morel = ζ2
∏(q−1)/2
i=1 i−8i ∈ (Z/qZ)× where ζ = 1 if q = 2 mod 3 or 2q−1/3 otherwise.

Claim 2.1.1 (Morel). 〈σ,E2〉k ≡ $Morel mod p.

Claim 2.1.2 (Morel). $Morel 6= 0 if and only if rankZp
TI = 1 where T is the Hecke algebra acting over Zp

for weight 2 cusp forms, and I is the Eisenstein ideal, defined as

0→ I → T→ Fp → 0

where T→ Fp sends T` 7→ (`+ 1).

Write
T→ ⊕m 6=ITm ⊕TI

and take Gproj = Gproj
I + Gproj

I′ . Then, finally, the Shimura class is killed by the Eisenstein ideal I (this is
due to Mazur), so

〈σ,Gproj〉k = 〈σ,Gproj
I 〉k

Now assuming $Morel 6= 0, so a1(Gproj
I )E = Gproj and we finally conclude that

〈σ,Gproj〉 = $Morel ⊗ a1(Gproj
I ) mod p.


