COHOMOLOGY OF ARITHMETIC GROUPS

JOAQUIN RODRIGUES JACINTO
NOTES BY POL VAN HOFTEN AND EDITED BY THE SPEAKER

Let G be a semisimple real lie group with Γ a discrete cocompact ${ }^{1}$ subgroup that is torsion free. Let K be a maximal compact subgroup of G and let V be a finite dimensional complex continuous representation of G that we might assume irreducible. We are interested in studying the cohomology groups

$$
H^{*}(\Gamma, V),
$$

which, as we have seen in the previous lectures, are closely related to the theory of automorphic forms. We will show the following results:

- The cohomology groups can be computed as

$$
H^{n}(\Gamma, V)=H^{k}\left(\mathfrak{g}, K ; \mathcal{C}^{\infty}(\Gamma \backslash G) \otimes V\right)
$$

- These (\mathfrak{g}, K)-cohomology groups can be decomposed as

$$
H^{k}\left(\mathfrak{g}, K ; \mathcal{C}^{\infty}(\Gamma \backslash G) \otimes V=\bigoplus_{\pi} m(\pi, \Gamma) H^{n}\left(\mathfrak{g}, K ; H_{\pi} \otimes V\right),\right.
$$

where $\left(\pi, H_{\pi}\right)$ runs over certain representations of G. This is known as Matsushima's formula.

- We will finally study the groups

$$
H^{k}\left(\mathfrak{g}, K ; H_{\pi} \otimes V\right)
$$

in more detail. In particular, we will show that, for certain representations π, they vanish outside certain range and we will calculate their dimension.

1. Cohomology and differential forms

Reference: BW00, §VII.2]
Let $X:=G / K$ denote the symmetric space associated to G, it is simply connected and contractible.
1.1. Differential forms. Let $\mathcal{A}^{q}=\mathcal{A}^{q}(X, V)$ denote the smooth V-valued differentials forms of degree q on X with the usual differentials $d: \mathcal{A}^{q} \rightarrow \mathcal{A}^{q+1}$ given by

$$
d \omega\left(v_{1}, \ldots, v_{q}\right)=\sum_{i=1}^{q}(-1)^{i} v_{i} \cdot \omega\left(v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{q}\right)+\sum_{i<j}(-1)^{i+j} \omega\left(\left[v_{i}, v_{j}\right], v_{1}, \ldots, \hat{v}_{i}, \ldots, \hat{v}_{j}, \ldots v_{q}\right)
$$

where $v_{i} \cdot \omega\left(v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{q}\right)$ denotes the differentiation of the function ω in the direction $v_{i},[$,$] refers to$ the bracket of vector fields, and ${ }^{\wedge}$ means omission of the corresponding argument.

[^0]Proposition 1. There is an canonical isomorphism

$$
H^{*}(\Gamma, V)=H^{*}(\Gamma \backslash X, \tilde{V})
$$

where \tilde{V} is the local system on $\Gamma \backslash X$ associated to V.

Proof. This follows immediately from the fact that $\Gamma \backslash X$ is a $K(\Gamma, 1)$-space, i.e. $\pi_{1}(\Gamma \backslash X)=\Gamma$ and all its other homotopy groups vanish.

The comparison between de Rham and singular cohomology now gives us the following Corollary:

Corollary 1. There are canonical isomorphisms

$$
H^{*}(\Gamma, V) \cong H^{*}\left(\mathcal{A}^{\bullet}(\Gamma \backslash X, \tilde{V})\right) \cong H^{*}\left(\mathcal{A}^{\bullet}(X, \tilde{V})^{\Gamma}\right)
$$

1.2. (\mathfrak{g}, K) modules and (\mathfrak{g}, K)-cohomology. Let \mathfrak{g} denote the Lie algebra of G. Recall that a ($\mathfrak{g}, K)$ module is a vector space W over \mathbb{R} which is a \mathfrak{g}-module and a K-module with the obvious compatibility condition. Namely we ask

- $\pi(k) \cdot(\pi(X) \cdot v)=\pi(\operatorname{Ad} k(X)) \cdot(\pi(k) \cdot v)$, for all $k \in K, X \in \mathfrak{g}, v \in W$,
- If $F \subseteq W$ is a K-stable finite dimensional subspace, then the representation of K is differentiable, and has $\left.\pi\right|_{\mathfrak{k}}$ as differential.

Example 1. If V is a representation of G, then the subspace of smooth and K-finite vectors of V is a (\mathfrak{g}, K)-module.

Definition 1. For $V a(\mathfrak{g}, K)$-module we define

$$
\mathcal{C}^{q}(\mathfrak{g}, K ; V)=\operatorname{Hom}_{K}\left(\wedge^{q}(\mathfrak{g} / \mathfrak{k}, V)=\left(\wedge^{q} \mathfrak{p}^{*} \otimes V\right)^{K / K^{0}}\right.
$$

where $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ is the Cartan decomposition. There are differentials defined in the same way as was done in $\$ 1.1$ which gives us a complex $\mathcal{C}^{\bullet}(\mathfrak{g}, K ; V)$ and we define the (\mathfrak{g}, K)-cohomology of V as the cohomology groups of this complex:

$$
H^{*}(\mathfrak{g}, K ; V):=H^{*}\left(\mathcal{C}^{\bullet}(\mathfrak{g}, K ; V)\right)
$$

The left translation by elements $g \in G$ provides an isomorphism between the tangent space at g and the tangent space at the identity element, and hence an identification

$$
\mathcal{A}^{q}(\Gamma \backslash X, V)=\operatorname{Hom}_{K}\left(\wedge^{q}\left(\mathfrak{g} / K, \mathcal{C}^{\infty}(\Gamma \backslash G) V\right)=\mathcal{C}^{q}\left(\mathfrak{g}, K ; \mathcal{C}^{\infty}(\Gamma \backslash G) \otimes V\right)\right.
$$

An explicit computation of the differentials now gives:

Proposition 2. There is a canonical isomorphism

$$
H^{*}(\Gamma \backslash X, \tilde{V})=H^{*}\left(\mathfrak{g}, K ; \mathcal{C}^{\infty}(\Gamma \backslash G) \otimes V\right)
$$

2. Matsushima's Formula

Reference: [BW00, §VII.3-6]

Let $L^{2}(\Gamma \backslash G, V)$ be the space of square-integrable V-valued functions of $\Gamma \backslash G$. This is acted upon by G and decomposes as

$$
L^{2}(\Gamma \backslash G)=\widehat{\bigoplus_{\pi}} m(\pi, \Gamma) \cdot H_{\pi}
$$

a direct sum of irreducible representations with finite multiplicities. Moreover one has

$$
\mathcal{C}^{\infty}(\Gamma \backslash G)=\left(L^{2}(\Gamma \backslash G)\right)^{\infty}=\left(\widehat{\bigoplus_{\pi}} m(\pi, \Gamma) \cdot H_{\pi}\right)^{\infty}
$$

where $(-)^{\infty}$ means taking smooth vectors.
Proposition 3 (Matsushima's formula, BW00, VII.3.2 Theorem]). We have

$$
H^{*}\left(\mathfrak{g}, K ; \mathcal{C}^{\infty}(\Gamma \backslash G) \otimes V\right)=\bigoplus_{\pi} m(\pi, \Gamma) \cdot H^{*}\left(\mathfrak{g}, K ; H_{\pi} \otimes V\right)
$$

where the direct sum is now finite.
Proof. The previously stated facts give us

$$
H^{*}\left(\mathfrak{g}, K ; \mathcal{C}^{\infty}(\Gamma \backslash G) \otimes V\right)=H^{*}\left(\mathfrak{g}, K ;\left(\widehat{\bigoplus}_{\pi} m(\pi, \Gamma) \cdot H_{\pi}\right)^{\infty} \otimes V\right)
$$

We want to show that the right hand side term equals

$$
\bigoplus_{\pi} m(\pi, \Gamma) H^{*}\left(\mathfrak{g}, K ; H_{\pi} \otimes V\right) .
$$

Let now $S \subseteq \hat{G}$ be a finite set of representations. Then we can decompose

$$
\left.H^{*}(\Gamma, V)=\bigoplus_{\pi \in S} m(\pi, \Gamma) H^{*}\left(\mathfrak{g}, K ; H_{\pi} \otimes V\right) \oplus H^{*}\left(\mathfrak{g}, K ; \widehat{\bigoplus_{\pi \notin S}} m(\pi, \Gamma) \cdot H_{\pi}\right)^{\infty} \otimes V\right)
$$

The compactness assumption on Γ tells us that the cohomology $H^{*}(\Gamma, V)$ of the arithmetic group is finite dimensional. We deduce, for dimension reasons, that, for a large enough S, we have

$$
H^{*}\left(\mathfrak{g}, K ; H_{\pi} \otimes V\right)=0 \quad \forall \pi \notin S .
$$

We have hence reduced then to proving that, if each (\mathfrak{g}, K)-cohomology of a countable collection of irreducible unitary representations of G vanishes, then the cohomology of its closed direct sum vanishes as well. This is not very hard and follows from a topological argument (cf. [BW00, VII.3.3 Lemma] for the details).

Summarising, we have reduced our computation of $H^{*}(\Gamma, V)$ to the study the (\mathfrak{g}, K) cohomology groups of certain representations of the form $H_{\pi} \otimes V$, where H_{π} is a unitary (\mathfrak{g}, K)-module and V is a finite dimensional (irreducible) complex continuous representation of G..

Remark 1. We will give later a necessary condition for π to appear in the the above sum. A precise characterisation of the representations π that contribute to $H^{*}(\Gamma, V)$ have been described by VoganZuckerman.

3. Calculation of the (\mathfrak{g}, K)-COHOMOLOGY

Reference: $\overline{B W 00}, \S I I]$.
Let (ρ, E) be a finite dimensional irreducible complex representations of $G 2^{2}$ and (σ, H) be a unitary (\mathfrak{g}, K)-module. Let $V=H \otimes E$ and $\tau=\rho \otimes \sigma$. With an eye on Matsushima's formula, we want to study the cohomology groups $H^{*}(\mathfrak{g}, K ; V)$ in this particular case.
3.1. The Casimir element. Let $\left(y_{i}\right)$ be a basis of \mathfrak{g} and $\left(y_{i}^{\prime}\right)$ be its dual basis with respect to the Killing form. Then

$$
C=\sum_{i} y_{i} \cdot y_{i}^{\prime}
$$

is an element of the center of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}, independent of the choice of basis, and is called the Casimir element. By Schur's lemma, C must act as a scalar on any representation.

Proposition $4([$ BW00, §II.3.1 Proposition]). Assume that $\rho(C)=s \cdot$ Id and $\sigma(C)=r \cdot$ Id. Then

- If $r \neq s$ then $H^{*}(\mathfrak{g}, K ; V)=0$.
- If $r=s$ then $H^{*}(\mathfrak{g}, K ; V)=\operatorname{Hom}_{K}\left(\wedge^{q} \mathfrak{p}, V\right)$.

Proof. The proof follows these steps:
(1) One defines an inner product on

$$
\mathcal{D}^{q}(V):=\operatorname{Hom}_{\mathbb{R}}\left(\wedge^{q} \mathfrak{p}, V\right)=\left(\wedge^{q} \mathfrak{p}\right) \otimes H \otimes E
$$

(observe that we are just taking \mathbb{R}-linear homomorphisms and hence $\mathcal{D}^{q}(V)$ is bigger than $\mathcal{C}^{q}(V)$) by taking the tensor products of the inner products on each term, which we call $(-,-)_{V}$. We can then define an adjoint $\partial: \mathcal{D}^{q} \rightarrow \mathcal{D}^{q-1}$ of d for the inner product $(-,-)_{V}$ and shows the that

$$
\Delta:=\partial d+d \partial
$$

acts on $\mathcal{C}^{q}(\mathfrak{g}, K ; V)$ as $(\rho(C)-\sigma(C)) \cdot$ Id and that if $\Delta=0$ then $d=\partial=0$ (the first assertion follows from a direct calculation and the last one follows from the non-degeneracy of the bilinear pairing).
(2) If $r \neq s$ then for $\eta \in \mathcal{C}^{q}(\mathfrak{g}, K ; V)$ a q-cocycle, we have

$$
\Delta \eta=d \partial \eta+\partial d \eta=d \partial \eta
$$

and so $\eta=(r-s)^{-1} d \partial \eta$ is a coboundary.
(3) If $r=s$ then $\Delta=0$ and so $d=0$ and hence every chain is closed, which gives

$$
H^{q}(\mathfrak{g}, K ; V)=\operatorname{Hom}_{K}\left(\wedge^{q} \mathfrak{p}, V\right)
$$

Corollary 2. For trivial coefficients, we can identify

$$
\left(\wedge^{q} \mathfrak{p}\right)^{K}
$$

with the G-invariant differential forms on G / K. The result says that all such forms are harmonic, recovering an old result of Cartan

[^1]Corollary 3. The representations π contributing to the some in Proposition 3 are such that $\chi_{\pi}=\chi_{\rho^{*}}$ and $\omega_{\pi}=\omega_{\rho^{*}}$, where ρ^{*} denotes the contragredient representation of ρ and χ_{π} (resp. $\chi_{\rho^{*}}$) and ω_{π} (resp. $\left.\omega_{\rho^{*}}\right)$ denote the infinitesimal and central characters of π (resp. ρ^{*}).

4. Cohomology of tempered Representations

Reference: BW00, §III].

In this section, we calculate the dimension of the (\mathfrak{g}, K)-cohomology groups $H^{*}(\mathfrak{g}, K ; V)$ for certain representations $V=H \otimes E$. In particular, we will see that they vanish outside a certain range which is given in purely in terms of G and K.
4.1. Parabolic induction. Let's start with a definition.

Definition 2. A parabolic pair is a pair (P, A) where P is a parabolic subgroup and A is a split component of a maximal torus in the Levi of P. Say $(P, A)<\left(P^{\prime}, A^{\prime}\right)$ if $P \subset P^{\prime}$ and $A \supset A^{\prime}$ and we fix a minimal parabolic pair $\left(P_{0}, A_{0}\right)$. We say that a parabolic (P, A) is standard (w.r.t. the the chosen minimal parabolic pair) if it is greater than the minimal one.

Let (P, A) be a standard parabolic pair. Recall the Levi decomposition

$$
P=M N=A^{0} M N
$$

Let $\left(\sigma, H_{\sigma}\right)$ be an admissible representations of M with infinitesimal character χ_{σ} and let $\nu \in \mathfrak{a}_{\mathbb{C}}^{*}$. Given this data, we define the parabolically induced representation as follows:

$$
\begin{aligned}
I_{P, \sigma, \nu} & =\operatorname{Ind}_{P}^{G}\left(H_{\sigma} \otimes \mathbb{C}_{\rho_{p}+\nu}\right) \\
& =\left\{f \in \mathcal{C}^{\infty}\left(G, H_{\sigma}\right) f(\operatorname{man} \cdot g)=a^{\rho_{p}+\nu} \sigma(n) f(g)\right\}
\end{aligned}
$$

where $\rho_{P} \in \mathfrak{a}_{\mathbb{C}}^{*}$ is a usual normalisation factor defined as $\rho_{P}(a)=\operatorname{det}\left(\left.\operatorname{Ad} a\right|_{\mathfrak{n}_{P}}\right)^{1 / 2}$. This has an action of G by right translation which makes it into an admissible representations of G, which is unitary if $\sigma \otimes \nu$ is unitary, with infinitesimal character $\chi_{\rho_{\sigma}+\nu}$.

Definition 3. We call (P, A) cuspidal if ${ }^{0} M$ has a compact Cartan subgroup.

4.2. Cohomology of induced representations.

Proposition 5 ([BW00, III.5.1 Theorem]). Let (P, A) be a standard cuspidal parabolic pair of G. Let $\left(\sigma, H_{\sigma}\right)$ be a discrete series representations of ${ }^{0} M, v \in \mathfrak{a}_{\mathbb{C}}^{*}$ purely imaginary and $I=I_{P, \sigma, v}$. Finally let E be an irreducible and finite dimensional complex representation of G. Then
(1) $H^{q}(\mathfrak{g}, K ; I \otimes E)=0$ if $q \notin\left[q_{0}, q_{0}+l_{0}\right]$
(2) If $H^{q}(\mathfrak{g}, K ; I \otimes E) \neq 0$ then it has dimension

$$
\binom{\ell_{0}}{q-q_{0}}
$$

Recall that the invariants q_{0}, ℓ_{0} are defined as $\ell_{0}=\ell_{0}(G)=\operatorname{rk}(G)-\operatorname{rk}(K)$ and that

$$
q_{0}=q_{0}(G)=\frac{\operatorname{dim}(G / K)-\ell_{0}}{2}
$$

Sketch of proof. This is a very deep result with a very involved proof. We content ourselves with sketching the main steps of its proof, unfortunately omitting way too many details.
(1) First one proves (cf. BW00, §III.2.5]) a version Shapiro's Lemma and obtains

$$
H^{q}(\mathfrak{g}, K ; I \otimes E)=H^{q}\left(\mathfrak{p}, K_{p} ; H_{\sigma, \nu} \otimes E\right)
$$

where $H_{\sigma, \nu}=H_{\sigma} \otimes \mathbb{C}_{\rho_{p}+\nu}$.
(2) There is a Hochschild-Serre spectral sequence (cf. BW00, §I.6.5]) which reads

$$
E_{2}^{p, q}:=H^{p}\left(\mathfrak{m}, K_{P} ; H^{q}\left(\mathfrak{n}, K_{N} ; E\right) \otimes H_{\sigma, V}\right) \Longrightarrow H^{p+q}\left(\mathfrak{p}, K_{p} ; H_{\sigma, \nu} \otimes E\right)
$$

(3) One needs now to understand the groups $H^{q}\left(\mathfrak{n}, K_{N} ; E\right)$ as \mathfrak{m}-representations. This is a theorem of Kostant ([BW00, III.3.1 Theorem]):

$$
H^{q}(\mathfrak{n}, E)=\bigoplus_{\substack{s \in W_{P} \\ l(s)=q}} L_{s}
$$

where W_{P} is a system of representatives of $W_{M} \backslash W_{G}$ (the quotient of the Weyl groups), and the L_{s} are certain representations which depend on s and on the maximal weight λ of E. Using this one shows that

$$
H^{q+l(s)}(\mathfrak{g}, K ; I \otimes E)=\left(H^{*}\left(\mathfrak{m}, K_{P} ; H_{\sigma} \otimes L_{s}\right) \otimes \wedge^{*} \mathfrak{a}_{\mathbb{C}}^{*}\right)^{q}
$$

The first factor of the RHS is concentrated in degree $q\left({ }^{0} M\right):=\left(\operatorname{dim}{ }^{0} M-\operatorname{dim} K \cap{ }^{0} M\right) / 2$ and has dimension $1\left(\left[\right.\right.$ BW00, $\S I I .5 .4$ and II.s.7]). Observe also that $\mathfrak{a}_{\mathbb{C}}^{*}$ has dimension ℓ_{0}. This proves that

$$
H^{q+l(s)}(\mathfrak{g}, K, I \otimes E)=\wedge^{j} \mathfrak{a}_{\mathbb{C}}^{*}
$$

where $j=q-q\left({ }^{0} M\right)$. This already shows that the dimensions of the cohomology groups are given by some combinatorial numbers and one needs to check that the non-vanishing range is the one claimed in the statement of the Proposition. Finally one shoes that in fact $l(s)=\frac{\operatorname{dim} N}{2}$ and that moreover

$$
q_{0}(G)=q\left({ }^{0} M\right)+\frac{\operatorname{dim} N}{2}
$$

and the result follows.

References

[BW00] A. Borel and N. Wallach. Continuous cohomology, discrete subgroups, and representations of reductive groups. Second. Vol. 67. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000, pp. xviii+260. ISBN: 0-8218-0851-6. DOI: 10.1090/surv/067. URL: https://doi.org/10.1090/surv/067.

[^0]: ${ }^{1}$ We do not say anything about the non-compact case due to lack of time, but that case is of particular interest. See BW00, §XIV] for the analogous statements in this context.

[^1]: ${ }^{2}$ We switch notation and denote the representation V from the previous sections by E.

