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Let G be a semisimple real lie group with I' a discrete cocompact E] subgroup that is torsion free. Let K be
a maximal compact subgroup of G and let V' be a finite dimensional complex continuous representation
of G that we might assume irreducible. We are interested in studying the cohomology groups

H(I, V),

which, as we have seen in the previous lectures, are closely related to the theory of automorphic forms.
We will show the following results:

e The cohomology groups can be computed as

H™I,V) = Hg,K;C®T\G)® V).

e These (g, K)-cohomology groups can be decomposed as

H(g, K;C®(T\G)®@V = @m ) H" (g, K; Hy @ V),

where (7, H;) runs over certain representations of G. This is known as Matsushima’s formula.
e We will finally study the groups
H*(g, K;He @ V)

in more detail. In particular, we will show that, for certain representations 7, they vanish outside
certain range and we will calculate their dimension.

1. COHOMOLOGY AND DIFFERENTIAL FORMS

Reference: [BW0O0, §VII.2]
Let X := G/K denote the symmetric space associated to G, it is simply connected and contractible.

1.1. Differential forms. Let A? = A9(X, V) denote the smooth V-valued differentials forms of degree
g on X with the usual differentials d : 49 — A9T! given by

q

dw(vl,...,vq):Z(—l)zvi-w(vl,..., +Z 1) w(] ([vi, vl 015000, 4y oo, D4,y 2. V),
=1 1<j
where v; -w(v1,...,0;,...,v4) denotes the differentiation of the function w in the direction v;, [,] refers to

the bracket of vector fields, and " means omission of the corresponding argument.

IWe do not say anything about the non-compact case due to lack of time, but that case is of particular interest. See
IBWO0O, §XIV] for the analogous statements in this context.
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Proposition 1. There is an canonical isomorphism

H*(T,V)=H*(I\X,V)
where V is the local system on T\X associated to V.

Proof. This follows immediately from the fact that T'\ X is a K(T', 1)-space, i.e. m1(I'\X) =T and all its
other homotopy groups vanish. O

The comparison between de Rham and singular cohomology now gives us the following Corollary:

Corollary 1. There are canonical isomorphisms
H*(I,V) = H*(A*(T\X, V)) =2 H*(A*(X,V)").
1.2. (g, K) modules and (g, K )-cohomology. Let g denote the Lie algebra of G. Recall that a (g, K)-

module is a vector space W over R which is a g-module and a K-module with the obvious compatibility
condition. Namely we ask

o (k) (m(X) -v) =n(Adk(X)) (n(k)-v), forallke K, X € g,v € W,

o If FF C W is a K-stable finite dimensional subspace, then the representation of K is differentiable,
and has 7l as differential.

Ezample 1. If V is a representation of GG, then the subspace of smooth and K-finite vectors of V is a
(g, K)-module.

Definition 1. For V' a (g, K)-module we define

C%(g, K; V) = Homg (A%(g /e, V) = (A%p* @ V) E/K"

where g = €@ p is the Cartan decomposition. There are differentials defined in the same way as was done
in §1.1] which gives us a complex C*(g, K; V') and we define the (g, K)-cohomology of V as the cohomology
groups of this complex:

H*(g, K; V) := H*(C*(g, K; V).

The left translation by elements g € G provides an isomorphism between the tangent space at g and the
tangent space at the identity element, and hence an identification

AYT\X, V) = Homg (A (g/K,C>®(I'\G)V) = Cl(g, K;C*(T'\G) @ V).

An explicit computation of the differentials now gives:

Proposition 2. There is a canonical isomorphism

H*(I\X,V) = H*(g, K;C*(T\G) ® V)



COHOMOLOGY OF ARITHMETIC GROUPS 3

2. MATSUSHIMA’S FORMULA

Reference: |[BW0O, §VII.3-6]

Let L?(T'\G, V) be the space of square-integrable V-valued functions of I'\G. This is acted upon by G
and decomposes as

L}*(T\G) = @m m,T)

a direct sum of irreducible representations with ﬁmte multiplicities. Moreover one has

C>(I\G) = (L*(I\G))™ (@m ) .
where (—)*° means taking smooth vectors.

Proposition 3 (Matsushima’s formula, [BW00, VII.3.2 Theorem]). We have
H* (g, K;C°(T\G) @ V) = @m CH* (g, K;H, @ V)

where the direct sum is now finite.

Proof. The previously stated facts give us

H*(g, K;C*(T\G)®@ V) = H*(g,K @m T Fev).

We want to show that the right hand side term equals
@m D)H*(g, K; He @ V).

Let now S C G be a finite set of representations. Then we can decompose

H*(T,V) =P m(x,T)H* (9, K; H- ® V) ® H* (g, K @mﬂ, @ V).
TeS &S

The compactness assumption on T tells us that the cohomology H*(T', V') of the arithmetic group is finite
dimensional. We deduce, for dimension reasons, that, for a large enough S, we have

H* (g, K;H,@V)=0 Vr ¢&S.

We have hence reduced then to proving that, if each (g, K)-cohomology of a countable collection of
irreducible unitary representations of G vanishes, then the cohomology of its closed direct sum vanishes
as well. This is not very hard and follows from a topological argument (cf. [BWO00, VII.3.3 Lemma] for
the details). O

Summarising , we have reduced our computation of H*(I', V') to the study the (g, K') cohomology groups
of certain representations of the form H; ® V, where H; is a unitary (g, K)-module and V is a finite
dimensional (irreducible) complex continuous representation of G..

Remark 1. We will give later a necessary condition for 7 to appear in the the above sum. A precise
characterisation of the representations 7 that contribute to H*(I', V') have been described by Vogan-
Zuckerman.
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3. CALCULATION OF THE (g, K)-COHOMOLOGY

Reference: |[BW0O, §II).

Let (p, F) be a finite dimensional irreducible complex representations of G E] and (o, H) be a unitary
(g, K)-module. Let V= H® FE and 7 = p® 0. With an eye on Matsushima’s formula, we want to study
the cohomology groups H*(g, K; V) in this particular case.

3.1. The Casimir element. Let (y;) be a basis of g and (y}) be its dual basis with respect to the Killing

form. Then
C= Z Yi - i
i

is an element of the center of the universal enveloping algebra U(g) of g, independent of the choice of
basis, and is called the Casimir element. By Schur’s lemma, C' must act as a scalar on any representation.
Proposition 4 (|[BWO00, §I1.3.1 Proposition]). Assume that p(C) = s-1Id and o(C) =r -1d. Then

o Ifr+#sthen H* (g, K;V) =0.

o Ifr=s then H*(g,K;V) = Homg (A, V).

Proof. The proof follows these steps:

(1) One defines an inner product on
DY(V) := Homg (A, V)= (Ap) @ HR E
(observe that we are just taking R-linear homomorphisms and hence D4(V) is bigger than C?(V'))

by taking the tensor products of the inner products on each term, which we call (—, —)y. We can
then define an adjoint 0 : D4 — D=1 of d for the inner product (—, —)y and shows the that
A :=0d+ do

acts on C4(g, K;V) as (p(C) —o(C)) - Id and that if A = 0 then d = d = 0 (the first assertion
follows from a direct calculation and the last one follows from the non-degeneracy of the bilinear

pairing).
(2) If r # s then for n € Ci(g, K; V) a g-cocycle, we have
An = don + 0dn = don
and so n = (r — 5)~1d0n is a coboundary.
(3) If r = s then A =0 and so d = 0 and hence every chain is closed, which gives
H(g, K;V) =Hompg (Ap, V).

Corollary 2. For trivial coefficients, we can identify
(ATp)"

with the G-invariant differential forms on G/K. The result says that all such forms are harmonic,
recovering an old result of Cartan

2We switch notation and denote the representation V' from the previous sections by FE.
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Corollary 3. The representations w contributing to the some in Proposition @ are such that x= = Xp*
and wy = wy+, where p* denotes the contragredient representation of p and xx (resp. Xp+) and wx (resp.
wp+ ) denote the infinitesimal and central characters of ® (resp. p*).

4. COHOMOLOGY OF TEMPERED REPRESENTATIONS

Reference: |[BW0O, §III].

In this section, we calculate the dimension of the (g, K)-cohomology groups H*(g, K;V) for certain
representations V = H ® E. In particular, we will see that they vanish outside a certain range which is
given in purely in terms of G and K.

4.1. Parabolic induction. Let’s start with a definition.

Definition 2. A parabolic pair is a pair (P, A) where P is a parabolic subgroup and A is a split component
of a mazximal torus in the Levi of P. Say (P,A) < (P',A") if P C P' and A D A" and we fiz a minimal
parabolic pair (Py, Ag). We say that a parabolic (P, A) is standard (w.r.t. the the chosen minimal parabolic
pair) if it is greater than the minimal one.

Let (P, A) be a standard parabolic pair. Recall the Levi decomposition
P=MN=A"MN.

Let (0, Hy) be an admissible representations of M with infinitesimal character x, and let v € a.. Given
this data, we define the parabolically induced representation as follows:

Ips, =IndG(H, ® Cp 1)
= {f €C®(G, H,) f(man - g) = a"a(n)f(g)},

where pp € af is a usual normalisation factor defined as pp(a) = det(Ad aly,)'/2. This has an action of
G by right translation which makes it into an admissible representations of G, which is unitary if o ® v
is unitary, with infinitesimal character x,, 4.

Definition 3. We call (P, A) cuspidal if "M has a compact Cartan subgroup.
4.2. Cohomology of induced representations.

Proposition 5 ([BWO00, III.5.1 Theorem]). Let (P, A) be a standard cuspidal parabolic pair of G. Let
(0, Hy) be a discrete series representations of "M, v € ac purely imaginary and I = Ips,. Finally let E
be an irreducible and finite dimensional complex representation of G. Then

(1) Hi(g, K; I © E) =0 if ¢ & [q0, g0 + lo]
(2) If Hi(g, K;I ® E) # 0 then it has dimension

(o)

Recall that the invariants qo, {p are defined as ¢y = ¢o(G) = rk(G) — rk(K) and that

90 = q(G) = dim(G/QK) Lo
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Sketch of proof. This is a very deep result with a very involved proof. We content ourselves with sketching
the main steps of its proof, unfortunately omitting way too many details.

(1)

(2)

3)

[BWO00]

First one proves (cf. [BWO0O0, §II1.2.5]) a version Shapiro’s Lemma and obtains
H% (g, K;1® E)=H%p,K,; Hyy ® E),
where H, ), = H, ® C, 1.
There is a Hochschild-Serre spectral sequence (cf. [BWO00, §1.6.5]) which reads
EP?:= HP(m,Kp; Hi(n, KNy E) ® Hyy) = HP9(p, Kp; Hyy ® E).

One needs now to understand the groups H?(n, K ; E) as m-representations. This is a theorem
of Kostant ([BWO00, II1.3.1 Theorem]):

Hin,E)= P L,
seWp
l(s)=q
where Wp is a system of representatives of Wy \Weg (the quotient of the Weyl groups), and the
L are certain representations which depend on s and on the maximal weight A of E. Using this
one shows that

H'M)(g, K; 1 ® E) = (H*(m, Kp; Hy ® Ls) @ A"af).

The first factor of the RHS is concentrated in degree ¢(°M) := (dim°M — dim K N °M)/2 and
has dimension 1 ([BWO00, §I1.5.4 and II.s.7]). Observe also that af. has dimension ¢y. This proves
that

HT) (g, K, I ® E) = Naj,

where j = ¢ —q(°M). This already shows that the dimensions of the cohomology groups are given
by some combinatorial numbers and one needs to check that the non-vanishing range is the one
claimed in the statement of the Proposition. Finally one shoes that in fact I(s) = w and that
moreover

dim NV
_l’_

and the result follows.
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