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Data

Let G be a reductive group over a number field F . Let U ⊂ G(AF,f ) be an open
compact subgroup. Let

Y (U) := G(F )\S∞ ×G(AF,f )/U,

where S∞ is some (possibly disconnected) symmetric space for G(F ⊗Q R).
There will be some assumptions on these choices later! But the assumptions are

not necessary in order to make the basic construction.

1. A toy example of a derived Hecke operator

We consider the following particular case:

• G = ResF/Q PGL2, where F/Q is quadratic imaginary with class number
1. Let O ⊂ F denote its ring of integers.
• Let Y (1) be the full level quotient, that is,

Y (1) := PGL2(O)\H3.

• Y0(q) = Y (Γ0(q)) = Γ0(q)\H3, where

Γ0(q) = {
(
a b
c d

)
| c ∈ q}/ ∼,

for a prime ideal q ⊂ O.

Fix α : F×q → Z/`nZ. This gives rise to a cohomology class 〈α〉 ∈ H1(Γ0(q),Z/`nZ),
via

Γ0(q)→ F×q
α−→ Z/`nZ,

(
a b
c d

)
7→ a

d
.

The usual Hecke operator for q arises from a correspondence

H∗Γ0(q)

π2∗

''
H∗PGL2(O)

π∗1

77

Tq // H∗PGL2(O)
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For the cohomology with Z/`nZ−coefficients, we can construct a derived version of
the Hecke operator via the diagram

H∗Γ0(q)
∪〈α〉 // H∗+1Γ0(q)

π2∗

''
H∗PGL2(O)

π∗1

88

Tq,〈α〉 // H∗+1PGL2(O)

simply by composing with the cup-product with the class 〈α〉.

Remark 1.1. This construction truly arises in finite characteristic. To obtain a
larger class of derived hecke operators, we require

`n | |F×q | = N(q)− 1.

If we want a characteristic zero action, we need limits, such as

H∗(PGL2(O),Z/`n+1Z)
Tqn+1

,〈αn+1〉
//

��

H∗+1(PGL2(O),Z/`n+1Z)

��
H∗(PGL2(O),Z/`nZ)

Tqn ,〈αn〉// H∗+1(PGL2(O),Z/`nZ)

over a system of Taylor–Wiles primes, where αn arises from a prime qn such that
`n | (N(qn)− 1) for all n ≥ 1.

Remark 1.2. The class 〈α〉 is a congruence class, meaning that it vanishes on a
congruence subgroup; nevertheless, this gives rise to non-trivial operators!

2. Definitions of derived Hecke algebras

2.1. Homological. This is a rather abstract definition. Start with these data.

• v is a place of F , with residue field Fv, of characteristic p
• S is a coefficient ring, with characteristic `, where v - `

The goal is constructing a “`-adic derived Hecke algebra of a v-adic group”, working
locally with

G = G(Fv), U = Uv.

The derived Hecke algebra
H(G,U)

is a graded algebra such that its degree 0-graded piece is the usual Hecke algebra.
Thus, let

H(G,U)(0) = HomSG(S[G/U ], S[G/U ]),

where S[X] is a free module over a set X, and SG is the category of smooth G-
representations with coefficients in S. This is one possible characterization of the
usual Hecke algebra. Its derived extension is defined as

H(G,U) := Ext∗SG(S[G/U ], S[G/U ]).

More concretely, to produce this one takes a projective resolution

P • −→ S[G/U ],

and then H(G,U) is the cohomology of the differential graded algebra

Hom(P •, P •).
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2.2. Derived Hecke algebras via invariant functions. This may seem quite
different from the homological definition.

Let (x, y) ∈ G/U×G/U ; we can write x = gxU, y = gyU , for some representatives
gx, gy ∈ G. Let Gx,y be the (pointwise) stabilizer of (x, y). An element of the
derived Hecke algebra H(G,U) is a function assigning to every (x, y) a class

h(x, y) ∈ H∗(Gx,y, S)

such that

(i) it satisfies the G-invariance condition

h(x, y) = [g]∗h(gx, gy),

where [g] = Ad(g) : Gx,y → Ggx,gy
(ii) it satisfies the G-finiteness condition: there exists a finite subset T ⊂ G/U×

G/U such that

h(x, y) is supported on GT.

The addition operation is clear; multiplication is more subtle. For h1, h2 ∈ H(G,U),
we have

(h1 ∗ h2)(x, z) =
∑

y∈G/U

h1(x, y) ∪ h2(y, z),

where h1(x, y) ∈ H∗(Gx,y, S) while h2(y, z) ∈ H∗(Gy,z, S): this cup product makes
sense in the following way:

• view h1(x, y), h2(y, z) as elements of H∗(Gx,y,z, S) (here Gx,y,z is the stabi-
lizer of (x, y, z) under the diagonal action), so h1(x, y) ∪ h2(y, z) is defined
here.
• then, rewrite (h1 ∗ h2)(x, z) as

(h1 ∗ h2)(x, z) =
∑

y0:reps of Gxz\G/U

∑
y∈O(y0)

h1(x, y) ∪ h2(y, z)

=
∑

y0:reps of Gx,z\G/U

cores
Gx,y0,z
Gx,z

h(x, y0) ∪ h2(y0, z).

(here O(y0) denotes the orbit of y0).

Here is a variant of this definition: consider⊕
z∈U\G/U

H∗(Uz, S),

where Uz is the stabilizer of z ∈ U\G in U ; then Uz which is also equal to the
stabilizer in G of the pair (z, e) where e = 1GU , so Uz = G(z,e). Then, we have a
natural map ⊕

z∈U\G/U

H∗(Uz, S) −→ H(G,U).

Let α be an element of one of these summands over a given z. Now, define h =
h(α, z) as

• h = 0 outside the G-orbit of (z, e) in G/U ×G/U
• h(z, e) = α in H∗(Gz,e, S) = H∗(Uz, S)
• we extend h by G-invariance to the orbit of (z, e)

The description of multiplication is not very natural in this definition.
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Example 2.1. For G = GL2(Fv), U = GL2(Ov), and π ∈ Ov a uniformizer, there
is the Cartan decomposition

G =
∐

a≤b∈Z
U

(
πb 0
0 πa

)
U.

Let Ua,b be defined by
Ua,b = U(πb 0

0 πa

),
the stabilizer of

(
πb 0
0 πa

)
in U . This is

Ua,b = U ∩Ad(

(
πb 0
0 πa

)
) · U

=

{(
α β
γ δ

)
: πb−a | γ

}
.

Then
H∗(Ua,b, S) = H∗(Ua,b/Ua,b,(p), S),

where Ua,b,(p) denotes the maximal pro p-quotient of Ua,b. For b > a, is equal to

H∗(Gm(Fv)×Gm(Fv), S),

where Fv is the residue field. The order of the group is (qv − 1)2, where qv := |Fv|.
This derived Hecke algebra is more interesting when qv − 1 = 0 is in S.

2.3. Comparison of the two definitions. In the first definition, we want to
calculate the cohomology of the dg-algebra

HomSG(P •, P •),

where P • → S[G/U ] is a projective resolution. In order to construct a nice choice
of resolution, we start with

Q• → S,

a projective resolution of S in the category of SU -modules. This is rather straight-
forward, using the structure of the groups. Then, from this, we induce (compact
induction, termwise):

P • := IndGU (Q•) −→ IndGU S = S[G/U ].

It will be important to understand IndGU (Q•) as a U -module. We get

IndGU (Q•) ∼=
⊕

x∈U\G/U

IndUUx(Qx),

where Qx = Q as an S-module, with Ux-action given by u 7→ Ad(x) · u.
Then we write

HomSG(P •, P •) = HomSG(IndGU (Q•), IndGU (Q•))

= HomSU (Q•, IndGU (Q•))

= HomSU (Q•,
⊕

x∈U\G/U

IndUUx(Qx)),

where the second equality comes from Frobenius reciprocity. The last term receives
a map from ⊕

x∈U\G/U

HomSU (Q•, IndUUx(Q•x)),
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which commutes with taking cohomology. Then we calculate the terms of the RHS:

HomSU (Q•, IndUUx(Q•x)) = HomSUx
(Q•, Q•x).

Since Q• and Q•x are resolutions of S, the cohomology of this complex is H∗(Ux, S).
Its not too hard to see that this induces an additive map between the two defi-

nitions, but checking that it respects multiplication is harder (but true).

3. Action of the derived Hecke algebra on H∗(Y (U), S)

3.1. Homological version of the action. We now return to the global setting.
Let U ⊂ G(Af ) be an open compact subgroup. The (local) homological definition
is

H(Gv, Uv) := H∗(HomSGv
(P •, P •)).

This acts on the cohomology of

HomSGv
(S[Gv/Uv],M

•),

as S[Gv/Uv] may be replaced by P • for the purpose of computing cohomology.
For Vv ⊂ G(Fv) an open compact subgroup, we define the cochains for this

subgroup as
C•(Vv) := C•(Y (U (v) × Vv), S).

Let
M• := lim−→

Vv⊂Gv
C•(Vv).

where Vv varies over all open compact subgroups of Gv.

Proposition 3.1. The cohomology of HomSGv
(S[Gv/Uv],M

•) is H∗(Y (U), S).

This gives an action the derived Hecke algebra on the cohomology of Y (U).

3.2. Practical version of the action. We would like to have a map

H∗(Uv, S) −→ H∗(Y (U), S),

which we would apply to a class α ∈ H1(Uv/Uv,1, S). Here is how we produce it:
define U1 ⊂ U as the preimage of Uv,1 ⊂ Uv under the natural map U → Uv. Thus
we have a map

Y (U1) −→ Y (U),

which is a cover with transformation group Uv/Uv,1. Thus we get a map from Y (U)
to the classifying space of Uv/Uv,1, reflecting this Uv/Uv,1-torsor. This induces, in
particular,

H∗(Uv/Uv,1, S) −→ H∗(Y (U), S).

We let 〈α〉 ∈ H∗(Y (U), S), a “congruence class” as discussed at the outset, repre-
sent the image of α ∈ H∗(Uv/Uv,1, S).

What is the action of hz,α on H∗(Y (U), S)? Well, Uz is the stabilizer of z = gzU
in U . Choose also Uz′ , the stabilizer of g−1z U . The we have a concrete description
of the action:

H∗(Y (Uz))
∪〈α〉 // H∗(Y (Uz))

f∗ // H∗(Y (Uz′))

π2,∗

''
H∗(Y (U))

π∗1

77

hz,α // H∗+1(Y (U))

where f∗ arises from f : g 7→ ggz.


