DERIVED HECKE ALGEBRAS FOR WEIGHT 1 MODULAR FORMS

ALICE POZZI

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019. These are notes taken by Ashwin Iyengar (ashwin.iyengar@kcl.ac.uk).

The plan for today is the following:

- (1) Formulation of the conjecture
- (2) Numerical evidence for the conjecture

Venkatesh predicts an action of certain motivic cohomology groups on $H^*(Y(K), \mathbf{Q})$. I'll talk about an analogue for coherent cohomology, motivated by the appearance of the same systems of Hecke eigenvalues, but now coming from weight 1 modular forms.

Here is a rough table of analogies.

	Singular Cohomology	Coherent Cohomology
Derived Hecke Operators	Usual definition via correspon-	Same thing, but now a cup prod-
	dences, but we add in a cup prod-	uct with a "Shimura class"
	uct with a congruence class	
Action of a rational group	Conjecturally, a motivic coho-	Stark unit
	mology group	
Evidence for the conjecture	Tori, complex realization case,	Numerical evidence from ?,
	not much else	Proofs for forms of dihedral
		projective image in soon-to-
		be-published work of Darmon,
		Harris, Rotger, and Venkatesh.

1. FORMULATION

1.1. Setup. Let g be a weight 1 newform of level N and Nebentypus character χ . Write

$$g = \sum_{n \ge 0} a_n q^n$$

where $a_n \in E/\mathbf{Q}$ land in some number field E with ring of integers \mathcal{O} . We can define an odd Galois representation

$$\rho_g: G_\mathbf{Q} \to \mathrm{GL}_2(\mathscr{O})$$

attached to g (by work of Deligne-Serre in weight 1). Actually ρ_g factors through a finite extension L (we call this the splitting field of ρ_g):

$$\rho_g: G_\mathbf{Q} \to G_{L/\mathbf{Q}} \to \mathrm{GL}_2(\mathscr{O}).$$

Let $\operatorname{Ad}^{0} \rho = \{\varphi \in \operatorname{End}(\mathscr{O}^{2}) : \operatorname{Tr} \varphi = 0\}$ denote the representation of $G_{L/\mathbf{Q}}$ acting by conjugation, and let $\operatorname{Ad}^{*} \rho = \operatorname{Hom}_{\mathscr{O}}(\operatorname{Ad}^{0} \rho, \mathscr{O}).$

Concrete example: L is a Galois closure of a cubic field, and we have $\operatorname{Gal}(L/\mathbf{Q}) \cong S_3 \hookrightarrow \operatorname{GL}_2(\mathbf{Z})$.

Date: March 20, 2019.

1.2. The Stark Unit. Let

$$U_g = (U_L \otimes \operatorname{Ad}^* \rho)^{G_L/\mathbf{Q}} = \operatorname{Hom}_{\mathscr{O}[G_L/\mathbf{Q}]}(\operatorname{Ad}^0 \rho, U_L \otimes \mathscr{O})$$

where $U_L = \mathscr{O}_L^{\times}$. This is the "Ad⁰ ρ -isotypic part of the unit group."

Claim 1.2.1.

- (1) $\dim_E(U_g \otimes \mathbf{Q}) = 1.$
- (2) Furthermore, if we assume that $\mathbf{Q}(\mu_p) \not\subset L$, then $U_g \otimes \mathbf{Z}_p$ is a free $\mathscr{O} \otimes \mathbf{Z}_p$ -module.

Proof.

$$\dim_E(U_L \otimes \operatorname{Ad}^* \rho) = \dim(\operatorname{Ad}^* \rho)^{c=1} - \dim(\operatorname{Ad}^* \rho)^{G_L/\mathbf{Q}} = 1 - 0 = 1$$

The second part follows from the fact that U_g has no p-torsion (?)

In ?, there was an action of a Bloch-Kato Selmer group on cohomology. We can try to do the same thing here. Take p a prime dividing $p \nmid N$, and unramified in E. Then consider the representation

$$\rho_{\mathfrak{p}}: G_{L/\mathbf{Q}} \to \mathrm{GL}_2(\mathscr{O}_{\mathfrak{p}})$$

Assuming $p \nmid \operatorname{Cl}(L)$ and $p \nmid [L : \mathbf{Q}]$,

$$H^1_f(\mathbf{Q}, \operatorname{Ad} \rho_{\mathfrak{p}}(1)) \cong U_{g,\mathfrak{p}}$$

Note this can also be compared with motivic cohomology. Denote by M_g the Chow motive attached to $\operatorname{Ad}^* \rho$ (which exists in this case, because ρ is an Artin representation), then we have a map

$$H^1_{\mathrm{mot}}(M_g, \mathbf{Q}(1)) \to U_g \otimes \mathbf{Q}$$

Harris and Venkatesh believe this is an isomorphism.

1.3. Taylor-Wiles Primes. Choose a prime \mathfrak{p} in E, $\mathfrak{p} \nmid p \geq 5$, assume $\mathbf{Q}(\mu_p) \not\subset L$, $p \nmid \#G_{L/\mathbf{Q}}$. Then one can look at

$$\overline{\rho}: G_{L/\mathbf{Q}} \to \mathrm{GL}_2(\mathbf{F}_{\mathfrak{p}}).$$

Also assume that all weight 1 forms of level $\Gamma_1(N)$ over $\mathbf{F}_{\mathfrak{p}}$ lift to characteristic 0. (will check)

Definition 1.3.1. As usual, a **Taylor-Wiles prime** q of level n for (q, \mathfrak{p}) is a prime q such that

- (q, N) = 1 and $p^n | q 1$, and
- we fix an ordering $\alpha \neq \beta \in \mathbf{F}_{\mathfrak{p}}$ such that

$$\overline{\rho}(\operatorname{Frob}_q) \sim \begin{pmatrix} \alpha & 0\\ 0 & \beta \end{pmatrix}$$

Now let $k = \mathscr{O}/\mathfrak{p}^n$, and $(\mathbf{Z}/q\mathbf{Z})_p^{\times}$ the *p*-part of the units, $k\langle 1 \rangle = (\mathbf{Z}/q\mathbf{Z})_p^{\times} \otimes k$, and $k\langle -1 \rangle = \operatorname{Hom}((\mathbf{Z}/q\mathbf{Z})_p^{\times}, k)$. Note $k\langle 1 \rangle, k\langle -1 \rangle$ are non-canonically isomorphic to k. Finally, for M an abelian group, denote

$$M\langle n\rangle = M\otimes k\langle n\rangle,$$

where $k\langle n \rangle = k\langle 1 \rangle^{\otimes n}$.

1.4. Reduction of U_g at Taylor-Wiles primes. Now fix a prime \mathfrak{q} of L lying over a Taylor-Wiles prime q, and pick Φ_q a Frobenius element for q. Fix lifts

$$\rho(\Phi_q) = \begin{pmatrix} \widetilde{\alpha} & 0\\ 0 & \widetilde{\beta} \end{pmatrix}$$

Then

$$\operatorname{Ad}^* \rho(\Phi_q) = \begin{pmatrix} \widetilde{\alpha} / \widetilde{\beta} & 0 & 0 \\ 0 & \widetilde{\beta} / \widetilde{\alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and let

$$e_q = 2\rho(\Phi_q) - \operatorname{Tr} \rho(\Phi_q) \in (\operatorname{Ad}^0 \rho)^{\Phi_q = 1}.$$

We have a map

$$\theta_q: U_g = (U_L \otimes \operatorname{Ad}^* \rho)^{G_{L/\mathbf{Q}}} \to (\mathbf{F}_q^{\times} \otimes \operatorname{Ad}^* \rho)^{\Phi_q = 1} \xrightarrow{e_q} (\mathbf{F}_q^{\times} \otimes k)^{\Phi_q = 1} = \mathbf{F}_q \otimes k = k \langle 1 \rangle,$$

which should be thought of as reduction at the Taylor-Wiles prime q.

By dualizing, we get a map

$$\theta_q^{\vee}: k\langle -1 \rangle \to U_q^{\vee} \otimes k.$$

Then choose $u \in U_g$ such that $gcd([U_g : \mathcal{O}u], p) = 1$, and choose $u^* \in U_g^{\vee}$ such that $gcd(\langle u, u^* \rangle, p) = 1$. Then the map is

$$z\mapsto u^*\otimes \frac{\langle \theta_q(u),z\rangle}{\langle u,u^*\rangle}$$

1.5. **Derived Hecke Operators.** We have the usual covering $X_1(q) \to X_0(q)$, defined over $\mathbb{Z}[1/N]$, and we let $X_1(q)^{\Delta}$ be the subcovering whose Galois group over $X_0(q)$ is $(\mathbb{Z}/q\mathbb{Z})_p^{\times}$, which defines an étale covering over $\mathbb{Z}[1/qN]$.

This covering corresponds to a class $\sigma \in H^1_{\text{et}}(X_0(q)_k, k\langle 1 \rangle)$. But we have a map $k \to \mathbf{G}_a$ of étale sheaves over $X_0(q)_k$, so we get a map

$$H^{1}_{\text{et}}(X_{0}(q)_{k}, k\langle 1 \rangle) \to H^{1}_{\text{et}}(X_{0}(q)_{k}, \mathbf{G}_{a}\langle 1 \rangle) = H^{1}_{\text{Zar}}(X_{0}(q)_{k}, \mathscr{O}\langle 1 \rangle)$$

Now we can define the Hecke operator. Let $X = X(\Gamma_1(N)) \xleftarrow{\pi_1} X(\Gamma_0(q) \cap \Gamma_0(N)) \xrightarrow{\pi_2} X$. Let σ_X denote the pullback of σ in $H^1(X(\Gamma_1(N) \cap \Gamma_0(q))_k, \mathscr{O}(1))$. Then we have (for $z \in k\langle 1 \rangle$)

$$\Gamma_{q,z}: H^0(X_k, \omega) \xrightarrow{\pi_1^*} H^0(X_0(qN), \omega) \xrightarrow{\cup \sigma_X z} H^1(X_{01}(qN), \omega) \xrightarrow{\pi_2} H^1(X_k, \omega)$$

Remark 1.5.1. This is really a construction that works over characteristic p fields.

Conjecture 1.5.1 (?). Denote $H^*(X, \omega)[g]$ the eigenspace for the system of Hecke eigenvalues of g. Then there exists an action \star of U_q^{\vee} on $H^*(X, \omega)[g]$ such that (let \overline{g} denote the reduction to k)

$$T_{q,z}\overline{g} = \alpha(\widetilde{\theta_q^{\vee}(z)} \star g)$$

where the tilde over $\theta_q^{\vee}(z)$ denotes an arbitrary lift, and $\alpha \in E$ is independent of (\mathfrak{p}, n, q, z) .

Remark 1.5.2. To be clear, if $x, y \in V$ a k-vector space, then $x = \alpha y$ for $\alpha \in E$ if there exist elements $A, B \in \mathcal{O}$ such that $\alpha = A/B$ with A, B not both divisible by p, with Ay = Bx.

ALICE POZZI

2. Numerical Evidence for the Conjecture

Say $x \sim y$ if there exists $\alpha \in E$ such that $x = \alpha y$, as previously defined.

Then the conjecture says that $T_{q,z}\overline{g} \sim \overline{\widetilde{\theta_q^{\vee}} \star g}$.

Let $g' = \sum_n \overline{a_n} q^n$ denote the mod p reduction of g. We have

 $[\cdot,\cdot]_R: H^1(X_R,\omega) \times H^0(X_R,\omega(-1)) \to H^1(X_R,\Omega^1) \cong R$

where $\Omega^1 = \omega^{\otimes 2}(-D)$ for D a cusp divisor, and R is some $\mathbb{Z}[1/N]$ -algebra.

Then

$$[\overline{\widetilde{\theta_q^{\vee}}\star g},\overline{g}']_k = [\overline{\widetilde{\theta_q^{\vee}}}\star g,\overline{g}']_k = \langle \theta_q(u),z\rangle \cdot \frac{[u^*g,g']_{\mathscr{O}[\frac{1}{N}]}}{\langle u,u^*\rangle}$$

Furthermore,

$$[T_{q,z}\overline{g},g']_k \sim \langle \theta_q(u),z\rangle.$$

But this is

$$[\pi_{2,*}(\pi_1^*\overline{g} \cup z\sigma_X), g']_k = [\pi_1^*\overline{g} \cup z\sigma_X, \pi_2^*g']_k = \langle \pi_1^*\overline{g} \cdot \pi_2^*g', z\sigma_X \rangle_k = \langle G^{\text{proj}}, z\sigma_$$

where $\langle \cdot, \cdot \rangle_k : H^0(X_k, \Omega^1) \times H^1(X_k, \mathscr{O}) \to k$ is the usual Serre duality pairing, and G^{proj} is the pushforward of $\pi_1^* g \cdot \pi_2^* g$ to level $\Gamma_0(q)$.

So now we have $\langle G^{\text{proj}}, z\sigma \rangle_k \sim \langle \theta_q(u), z \rangle_k$, and we may as well get rid of the z, so $\langle G^{\text{proj}}, \sigma \rangle_k \sim \theta_q(u)$ in $k\langle 1 \rangle$.

Now we've reduced the situation to something a bit more easily computable.

2.1. Morel's Computation. Denote by E_2 the Eisenstein cusp form of weight 2 over k. Then $E_2 \in H^0(X_0(q)_k, \Omega^1)$. We want to use the pairing

$$\langle \sigma, E_2 \rangle_k = \text{computed explicitly over } \mathbf{F}_p$$

and compare this with the pairing $\langle \sigma, G^{\text{proj}} \rangle_k$ that we care about.

We denote $\varpi_{\text{Morel}} = \zeta^2 \prod_{i=1}^{(q-1)/2} i^{-8i} \in (\mathbf{Z}/q\mathbf{Z})^{\times}$ where $\zeta = 1$ if $q = 2 \mod 3$ or $2^{q-1}/3$ otherwise.

Claim 2.1.1 (Morel). $\langle \sigma, E_2 \rangle_k \equiv \varpi_{\text{Morel}} \mod p$.

Claim 2.1.2 (Morel). $\varpi_{\text{Morel}} \neq 0$ if and only if $\operatorname{rank}_{\mathbf{Z}_p} \mathbf{T}_I = 1$ where \mathbf{T} is the Hecke algebra acting over \mathbf{Z}_p for weight 2 cusp forms, and I is the Eisenstein ideal, defined as

$$0 \to I \to \mathbf{T} \to \mathbf{F}_p \to 0$$

where $\mathbf{T} \to \mathbf{F}_p$ sends $T_{\ell} \mapsto (\ell + 1)$.

Write

$$\mathbf{T} \to \oplus_{\mathfrak{m} \neq I} \mathbf{T}_{\mathfrak{m}} \oplus \mathbf{T}_{I}$$

and take $G^{\text{proj}} = G_I^{\text{proj}} + G_{I'}^{\text{proj}}$. Then, finally, the Shimura class is killed by the Eisenstein ideal I (this is due to Mazur), so

$$\langle \sigma, G^{\mathrm{proj}} \rangle_k = \langle \sigma, G_I^{\mathrm{proj}} \rangle$$

Now assuming $\varpi_{\text{Morel}} \neq 0$, so $a_1(G_I^{\text{proj}})E = G^{\text{proj}}$ and we finally conclude that

$$\langle \sigma, G^{\text{proj}} \rangle = \varpi_{\text{Morel}} \otimes a_1(G_I^{\text{proj}}) \mod p$$