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1. Introduction

The aim of today is to give explicit examples of how automorphic forms contribute to the cohomology of locally
symmetric spaces (although we will focus on rather concrete examples, and avoid the adelic formalism).

It is hard to overstate the importance of cohomological methods of studying automorphic forms:

(1) We can “forget” the analytic properties of automorphic forms, just using an algebraic theory.

(2) It’s much easier to compute explicit examples in this setting (see LMFDB, for example).

(3) We can find Galois representations in the cohomology of locally symmetric spaces.

(4) Using period maps, we can see L-values, and then algebraic structures on cohomology translate into
algebraic (and p-adic) properties of L-values. This is fundamental to Iwasawa theory.

(5) There are two main ways of constructing and studying p-adic families of automorphic forms. The first,
and original, method uses algebraic structures on locally symmetric spaces that do not exist in general
(for example, the case of GL2 over a non-totally real field). The second is a cohomological approach,
via completed cohomology or overconvergent cohomology, which works for general reductive groups.

2. Classical Modular Forms

Fix a congruence subgroup Γ and let f ∈ Sk+2(Γ) be a cusp form. There are many different ways of “seeing”
f in cohomology.

Definition 2.1. Let Vk = Symk C2 be the space of homogeneous polynomials in two variables X and Y , of
degree k. This carries a “natural”1 action of GL2(C).

(1) de Rham: Define the differential δf := f(z)(X − zY )kdz on H, the complex upper half plane.
Note that under the action of Γ, f(z) transforms like (cz + d)k+2, dz transforms like (cz + d)−2 and
(X − zY )k transforms like (cz + d)−k, plus the action on X,Y that implies that δf descends to a
Vk-valued 1-form on Γ\H (we pick an action on Vk, and the polynomial (X−zY )k, so that this would
happen). In particular, we get a well-defined class [δf ] =: θf ∈ H1

dR(YΓ, Vk).

(2) compact support: Let ∆0 := Div0(P1
Q) be the space of degree 0 divisors: this can be thought of

as the space of “paths between cusps”. Let

φf : ∆0 → Vk

Date: January 16, 2019.
1Quotation marks as the definition varies wildly from paper to paper; the most natural is (p|γ)(x, y)T = p(γ(x, y)T ), letting

γ act on the column vector (x, y)T . Almost every possible iteration of this appearing as a left- or right-action, with tranposes,

adjoints and/or conjugation by finite-order matrices, appears somewhere in the literature...
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be the map taking [r]− [s] 7→
∫ s
r
δf . This is Γ-invariant under the action

φ|γ(D) = φ(γD)|γ,

and we get that φf ∈ HomΓ(∆0, Vk) =: SymbΓ(Vk). In fact:

Theorem 2.2 (Ash-Stevens, [1]).

SymbΓ(Vk) = H1
c (YΓ, Vk).

For an excellent and down-to-earth introduction to modular symbols, and their use in the study of
L-functions, see [7] (and the accompanying lectures by Pollack and Stevens at the Arizona Winter
School 2011).

(3) Group/Singular Define

ψf : Γ→ Vk, γ 7→
∫ γ∞

∞
δf .

This is a 1-cocyle, and thus

ψf ∈ H1(Γ, Vk) ∼= H1(YΓ, Vk).

In summary, we get maps

H1
dR

Sk+2(Γ) H1
c

H1

f 7→θf

f 7→φf

f 7→ψf

A natural question to ask: is this map surjective? The answer is no. There are still contributions from
anti-holomorphic cusp forms (which one obtains from holomorphic cusp forms via the involution f(z) 7→
f(z) := f(z), and there are still Eisenstein series (being careful with convergence issues).

Theorem 2.3 (Eichler-Shimura). The maps above give an Hecke-equivariant isomorphism

Sk+2(Γ)⊕ Sk+2(Γ)⊕ Eisk+2(Γ)
∼−→ H1(YΓ, Vk),

where the Hecke operators act on the left via their action on modular forms, and on the right via correspon-
dences.

Proof Sketch. First, one defines a cup product pairing on cohomology, and relates this explicitly to the
Petersson inner product on forms. One uses this relation to show injectivity of the map, and then the proof
follows from counting the dimensions. (For a complete proof, see [8, §6]). �

Remark 2.4 (Warning!). We also have an isomorphism

Sk+2(Γ)⊕ Sk+2(Γ)⊕ Eisk+2(Γ)
∼−→ H1

c (YΓ, Vk)

to compactly supported cohomology, and there is a natural map H1
c → H1, but this is not an isomorphism:

it has Eisenstein kernel and cokernel. However, the map

Sk+2(Γ)⊕ Sk+2(Γ)→ H1
c (YΓ, Vk)

∼−→ H1(YΓ, Vk)
∼−→ Sk+2(Γ)⊕ Sk+2(Γ)⊕ Eisk+2(Γ)

induces the identity map on Sk+2(Γ)⊕ Sk+2(Γ).

In light of this, we make the following definition.
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Definition 2.5. Let
H1

cusp(YΓ, Vk) := Sk+2(Γ)⊕ Sk+2(Γ) ⊂ H1(YΓ, Vk)

denote the image of the cuspidal space in cohomology.

The images of the cusp forms in de Rham, compactly supported or singular cohomology are all canonically
isomorphic via Hecke-equivariant maps (so it is just the Eisenstein parts that behave badly).

Note that the work of Venkatesh is not really best studied on the modular forms case: in this case, modu-
lar/automorphic forms contribute to just one degree, while Venkatesh’s action concerns the “spreading out”
of the cohomology in multiple degrees.

3. Bianchi Modular Forms

Classical modular forms are automorphic forms for GL2 /Q. Bianchi modular forms, on the other hand, are
automorphic forms for GL2 /K, where K is an imaginary quadratic field. For simplicity, assume K has class
number 1.

3.1. Motivation. First, we give some motivation by explaining the above statement for classical modular
forms. Note in this case, we have an isomorphism

H ∼−→ GL+
2 (R)/R≥0 · SO2(R),

sending x+ iy to

(
y x
0 1

)
. In fact, we may define a new function F : GL+

2 (R)→ C by

F

((
a b
c d

))
= (ci+ d)−kf

(
ai+ b

ci+ d

)
This function is naturally left Γ-invariant, but now there is a transformation property under R≥0 · SO2(R):
namely, F (gλ) = λ−kF (g) for λ > 0 and F (gr(θ)) = eikθ for r(θ) ∈ SO2(R).

The point is that F is really a Γ-invariant map of R>0 SO2(R)-representations, and the target is irreducible.
In fact, all irreducible algebraic representations of R>0 SO2(R) are characters, and “weight k” means we are
choosing the character χk : (x, r(θ)) 7→ x−ke−kθ.

One can lift this further to an adelic interpretation, and the resulting function then generates an automorphic
representation, but we will avoid the adelic theory for this talk.

3.2. The Bianchi Case.

Remark 3.1. For concreteness, this is all necessarily terse/vague. For precise and complete definitions,
largely in the adelic setting, see [5], where the case of general number fields is treated.

We use Section 3.1 to motivate the definition of a Bianchi modular form.

Consider the quotient GL2(C)/C× SO2(C). This is the same as hyperbolic 3-space H3 = C×R>0 via

(z, t) 7→
(
t z
0 1

)
.

In particular, this is a 3-dimensional real manifold.

So we want to study the algebraic representations of C× SU2(C).

• The algebraic irreducible representations of C× look like z 7→ z−kz−`.

• The algebraic irreducible representations of SU2(C) look like Vn(C) = Symn(C2), where the action

is given by p|u
(
x
y

)
= p

(
u

(
x
y

))
.
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Thus, we will take a weight of a Bianchi modular form to be a pair of integers (k, `), which corresponds
to choosing the representation εk,` : C× → C× taking z 7→ z−kz−` and the representation Vk+`+2 of
SU2(C).

Definition 3.2 (Imprecise). A Bianchi modular form of weight (k, `) and level Γ ⊂ SL2(OK) is a map of
representations f : H3 → Vk+`+2 ⊗ εk,` satisfying

• An automorphy condition for Γ (via the action of C× SU2(C) on both sides).

• A harmonicity condition.

• A growth condition at the cusps P1
K (the boundary of H3).

We write Mk,`(Γ) for the space of such forms.

Remark 3.3.

• One can show that Mk,`(Γ) is a finite dimensional complex vector space.

• There exist Hecke actions indexed by ideals in OK .

• As in the classical case, there exist Fourier-Whittaker expansions, and the coefficients are explicitly
related to the Hecke eigenvalues for a Bianchi eigenform.

• We can define cusp forms via vanishing of constant Fourier coefficients. Write Sk,`(Γ) for the space
of cusp forms.

• We have Sk,`(Γ) = 0 when k 6= `: i.e. all nonzero cusp forms have parallel weight.

• Again all of this is more cleanly defined using the adelic approach, and this then means we can deal
with general class number. In the case of class number h, a Bianchi modular form will explicitly be a
collection of h functions H3 → Vk+`+2, and if p is a non-principal prime, then the Hecke operator Tp
interchanges these components. This all corresponds to the decomposition of the locally symmetric
space (for appropriate level) into connected components indexed by the class group (using strong
approximation for GL2(AK)).

3.3. Differentials on H3. Let Ω1(H3,C) be the space of differential 1-forms on H3. Note H3 = C×R>0.
One can use this description to show that Ω1(H3,C) is generated as a C∞(H3)-module by the three elements
dz, dz, dt.

Let Ω2(H3,C) be the space of differential 2-forms on H3. This is generated as a C∞(H3)-module by the
three elements

dz ∧ dz
t

,
dt ∧ dz

t
,
dt ∧ dz

t
.

These spaces of differential forms are infinite dimensional over C, so we will just extract the part whose
coefficients are constants. To that end, let

Ω1
0(H3,C) := Cdz ⊕Cdz ⊕Cdt

and

Ω2
0(H3,C) := C

dz ∧ dz
t

⊕C
dt ∧ dz

t
⊕C

dt ∧ dz
t

.

Note SL2(C) acts on H3 by left-translation. This then induces actions on Ωi0 for i = 1, 2. The key property
now is that we can describe these modules very explicitly via spaces we’ve already seen.
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Fact 3.4. As SU2(C)-modules, there exist isomorphisms

V2(C)
∼−→ Ω1

0(H3)

A2 7→ dz

AB 7→ −dt
B2 7→ −dz

and

V2(C)
∼−→ Ω2

0(H3)

A2 7→ dt ∧ dz
t

AB 7→ −2
dz ∧ dz

t

B2 7→ dt ∧ dz
t

3.4. Cohomology Classes Attached to Bianchi Modular Forms. Let f ∈ Sk,k(Γ). This is a map
f : H3 → V2k+2, as in the definition, satisfying certain properties.

Proposition 3.5 (Clebsch-Gordon). Without loss of generality, suppose k ≥ `. As SU2(C)-modules,

Vk ⊗ V` ∼= Vk−` ⊗ Vk−`−2 ⊗ · · · ⊗ Vk+`.

Repeating this several times, we see that Vk ⊗ Vk ⊗ V2 admits V2k+2 as a summand, that is, we get an
SU2(C)-equivariant map

V2k+2 ↪→ Vk ⊗ Vk ⊗ V2.

So we can consider f as a map f : H3 → Vk ⊗ Vk ⊗ V2. Note that this is still C× SU2(C)-equivariant.

The main idea now is to replace V2 with Ω1
0 and Ω2

0, to obtain δ1
f and δ2

f , which are respectively a Vk ⊗ Vk-
valued 1-form and 2-form on H3.

Since f is left-Γ-invariant, as in the classical case, δ1
f and δ2

f descend to forms on YΓ = Γ\H3. Thus, we get
classes

θif ∈ Hi
dR(YΓ, Vk ⊗ Vk), i = 1, 2.

Definition 3.6. For i = 1, 2, let Hi
cusp(YΓ, Vk ⊗ Vk) be the image of the map Sk,k(Γ) → Hi

dR(YΓ, Vk ⊗ Vk)

taking f 7→ θif .

Note that since K has no real embeddings, there is no concept of ‘antiholomorphic form’ here, and we capture
the whole cuspidal space just with Sk,k. (The mantra is: complex places lead to spreading out across multiple
degrees; real places lead to spreading out to higher multiplicity in each degree).

Theorem 3.7 (Eichler-Shimura-Harder, [4, 5]). This gives Hecke-equivariant isomorphisms

Sk,k(Γ)
∼−→ Hi

cusp(YΓ, Vk ⊗ Vk)

for i = 1, 2.

Remark 3.8. This provides the ‘simplest’ setting where Venkatesh’s conjecture applies. There are phenom-
ena in this case that the conjecture should allow us to understand better. For example, to a Bianchi modular
form f and a prime p of K, we can attach two p-adic L-invariants Lif using the cohomology in degrees i = 1, 2.
It is natural to speculate that these are equal:

Theorem 3.9 (Gehrman, [2]). If Venkatesh’s conjecture is true, then L1
f = L2

f .
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This is a case where we can obtain potentially different periods arising from the classes in degrees 1 and
2, and Venkatesh can show that they are the same period. There are, however, certain arithmetic periods
that arise from only one of H1 or H1. For example, we can obtain integral formulae for critical values of
L-functions attached to f through H1 [3, 9], but seemingly not through H2. On the other hand, there exist
integral formulae for non-critical L-values using H2 [6]. Wild speculation: can we exploit the structures
involved in Venkatesh’s conjecture to link this data together, for example through p-adic L-functions?

4. General Number Fields

Let F/Q be a number field (of class number 1, again for simplicity) of degree d = r + 2s, where r and s are

as usual. Let Σ = Σ(R) t Σ(C) t Σ(C), where Σ(R) is the set of real embeddings, Σ(C) is a choice of one

complex embedding from each pair, and Σ(C) is the set of conjugate choices.

Let HF = Hr2 × Hs3. Then a weight for an automorphic form for GL2 /F should be a d-tuple λ = (kv)v∈Σ

(plus parity conditions).

Definition 4.1. Let J ⊂ ΣR. An automorphic form for GL2 /F (with respect to J) is basically a holomorphic
modular form of weight kv for each v ∈ J , an antiholomorphic modular form of weight kv for each v ∈ Σ(R)\J ,
and a Bianchi modular form of weight (kv, kv) for each v ∈ Σ(C), neatly packaged into a morphism of
representations

HF →
⊗

v∈Σ(R)

χkv ⊕
⊗

v∈Σ(C)

Vkv+kv+2.

They also have to satisfy an automorphy condition, a harmonicity condition, and a certain growth condition
at cusps.

If we impose a vanishing condition on the Fourier series and require that kv = kv, we get the space Sλ,J(Γ)
of cusp forms of weight λ, holomorphic at J and anti-holomorphic outside J .

To attach a cohomology class, take a subset J ′ ⊂ Σ(C). Then:

• For all v ∈ J , we get a contribution of dzv.

• For all v ∈ Σ(R)\J , we get a contribution of dzv.

• For all v ∈ Σ(C)\J ′, we get a contribution of a 1-form.

• For all v ∈ J ′, we get a contribution of a 2-form.

So the resulting cohomology class has degree r + s+ #J ′. As J ′ varies, we get classes in degrees

r + s, r + s+ 1, . . . , r + 2s.

This exactly matches what James mentioned in the first lecture.

Theorem 4.2. [5] As J and J ′ vary, this association gives rise to Hecke-equivariant isomorphisms⊕
J⊂Σ(R)

⊕
J′⊂Σ(C),#J′=t

Sλ,J(Γ) = Hr+s+t
cusp (YΓ, Vλ).

Note that this gives an explicit realisation of Matsushima’s formula in the setting of GL2 over number fields.
In particular, in this case we have `0 = s = #Σ(C). Let the multiplicity with which a cusp form f appears in
the lowest degree r+ s be D. The isomorphism says that the multiplicity with which a cusp form f appears
in the cohomology of degree r + s + t is D times the number of subsets J ′ ⊂ Σ(C) of size t, of which there
are binom(s, t).
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