DERIVED HECKE ALGEBRAS FOR WEIGHT 1 MODULAR FORMS

ALICE POZZI

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019. These are notes taken by Ashwin Iyengar (ashwin.iyengar@kcl.ac.uk).

The plan for today is the following:
(1) Formulation of the conjecture
(2) Numerical evidence for the conjecture

Venkatesh predicts an action of certain motivic cohomology groups on $H^{*}(Y(K), \mathbf{Q})$. I'll talk about an analogue for coherent cohomology, motivated by the appearance of the same systems of Hecke eigenvalues, but now coming from weight 1 modular forms.

Here is a rough table of analogies.

	Singular Cohomology	Coherent Cohomology
Derived Hecke Operators	Usual definition via correspon- dences, but we add in a cup prod- uct with a congruence class	Same thing, but now a cup prod- uct with a "Shimura class"
Action of a rational group	Conjecturally, a motivic coho- mology group	Stark unit
Evidence for the conjecture	Tori, complex realization case, not much else	Numerical evidence from ?, Proofs for forms of dihedral projective image in soon-to- be-published work of Darmon,
Harris, Rotger, and Venkatesh.		

1. Formulation

1.1. Setup. Let g be a weight 1 newform of level N and Nebentypus character χ. Write

$$
g=\sum_{n \geq 0} a_{n} q^{n}
$$

where $a_{n} \in E / \mathbf{Q}$ land in some number field E with ring of integers \mathscr{O}. We can define an odd Galois representation

$$
\rho_{g}: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{2}(\mathscr{O})
$$

attached to g (by work of Deligne-Serre in weight 1). Actually ρ_{g} factors through a finite extension L (we call this the splitting field of ρ_{g}):

$$
\rho_{g}: G_{\mathbf{Q}} \rightarrow G_{L / \mathbf{Q}} \rightarrow \operatorname{GL}_{2}(\mathscr{O}) .
$$

Let $\operatorname{Ad}^{0} \rho=\left\{\varphi \in \operatorname{End}\left(\mathscr{O}^{2}\right): \operatorname{Tr} \varphi=0\right\}$ denote the representation of $G_{L / \mathbf{Q}}$ acting by conjugation, and let $\operatorname{Ad}^{*} \rho=\operatorname{Hom}_{\mathscr{O}}\left(\operatorname{Ad}^{0} \rho, \mathscr{O}\right)$.

Concrete example: L is a Galois closure of a cubic field, and we have $\operatorname{Gal}(L / \mathbf{Q}) \cong S_{3} \hookrightarrow \mathrm{GL}_{2}(\mathbf{Z})$.

[^0]1.2. The Stark Unit. Let
$$
U_{g}=\left(U_{L} \otimes \operatorname{Ad}^{*} \rho\right)^{G_{L / \mathbf{Q}}}=\operatorname{Hom}_{\mathscr{O}\left[G_{L / \mathbf{Q}}\right]}\left(\operatorname{Ad}^{0} \rho, U_{L} \otimes \mathscr{O}\right)
$$
where $U_{L}=\mathscr{O}_{L}^{\times}$. This is the " $\operatorname{Ad}^{0} \rho$-isotypic part of the unit group."

Claim 1.2.1.

(1) $\operatorname{dim}_{E}\left(U_{g} \otimes \mathbf{Q}\right)=1$.
(2) Furthermore, if we assume that $\mathbf{Q}\left(\mu_{p}\right) \not \subset L$, then $U_{g} \otimes \mathbf{Z}_{p}$ is a free $\mathscr{O} \otimes \mathbf{Z}_{p}$-module.

Proof.

$$
\operatorname{dim}_{E}\left(U_{L} \otimes \operatorname{Ad}^{*} \rho\right)=\operatorname{dim}\left(\operatorname{Ad}^{*} \rho\right)^{c=1}-\operatorname{dim}\left(\operatorname{Ad}^{*} \rho\right)^{G_{L} / \mathbf{Q}}=1-0=1
$$

The second part follows from the fact that U_{g} has no p-torsion (?)

In ?, there was an action of a Bloch-Kato Selmer group on cohomology. We can try to do the same thing here. Take \mathfrak{p} a prime dividing $p \nmid N$, and unramified in E. Then consider the representation

$$
\rho_{\mathfrak{p}}: G_{L / \mathbf{Q}} \rightarrow \operatorname{GL}_{2}\left(\mathscr{O}_{\mathfrak{p}}\right)
$$

Assuming $p \nmid \mathrm{Cl}(L)$ and $p \nmid[L: \mathbf{Q}]$,

$$
H_{f}^{1}\left(\mathbf{Q}, \operatorname{Ad} \rho_{\mathfrak{p}}(1)\right) \cong U_{g, \mathfrak{p}}
$$

Note this can also be compared with motivic cohomology. Denote by M_{g} the Chow motive attached to $\mathrm{Ad}^{*} \rho$ (which exists in this case, because ρ is an Artin representation), then we have a map

$$
H_{\mathrm{mot}}^{1}\left(M_{g}, \mathbf{Q}(1)\right) \rightarrow U_{g} \otimes \mathbf{Q}
$$

Harris and Venkatesh believe this is an isomorphism.
1.3. Taylor-Wiles Primes. Choose a prime \mathfrak{p} in $E, \mathfrak{p} \nmid p \geq 5$, assume $\mathbf{Q}\left(\mu_{p}\right) \not \subset L, p \nmid \# G_{L / \mathbf{Q}}$. Then one can look at

$$
\bar{\rho}: G_{L / \mathbf{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{\mathfrak{p}}\right)
$$

Also assume that all weight 1 forms of level $\Gamma_{1}(N)$ over $\mathbf{F}_{\mathfrak{p}}$ lift to characteristic 0. (will check)

Definition 1.3.1. As usual, a Taylor-Wiles prime q of level n for (g, \mathfrak{p}) is a prime q such that

- $(q, N)=1$ and $p^{n} \mid q-1$, and
- we fix an ordering $\alpha \neq \beta \in \mathbf{F}_{\mathfrak{p}}$ such that

$$
\bar{\rho}\left(\operatorname{Frob}_{q}\right) \sim\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

Now let $k=\mathscr{O} / \mathfrak{p}^{n}$, and $(\mathbf{Z} / q \mathbf{Z})_{p}^{\times}$the p-part of the units, $k\langle 1\rangle=(\mathbf{Z} / q \mathbf{Z})_{p}^{\times} \otimes k$, and $k\langle-1\rangle=\operatorname{Hom}\left((\mathbf{Z} / q \mathbf{Z})_{p}^{\times}, k\right)$. Note $k\langle 1\rangle, k\langle-1\rangle$ are non-canonically isomorphic to k. Finally, for M an abelian group, denote

$$
M\langle n\rangle=M \otimes k\langle n\rangle
$$

where $k\langle n\rangle=k\langle 1\rangle^{\otimes n}$.
1.4. Reduction of U_{g} at Taylor-Wiles primes. Now fix a prime \mathfrak{q} of L lying over a Taylor-Wiles prime q, and pick Φ_{q} a Frobenius element for q. Fix lifts

$$
\rho\left(\Phi_{q}\right)=\left(\begin{array}{cc}
\widetilde{\alpha} & 0 \\
0 & \widetilde{\beta}
\end{array}\right)
$$

Then

$$
\operatorname{Ad}^{*} \rho\left(\Phi_{q}\right)=\left(\begin{array}{ccc}
\widetilde{\alpha} / \widetilde{\beta} & 0 & 0 \\
0 & \widetilde{\beta} / \widetilde{\alpha} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and let

$$
e_{q}=2 \rho\left(\Phi_{q}\right)-\operatorname{Tr} \rho\left(\Phi_{q}\right) \in\left(\operatorname{Ad}^{0} \rho\right)^{\Phi_{q}=1}
$$

We have a map

$$
\theta_{q}: U_{g}=\left(U_{L} \otimes \mathrm{Ad}^{*} \rho\right)^{G_{L / Q}} \rightarrow\left(\mathbf{F}_{q}^{\times} \otimes \mathrm{Ad}^{*} \rho\right)^{\Phi_{q}=1} \xrightarrow{e_{q}}\left(\mathbf{F}_{q}^{\times} \otimes k\right)^{\Phi_{q}=1}=\mathbf{F}_{q} \otimes k=k\langle 1\rangle,
$$

which should be thought of as reduction at the Taylor-Wiles prime q.
By dualizing, we get a map

$$
\theta_{q}^{\vee}: k\langle-1\rangle \rightarrow U_{g}^{\vee} \otimes k
$$

Then choose $u \in U_{g}$ such that $\operatorname{gcd}\left(\left[U_{g}: \mathscr{O} u\right], p\right)=1$, and choose $u^{*} \in U_{g}^{\vee}$ such that $\operatorname{gcd}\left(\left\langle u, u^{*}\right\rangle, p\right)=1$. Then the map is

$$
z \mapsto u^{*} \otimes \frac{\left\langle\theta_{q}(u), z\right\rangle}{\left\langle u, u^{*}\right\rangle}
$$

1.5. Derived Hecke Operators. We have the usual covering $X_{1}(q) \rightarrow X_{0}(q)$, defined over $\mathbf{Z}[1 / N]$, and we let $X_{1}(q)^{\Delta}$ be the subcovering whose Galois group over $X_{0}(q)$ is $(\mathbf{Z} / q \mathbf{Z})_{p}^{\times}$, which defines an étale covering over $\mathbf{Z}[1 / q N]$.

This covering corresponds to a class $\sigma \in H_{\mathrm{et}}^{1}\left(X_{0}(q)_{k}, k\langle 1\rangle\right)$. But we have a map $k \rightarrow \mathbf{G}_{a}$ of étale sheaves over $X_{0}(q)_{k}$, so we get a map

$$
H_{\mathrm{et}}^{1}\left(X_{0}(q)_{k}, k\langle 1\rangle\right) \rightarrow H_{\mathrm{et}}^{1}\left(X_{0}(q)_{k}, \mathbf{G}_{a}\langle 1\rangle\right)=H_{\mathrm{Zar}}^{1}\left(X_{0}(q)_{k}, \mathscr{O}\langle 1\rangle\right)
$$

Now we can define the Hecke operator. Let $X=X\left(\Gamma_{1}(N)\right) \stackrel{\pi_{1}}{\leftarrow} X\left(\Gamma_{0}(q) \cap \Gamma_{0}(N)\right) \xrightarrow{\pi_{2}} X$. Let σ_{X} denote the pullback of σ in $H^{1}\left(X\left(\Gamma_{1}(N) \cap \Gamma_{0}(q)\right)_{k}, \mathscr{O}\langle 1\rangle\right)$. Then we have (for $z \in k\langle 1\rangle$)

$$
\Gamma_{q, z}: H^{0}\left(X_{k}, \omega\right) \xrightarrow{\pi_{1}^{*}} H^{0}\left(X_{0}(q N), \omega\right) \xrightarrow{\cup \sigma_{X} z} H^{1}\left(X_{01}(q N), \omega\right) \xrightarrow{\pi_{2}} H^{1}\left(X_{k}, \omega\right)
$$

Remark 1.5.1. This is really a construction that works over characteristic p fields.

Conjecture 1.5.1 (?). Denote $H^{*}(X, \omega)[g]$ the eigenspace for the system of Hecke eigenvalues of g. Then there exists an action \star of U_{g}^{\vee} on $H^{*}(X, \omega)[g]$ such that (let \bar{g} denote the reduction to k)

$$
T_{q, z} \bar{g}=\overline{\alpha\left(\overline{\theta_{q}^{\vee}(z)} \star g\right)}
$$

where the tilde over $\theta_{q}^{\vee}(z)$ denotes an arbitrary lift, and $\alpha \in E$ is independent of (\mathfrak{p}, n, q, z).

Remark 1.5.2. To be clear, if $x, y \in V$ a k-vector space, then $x=\alpha y$ for $\alpha \in E$ if there exist elements $A, B \in \mathscr{O}$ such that $\alpha=A / B$ with A, B not both divisible by p, with $A y=B x$.

2. Numerical Evidence for the Conjecture

Say $x \sim y$ if there exists $\alpha \in E$ such that $x=\alpha y$, as previously defined.
Then the conjecture says that $T_{q, z} \bar{g} \sim \widetilde{\overline{\theta_{q}^{\vee}} \star g}$.
Let $g^{\prime}=\sum_{n} \overline{a_{n}} q^{n}$ denote the $\bmod p$ reduction of g. We have

$$
[\cdot, \cdot]_{R}: H^{1}\left(X_{R}, \omega\right) \times H^{0}\left(X_{R}, \omega(-1)\right) \rightarrow H^{1}\left(X_{R}, \Omega^{1}\right) \cong R
$$

where $\Omega^{1}=\omega^{\otimes 2}(-D)$ for D a cusp divisor, and R is some $\mathbf{Z}[1 / N]$-algebra.
Then

$$
\left[\widetilde{\theta_{q}^{\vee} \star g}, \bar{g}^{\prime}\right]_{k}=\left[\overline{\widetilde{\theta_{q}^{\vee}}} \star g, \bar{g}^{\prime}\right]_{k}=\left\langle\theta_{q}(u), z\right\rangle \cdot \frac{\overline{\left[u^{*} g, g^{\prime}\right]_{\mathscr{O}\left[\frac{1}{N}\right]}}}{\left\langle u, u^{*}\right\rangle}
$$

Furthermore,

$$
\left[T_{q, z} \bar{g}, g^{\prime}\right]_{k} \sim\left\langle\theta_{q}(u), z\right\rangle
$$

But this is

$$
\left[\pi_{2, *}\left(\pi_{1}^{*} \bar{g} \cup z \sigma_{X}\right), g^{\prime}\right]_{k}=\left[\pi_{1}^{*} \bar{g} \cup z \sigma_{X}, \pi_{2}^{*} g^{\prime}\right]_{k}=\left\langle\pi_{1}^{*} \bar{g} \cdot \pi_{2}^{*} g^{\prime}, z \sigma_{X}\right\rangle_{k}=\left\langle G^{\mathrm{proj}}, z \sigma\right\rangle
$$

where $\langle\cdot, \cdot\rangle_{k}: H^{0}\left(X_{k}, \Omega^{1}\right) \times H^{1}\left(X_{k}, \mathscr{O}\right) \rightarrow k$ is the usual Serre duality pairing, and $G^{\text {proj }}$ is the pushforward of $\pi_{1}^{*} g \cdot \pi_{2}^{*} g$ to level $\Gamma_{0}(q)$.

So now we have $\left\langle G^{\text {proj }}, z \sigma\right\rangle_{k} \sim\left\langle\theta_{q}(u), z\right\rangle_{k}$, and we may as well get rid of the z, so $\left\langle G^{\text {proj }}, \sigma\right\rangle_{k} \sim \theta_{q}(u)$ in $k\langle 1\rangle$.

Now we've reduced the situation to something a bit more easily computable.
2.1. Morel's Computation. Denote by E_{2} the Eisenstein cusp form of weight 2 over k. Then $E_{2} \in$ $H^{0}\left(X_{0}(q)_{k}, \Omega^{1}\right)$. We want to use the pairing

$$
\left\langle\sigma, E_{2}\right\rangle_{k}=\text { computed explicitly over } \mathbf{F}_{p}
$$

and compare this with the pairing $\left\langle\sigma, G^{\mathrm{proj}}\right\rangle_{k}$ that we care about.
We denote $\varpi_{\text {Morel }}=\zeta^{2} \prod_{i=1}^{(q-1) / 2} i^{-8 i} \in(\mathbf{Z} / q \mathbf{Z})^{\times}$where $\zeta=1$ if $\mathrm{q}=2 \bmod 3$ or $2^{q-1} / 3$ otherwise.
Claim 2.1.1 (Morel). $\left\langle\sigma, E_{2}\right\rangle_{k} \equiv \varpi_{\text {Morel }} \bmod p$.
Claim 2.1.2 (Morel). $\varpi_{\text {Morel }} \neq 0$ if and only if $\operatorname{rank}_{\mathbf{Z}_{p}} \mathbf{T}_{I}=1$ where \mathbf{T} is the Hecke algebra acting over \mathbf{Z}_{p} for weight 2 cusp forms, and I is the Eisenstein ideal, defined as

$$
0 \rightarrow I \rightarrow \mathbf{T} \rightarrow \mathbf{F}_{p} \rightarrow 0
$$

where $\mathbf{T} \rightarrow \mathbf{F}_{p}$ sends $T_{\ell} \mapsto(\ell+1)$.
Write

$$
\mathbf{T} \rightarrow \oplus_{\mathfrak{m} \neq I} \mathbf{T}_{\mathfrak{m}} \oplus \mathbf{T}_{I}
$$

and take $G^{\mathrm{proj}}=G_{I}^{\mathrm{proj}}+G_{I^{\prime}}^{\mathrm{proj}}$. Then, finally, the Shimura class is killed by the Eisenstein ideal I (this is due to Mazur), so

$$
\left\langle\sigma, G^{\mathrm{proj}}\right\rangle_{k}=\left\langle\sigma, G_{I}^{\mathrm{proj}}\right\rangle_{k}
$$

Now assuming $\varpi_{\text {Morel }} \neq 0$, so $a_{1}\left(G_{I}^{\text {proj }}\right) E=G^{\text {proj }}$ and we finally conclude that

$$
\left\langle\sigma, G^{\mathrm{proj}}\right\rangle=\varpi_{\text {Morel }} \otimes a_{1}\left(G_{I}^{\mathrm{proj}}\right) \quad \bmod p
$$

[^0]: Date: March 20, 2019.

