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DAtTA

Let G be a reductive group over a number field F. Let U C G(Af s) be an open
compact subgroup. Let

Y(U) = G(F)\Sx x G(Ars)/U,

where S is some (possibly disconnected) symmetric space for G(F ®g R).
There will be some assumptions on these choices later! But the assumptions are
not necessary in order to make the basic construction.

1. A TOY EXAMPLE OF A DERIVED HECKE OPERATOR

We consider the following particular case:

e G = Resp/g PGLy, where F//Q is quadratic imaginary with class number
1. Let O C F denote its ring of integers.
e Let Y(1) be the full level quotient, that is,

Y (1) := PGLy(O)\H?.
o Yo(q) = Y (To(q)) = To(q)\H?, where
To(g) ={(¢5) [c€a}/~,

for a prime ideal ¢ C O.

Fix a : FX — Z/0"Z. This gives rise to a cohomology class () € H' (To(q), Z/("Z),
via
a

To(q) = F) = Z/0"Z, (eb) — 5

The usual Hecke operator for ¢ arises from a correspondence

H*T'o(q)
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For the cohomology with Z/¢™"Z—coeflicients, we can construct a derived version of
the Hecke operator via the diagram

H*T'o(q) ) H**1T4(q)

N
T T2

Ty (o
H*PGLy(0) nle) H**1PGL,(0)

simply by composing with the cup-product with the class ().

Remark 1.1. This construction truly arises in finite characteristic. To obtain a
larger class of derived hecke operators, we require

" [Fgl=N(q) - 1.
If we want a characteristic zero action, we need limits, such as

Tgpy1>{Ont1)

H*(PGLy(0), Z /"1 Z) S 1 (PGLy (0), Z/ (71 7)

| |

H*(PGLy(0), Z/6"Z) —"“2) j+1(PGL,(0), Z/4"7)

over a system of Taylor—Wiles primes, where «, arises from a prime g, such that
| (N(gn) — 1) for all n > 1.

Remark 1.2. The class (a) is a congruence class, meaning that it vanishes on a
congruence subgroup; nevertheless, this gives rise to non-trivial operators!

2. DEFINITIONS OF DERIVED HECKE ALGEBRAS

2.1. Homological. This is a rather abstract definition. Start with these data.

e v is a place of F, with residue field F,,, of characteristic p
e S is a coefficient ring, with characteristic ¢, where v t £

The goal is constructing a “¢-adic derived Hecke algebra of a v-adic group”, working
locally with
G =G(F,), U=U,.
The derived Hecke algebra
H(G,U)
is a graded algebra such that its degree 0-graded piece is the usual Hecke algebra.
Thus, let
H(G,U)Y = Homgq(S[G/U], S|G/UY),
where S[X] is a free module over a set X, and SG is the category of smooth G-
representations with coefficients in S. This is one possible characterization of the
usual Hecke algebra. Its derived extension is defined as
H(G,U) := Extisq(S[G/U], S[G/U)).
More concretely, to produce this one takes a projective resolution
pP* — S|G/U],
and then H(G,U) is the cohomology of the differential graded algebra
Hom(P*, P*).
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2.2. Derived Hecke algebras via invariant functions. This may seem quite
different from the homological definition.

Let (z,y) € G/UxG/U; we can write v = g,U,y = g, U, for some representatives
92,9y € G. Let G, , be the (pointwise) stabilizer of (z,y). An element of the
derived Hecke algebra H(G,U) is a function assigning to every (z,y) a class

h(r,y) € H' (G, )
such that

(i) it satisfies the G-invariance condition

h(x,y) = [9]*h(9z, 9y),

where [g] = Ad(g) : Gz,y = Gyz,gy
(ii) it satisfies the G-finiteness condition: there exists a finite subset T' C G /U x
G/U such that

h(zx,y) is supported on GT.

The addition operation is clear; multiplication is more subtle. For hy, hy € H(G,U),
we have
(hl * hg)(l’, Z) = Z hl(xay) U hZ(ya Z)a
yeG/U
where hq(z,y) € H*(Gy,y, S) while ha(y, z) € H*(Gy,», S): this cup product makes
sense in the following way:

o view hi(z,y), ha(y, 2) as elements of H*(G, -, S) (here G, - is the stabi-
lizer of (z,y, #) under the diagonal action), so hi(z,y) U ha(y, z) is defined
here.

e then, rewrite (hy * ha)(z, 2) as

(hy % ho)(z,2) = Z Z hi(z,y) Uha(y, 2)

yo:reps of G, \G/U y€O(yo)

= Z coresg?z("zh(x, Yo) U ha(yo, 2).
yo:reps of G5 - \G/U ’
(here O(yo) denotes the orbit of yg).
Here is a variant of this definition: consider
P =S,
2eU\G/U
where U, is the stabilizer of z € U\G in U; then U, which is also equal to the
stabilizer in G of the pair (z,e) where e = 1gU, so U, = G, ). Then, we have a
natural map
B H(U.,S) — HGU).
2€U\G/U
Let a be an element of one of these summands over a given z. Now, define h =
h(a, z) as
e h =0 outside the G-orbit of (z,e) in G/U x G/U
o h(z,e)=ain H*(G,.,S) = H*(U,, S)
e we extend h by G-invariance to the orbit of (z,e)

The description of multiplication is not very natural in this definition.
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Example 2.1. For G = GLy(F,), U = GL3(0,), and 7 € O, a uniformizer, there
is the Cartan decomposition

w0
¢=J] U ( 0 no ) U.
a<berz
Let U%? be defined by

the stabilizer of (%b Oa) in U. This is

T

b
U“’b:UﬂAd(( ”oo ))~U

{2 8)imin)

H*(Ua’b, S) _ H*(Ua,b/Ua,b,(p), 5)7
where U%%(®) denotes the maximal pro p-quotient of U%?. For b > a, is equal to
H* (G (Fy) X G (Fy), 5),

where [, is the residue field. The order of the group is (¢, — 1)?, where ¢, := |F,|.
This derived Hecke algebra is more interesting when ¢, — 1 =01isin S.

Then

2.3. Comparison of the two definitions. In the first definition, we want to
calculate the cohomology of the dg-algebra

MSG(P.v-P.)v

where P* — S[G/U] is a projective resolution. In order to construct a nice choice
of resolution, we start with

Q* =5,
a projective resolution of S in the category of SU-modules. This is rather straight-
forward, using the structure of the groups. Then, from this, we induce (compact
induction, termwise):

P* = Ind$(Q*) — Ind§ S = S|G/U].
It will be important to understand Indg(Q') as a U-module. We get
df(Q") = P Indp, (Qu),
zeU\G/U

where Q, = @ as an S-module, with U,-action given by u — Ad(z) - u.
Then we write

Homg(P*, P*) = Homgq(Indf (Q®), Indf (Q®))
= Homg, (Q*, Ind{ (Q*))
- HOiIH5U (Q.a @ IndgT (QT))7
xeU\G/U

where the second equality comes from Frobenius reciprocity. The last term receives
a map from

@ Homgy(Q", Indy, (@),

z€U\G/U
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which commutes with taking cohomology. Then we calculate the terms of the RHS:

Hom, (Q*, Indy, (Q3)) = Homgp, (Q°, Q3).
Since Q® and Q? are resolutions of S, the cohomology of this complex is H*(U,, S).
Its not too hard to see that this induces an additive map between the two defi-
nitions, but checking that it respects multiplication is harder (but true).

3. ACTION OF THE DERIVED HECKE ALGEBRA ON H*(Y (U),S5)

3.1. Homological version of the action. We now return to the global setting.
Let U C G(Ay) be an open compact subgroup. The (local) homological definition
is
H(G.,U,) := H*(Homgg (P*, P*®)).
This acts on the cohomology of
Homgg, (S[Gv/Us], M*),

as S[G,/U,] may be replaced by P*® for the purpose of computing cohomology.
For V,, C G(F,) an open compact subgroup, we define the cochains for this

subgroup as

C* (V) :==C (Y (U™ x V), S).
Let

M*® = hg C*(Vy).
Vy,CGy

where V,, varies over all open compact subgroups of G,.

Proposition 3.1. The cohomology of Homgq (S[G./U,|, M*) is H*(Y (U), S).
This gives an action the derived Hecke algebra on the cohomology of Y (U).

3.2. Practical version of the action. We would like to have a map
H*(vas) — H*(Y(U),S),

which we would apply to a class « € H'(U, /U, 1,S). Here is how we produce it:
define Uy C U as the preimage of U, ; C U, under the natural map U — U,.. Thus
we have a map
which is a cover with transformation group U, /U, 1. Thus we get a map from Y (U)
to the classifying space of U, /U, 1, reflecting this U, /U, i-torsor. This induces, in
particular,
H*(U,/Uyn,S) — H*(Y(U),S).

We let (a) € H*(Y(U), S), a “congruence class” as discussed at the outset, repre-
sent the image of o« € H*(U, /U, 1, 5).

What is the action of h, o on H*(Y (U),S)? Well, U, is the stabilizer of z = g, U
in U. Choose also U/, the stabilizer of g;'U. The we have a concrete description
of the action:

B (Y (U.) 2% i (v (0.) L= B (v (U.)

*
™ T2 %

H(Y(U)) b

HH(Y(U))

where f* arises from f: g — gg..



