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Let G be a semisimple real lie group with Γ a discrete cocompact 1 subgroup that is torsion free. Let K be
a maximal compact subgroup of G and let V be a finite dimensional complex continuous representation
of G that we might assume irreducible. We are interested in studying the cohomology groups

H∗(Γ, V ),

which, as we have seen in the previous lectures, are closely related to the theory of automorphic forms.
We will show the following results:

• The cohomology groups can be computed as

Hn(Γ, V ) = Hk(g,K; C∞(Γ\G)⊗ V ).

• These (g,K)-cohomology groups can be decomposed as

Hk(g,K; C∞(Γ\G)⊗ V =
⊕
π

m(π,Γ) Hn(g,K;Hπ ⊗ V ),

where (π,Hπ) runs over certain representations of G. This is known as Matsushima’s formula.

• We will finally study the groups

Hk(g,K;Hπ ⊗ V )

in more detail. In particular, we will show that, for certain representations π, they vanish outside
certain range and we will calculate their dimension.

1. Cohomology and differential forms

Reference: [BW00, §VII.2]

Let X := G/K denote the symmetric space associated to G, it is simply connected and contractible.

1.1. Differential forms. Let Aq = Aq(X,V ) denote the smooth V -valued differentials forms of degree
q on X with the usual differentials d : Aq → Aq+1 given by

dω(v1, . . . , vq) =

q∑
i=1

(−1)ivi · ω(v1, . . . , v̂i, . . . , vq) +
∑
i<j

(−1)i+jω([vi, vj ], v1, . . . , v̂i, . . . , v̂j , . . . vq),

where vi ·ω(v1, . . . , v̂i, . . . , vq) denotes the differentiation of the function ω in the direction vi, [, ] refers to
the bracket of vector fields, andˆmeans omission of the corresponding argument.

1We do not say anything about the non-compact case due to lack of time, but that case is of particular interest. See
[BW00, §XIV] for the analogous statements in this context.
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Proposition 1. There is an canonical isomorphism

H∗(Γ, V ) = H∗(Γ\X, Ṽ )

where Ṽ is the local system on Γ\X associated to V .

Proof. This follows immediately from the fact that Γ\X is a K(Γ, 1)-space, i.e. π1(Γ\X) = Γ and all its
other homotopy groups vanish. �

The comparison between de Rham and singular cohomology now gives us the following Corollary:

Corollary 1. There are canonical isomorphisms

H∗(Γ, V ) ∼= H∗
(
A•(Γ\X, Ṽ )

) ∼= H∗
(
A•(X, Ṽ )Γ

)
.

1.2. (g,K) modules and (g,K)-cohomology. Let g denote the Lie algebra of G. Recall that a (g,K)-
module is a vector space W over R which is a g-module and a K-module with the obvious compatibility
condition. Namely we ask

• π(k) · (π(X) · v) = π(Ad k(X)) · (π(k) · v), for all k ∈ K,X ∈ g, v ∈W ,

• If F ⊆W is a K-stable finite dimensional subspace, then the representation of K is differentiable,
and has π|k as differential.

Example 1. If V is a representation of G, then the subspace of smooth and K-finite vectors of V is a
(g,K)-module.

Definition 1. For V a (g,K)-module we define

Cq(g,K;V ) = HomK(∧q(g/k, V ) = (∧qp∗ ⊗ V )K/K
0

where g = k⊕ p is the Cartan decomposition. There are differentials defined in the same way as was done
in §1.1 which gives us a complex C•(g,K;V ) and we define the (g,K)-cohomology of V as the cohomology
groups of this complex:

H∗(g,K;V ) := H∗(C•(g,K;V )).

The left translation by elements g ∈ G provides an isomorphism between the tangent space at g and the
tangent space at the identity element, and hence an identification

Aq(Γ\X,V ) = HomK(∧q(g/K, C∞(Γ\G)V ) = Cq(g,K; C∞(Γ\G)⊗ V ).

An explicit computation of the differentials now gives:

Proposition 2. There is a canonical isomorphism

H∗(Γ\X, Ṽ ) = H∗(g,K; C∞(Γ\G)⊗ V )
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2. Matsushima’s Formula

Reference: [BW00, §VII.3-6]

Let L2(Γ\G,V ) be the space of square-integrable V -valued functions of Γ\G. This is acted upon by G
and decomposes as

L2(Γ\G) =
⊕̂
π

m(π,Γ) ·Hπ,

a direct sum of irreducible representations with finite multiplicities. Moreover one has

C∞(Γ\G) =
(
L2(Γ\G)

)∞
=

(⊕̂
π

m(π,Γ) ·Hπ

)∞
.

where (−)∞ means taking smooth vectors.

Proposition 3 (Matsushima’s formula, [BW00, VII.3.2 Theorem]). We have

H∗(g,K; C∞(Γ\G)⊗ V ) =
⊕
π

m(π,Γ) ·H∗(g,K;Hπ ⊗ V )

where the direct sum is now finite.

Proof. The previously stated facts give us

H∗(g,K; C∞(Γ\G)⊗ V ) = H∗(g,K;
(⊕̂
π

m(π,Γ) ·Hπ

)∞ ⊗ V ).

We want to show that the right hand side term equals⊕
π

m(π,Γ)H∗(g,K;Hπ ⊗ V ).

Let now S ⊆ Ĝ be a finite set of representations. Then we can decompose

H∗(Γ, V ) =
⊕
π∈S

m(π,Γ)H∗(g,K;Hπ ⊗ V )⊕H∗(g,K;
(̂⊕
π 6∈S

m(π,Γ) ·Hπ

)∞ ⊗ V ).

The compactness assumption on Γ tells us that the cohomology H∗(Γ, V ) of the arithmetic group is finite
dimensional. We deduce, for dimension reasons, that, for a large enough S, we have

H∗(g,K;Hπ ⊗ V ) = 0 ∀π 6∈ S.

We have hence reduced then to proving that, if each (g,K)-cohomology of a countable collection of
irreducible unitary representations of G vanishes, then the cohomology of its closed direct sum vanishes
as well. This is not very hard and follows from a topological argument (cf. [BW00, VII.3.3 Lemma] for
the details). �

Summarising , we have reduced our computation of H∗(Γ, V ) to the study the (g,K) cohomology groups
of certain representations of the form Hπ ⊗ V , where Hπ is a unitary (g,K)-module and V is a finite
dimensional (irreducible) complex continuous representation of G..

Remark 1. We will give later a necessary condition for π to appear in the the above sum. A precise
characterisation of the representations π that contribute to H∗(Γ, V ) have been described by Vogan-
Zuckerman.
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3. Calculation of the (g,K)-cohomology

Reference: [BW00, §II].

Let (ρ,E) be a finite dimensional irreducible complex representations of G 2 and (σ,H) be a unitary
(g,K)-module. Let V = H ⊗E and τ = ρ⊗ σ. With an eye on Matsushima’s formula, we want to study
the cohomology groups H∗(g,K;V ) in this particular case.

3.1. The Casimir element. Let (yi) be a basis of g and (y′i) be its dual basis with respect to the Killing
form. Then

C =
∑
i

yi · y′i

is an element of the center of the universal enveloping algebra U(g) of g, independent of the choice of
basis, and is called the Casimir element. By Schur’s lemma, C must act as a scalar on any representation.

Proposition 4 ([BW00, §II.3.1 Proposition]). Assume that ρ(C) = s · Id and σ(C) = r · Id. Then

• If r 6= s then H∗(g,K;V ) = 0.

• If r = s then H∗(g,K;V ) = HomK(∧qp, V ).

Proof. The proof follows these steps:

(1) One defines an inner product on

Dq(V ) := HomR(∧qp, V ) = (∧qp)⊗H ⊗ E
(observe that we are just taking R-linear homomorphisms and hence Dq(V ) is bigger than Cq(V ))
by taking the tensor products of the inner products on each term, which we call (−,−)V . We can
then define an adjoint ∂ : Dq → Dq−1 of d for the inner product (−,−)V and shows the that

∆ := ∂d+ d∂

acts on Cq(g,K;V ) as (ρ(C) − σ(C)) · Id and that if ∆ = 0 then d = ∂ = 0 (the first assertion
follows from a direct calculation and the last one follows from the non-degeneracy of the bilinear
pairing).

(2) If r 6= s then for η ∈ Cq(g,K;V ) a q-cocycle, we have

∆η = d∂η + ∂dη = d∂η

and so η = (r − s)−1d∂η is a coboundary.

(3) If r = s then ∆ = 0 and so d = 0 and hence every chain is closed, which gives

Hq(g,K;V ) = HomK(∧qp, V ).

�

Corollary 2. For trivial coefficients, we can identify

(∧qp)K

with the G-invariant differential forms on G/K. The result says that all such forms are harmonic,
recovering an old result of Cartan

2We switch notation and denote the representation V from the previous sections by E.



COHOMOLOGY OF ARITHMETIC GROUPS 5

Corollary 3. The representations π contributing to the some in Proposition 3 are such that χπ = χρ∗
and ωπ = ωρ∗, where ρ∗ denotes the contragredient representation of ρ and χπ (resp. χρ∗) and ωπ (resp.
ωρ∗) denote the infinitesimal and central characters of π (resp. ρ∗).

4. Cohomology of tempered representations

Reference: [BW00, §III].

In this section, we calculate the dimension of the (g,K)-cohomology groups H∗(g,K;V ) for certain
representations V = H ⊗ E. In particular, we will see that they vanish outside a certain range which is
given in purely in terms of G and K.

4.1. Parabolic induction. Let’s start with a definition.

Definition 2. A parabolic pair is a pair (P,A) where P is a parabolic subgroup and A is a split component
of a maximal torus in the Levi of P . Say (P,A) < (P ′, A′) if P ⊂ P ′ and A ⊃ A′ and we fix a minimal
parabolic pair (P0, A0). We say that a parabolic (P,A) is standard (w.r.t. the the chosen minimal parabolic
pair) if it is greater than the minimal one.

Let (P,A) be a standard parabolic pair. Recall the Levi decomposition

P = MN = A0MN.

Let (σ,Hσ) be an admissible representations of M with infinitesimal character χσ and let ν ∈ a∗C. Given
this data, we define the parabolically induced representation as follows:

IP,σ,ν = IndGP (Hσ ⊗ Cρp+ν)

= {f ∈ C∞(G,Hσ) f(man · g) = aρp+νσ(n)f(g)},

where ρP ∈ a∗C is a usual normalisation factor defined as ρP (a) = det(Ad a|nP )1/2. This has an action of
G by right translation which makes it into an admissible representations of G, which is unitary if σ ⊗ ν
is unitary, with infinitesimal character χρσ+ν .

Definition 3. We call (P,A) cuspidal if 0M has a compact Cartan subgroup.

4.2. Cohomology of induced representations.

Proposition 5 ([BW00, III.5.1 Theorem]). Let (P,A) be a standard cuspidal parabolic pair of G. Let
(σ,Hσ) be a discrete series representations of 0M , v ∈ a∗C purely imaginary and I = IP,σ,v. Finally let E
be an irreducible and finite dimensional complex representation of G. Then

(1) Hq(g,K; I ⊗ E) = 0 if q 6∈ [q0, q0 + l0]

(2) If Hq(g,K; I ⊗ E) 6= 0 then it has dimension(
`0

q − q0

)
.

Recall that the invariants q0, `0 are defined as `0 = `0(G) = rk(G)− rk(K) and that

q0 = q0(G) =
dim(G/K)− `0

2
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Sketch of proof. This is a very deep result with a very involved proof. We content ourselves with sketching
the main steps of its proof, unfortunately omitting way too many details.

(1) First one proves (cf. [BW00, §III.2.5]) a version Shapiro’s Lemma and obtains

Hq(g,K; I ⊗ E) = Hq(p,Kp;Hσ,ν ⊗ E),

where Hσ,ν = Hσ ⊗ Cρp+ν .

(2) There is a Hochschild-Serre spectral sequence (cf. [BW00, §I.6.5]) which reads

Ep,q2 := Hp
(
m,KP ;Hq(n,KN ;E)⊗Hσ,V

)
=⇒ Hp+q(p,Kp;Hσ,ν ⊗ E).

(3) One needs now to understand the groups Hq(n,KN ;E) as m-representations. This is a theorem
of Kostant ([BW00, III.3.1 Theorem]):

Hq(n, E) =
⊕
s∈WP
l(s)=q

Ls

where WP is a system of representatives of WM\WG (the quotient of the Weyl groups), and the
Ls are certain representations which depend on s and on the maximal weight λ of E. Using this
one shows that

Hq+l(s)(g,K; I ⊗ E) = (H∗(m,KP ;Hσ ⊗ Ls)⊗ ∧∗a∗C)q .

The first factor of the RHS is concentrated in degree q(0M) := (dim 0M − dimK ∩ 0M)/2 and
has dimension 1 ([BW00, §II.5.4 and II.s.7]). Observe also that a∗C has dimension `0. This proves
that

Hq+l(s)(g,K, I ⊗ E) = ∧ja∗C
where j = q−q(0M). This already shows that the dimensions of the cohomology groups are given
by some combinatorial numbers and one needs to check that the non-vanishing range is the one
claimed in the statement of the Proposition. Finally one shoes that in fact l(s) = dimN

2 and that
moreover

q0(G) = q(0M) +
dimN

2
,

and the result follows.

�
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