
DERIVED SATAKE ISOMORPHISM AND

IWAHORI-HECKE ALGEBRAS, [?, §3-4]

Last week in the Hecke track, Alice introduced a local derived Hecke algebra
and change of degree action on the cohomology of a locally symmetric space.
However, there is lots still to do: we do not even know whether this action
is non-zero yet! The goals of this talk are:

(1) (Derived Satake) Understand the structure of the local derived Hecke
algebra H (G,K) with K a hyperspecial maximal compact subgroup
as an algebra (last week, we understood an explicit decomposition
as an S-module) and this is the subject of §3 of Venkatesh. That is
the main goal of today.

(2) (Derived I–H) Introduce some closely related Iwahori–Hecke algebras
and their derived analogues, §4 of Venkatesh.

1. Structure of split reductive p-adic groups

These two sections are purely local, let’s review some notation: F/Qp,O, k =
F, ]k = q,$ As this is a purely local talk, we have dropped all ν’s.

G F-split connected reductive group/F, set G = G(F);

A a maximal torus in G;

K a hyperspecial maximal compact open subgroup in the apartment of A;

G/O smooth integral model of G, (generic fibre G)

with K = G(O) and connected reductive special fibre;

B = AnN Borel subgroup and Levi decomposition G with,B,A,N generic fibres;

B = B(F), A = A(F), N = N(F);

G = G(k), B = B(k), A = A(k)(= T in Venkatesh);

I 6 K an Iwahori subgroup of G chosen relative to B;

A ∩K is the unique maximal compact subgroup of A;

W = NG(A)/A Weyl group;

X∗ = X∗(A) = Hom(Gm,A);

X∗ = X∗(A) = Hom(A,Gm);

Φ+ ⊂ X∗ characters appearing in the adjoint representation on the Lie algebra of B;
1
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X+
∗ = {χ ∈ X∗ : 〈χ, ψ〉 > 0 for all ψ ∈ Φ+};

X∗
'−→ (A/A ∩K), χ 7→ χ($) (identify);

W̃ = X∗ o W affine Weyl group;

(Cartan Decomposition): G = KAK =
⊔

χ∈X+
∗

Kχ($)K

(The A/K ∩A component in the Cartan decomposition is unique up to the action of W.)

(Iwasawa Decomposition): G = BK;

(Bruhat Decomposition): G = IW̃I.

For example (put GL2(Qp) example running down the side above)

G = GL2/Qp

G = GL2(Qp), B = ( ? ?0 ? ) ∩G,A = ( ? 0
0 ? ) ∩G,

K = GL2(Zp);
G = GL2(Fp), B = ( ? ?0 ? ) ∩GL2(Fp), etc;

I =
(

Zp Zp

pZp Zp

)×
W = S2, represented by monomial matrices {( 1 0

0 1 ) , ( 0 1
1 0 )}

X∗ = Ze1 ⊕ Ze2, e1(x) = diag(x, 1), e2(x) = diag(1, x);

X∗ = Zχ1 ⊕ Zχ2, χ1(diag(x, y)) = x, χ2(diag(x, y)) = y;

Φ+ = {χ1 − χ2} ⊂ Φ = {χ1 − χ2, χ2 − χ1};
X+
∗ = {ae1 + be2 : a > b};

W̃ =
{(

pa 0

0 pb

)
,
(

0 pa

pb 0

)}
G =

⊔
a>b

K
(
pa 0

0 pb

)
K (refined) Cartan decomposition.

2. Classical Satake/“Degree 0”

For now, S denotes a commutative ring.

Define the K-spherical Hecke algebra by

HK = EndS[G](S[G/K]),

under composition of endomorphisms. Using Frobenius reciprocity

HK ' {f : G→ S compactly supported, left and right K-invariant},
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an algebra under convolution of functions

f ? f ′(g) =
∑

x∈G/K

f(x)f ′(x−1g).

Example 1. (A,A ∩K) is a special case, and

HA∩K ' S[A/A ∩K] = S[X∗].

And X∗ ' Zr, for some r, and HA∩K ' S[T±11 , · · · ,T±1r ] is commutative.

Let dn be a complex valued Haar measure on N normalised by dn(N∩K) = 1,
and δB : A→ C× the modulus character defined by∫

N
f(a−1na)dn = δB(a)

∫
N
f(n)dn.

Theorem 2 (Satake over C). With S = C, the map

S : HK → HA∩K

f 7→ S(f)(a) = δB(a)1/2
∫
N
f(an)dn

is an injective algebra homomorphism, with image equal to the W-invariant
functions in HA∩K. In particular, HK is commutative.

One uses the Cartan decomposition to show S is bijective onto the W-
invariants, and the Iwasawa decomposition to show S is an algebra homo-
morphism.

Example 3. Let T1 = 1
K
(
p 0
0 1

)
K

, T2 = 1
K
(
p 0
0 p

)
K

, then

S(T2) = 1( p 0
0 p

)
(A∩K)

S(T1) = q1/2
(

1( p 0
0 1

)
(A∩K)

+ 1( 1 0
0 p

)
(A∩K)

)
and HK ' C[T1,T2,T

−1
2 ]. Notice that replacing q with 1, for a choice of

square root, S coincides with restriction!

Remark 4. Let (π,V) be a smooth irreducible representation of G over C.
Then HK acts on VK and if it is non-zero it is a simple HK-module, and the
map

irreducible smooth representations of G with non-zero K-invariants/ '
→ simple HK-modules/ ',

is a bijection. Using the Satake isomorphism and introducing the dual group
into the picture, Langlands rewrote this as a parametrisation of these irre-
ducible representations with K-invariants by semisimple conjugacy classes
in LG.
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3. Venkatesh’s Derived Version

From now on S = Z/`r, ` 6= p (we could work in greater generality, but to
follow last week, we at least for the moment need to ensure our category of
smooth representations has enough projectives and injectives).

Last week, we introduced a derived Hecke algebra with coefficients in S

HK = H (G,K) = Ext∗(S[G/K],S[G/K]),

where Ext is taken in the category of smooth G-modules. And gave a de-
scription of HK as an algebra of functions

h : G/K×G/K→
⊕

(x,y)∈G/K

H∗(Gxy, S),

where Gxy = StabG(x, y) = (xKx−1) ∩ (yKy−1) is the pointwise stabilizer
of (x, y) in G, which satisfy:

(0) h(x, y) ∈ H∗(Gxy,S);
(1) h is G-invariant;

([g]∗h(gx, gy) = h(x, y) where [g]∗ : H∗(Ggxgy, S) → H∗(Gxy,S) is
induced from Ad(g).)

(2) h has finite support modulo G;
(there exists a finite subset R ⊂ G/K × G/K such that h(x, y) = 0
if (x, y) is not in the G-orbit of R.)

under a “convolution” product.

h1 ∗ h2(x, z) =
∑

y∈G/K

h1(x, y) ∪ h2(y, z) interpreted suitably in H∗(Gxz,S).

We also gave a description of HK as an S-module using the Cartan decom-
position which we will use later.

Example 5. Simple example (A, K ∩ A): For all (x, y) ∈ (A/K ∩ A)2,
since A is abelian, Axy = A ∩K ! Hence we are looking at functions

h : (A/K ∩A)× (A/K ∩A)→ H∗(A ∩K, S)

h : X∗ ×X∗ → H∗(A ∩K, S)

constant on A-orbits, of finite support, which thus identifies with

S[A/K ∩A]⊗S H∗(A ∩K, S).

with multiplication in the group algebra in the X∗-variable and multiplica-
tion in H∗(A ∩K, S) and the grading coming from H∗(A ∩K,S). As such it
is graded commutative.
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The reduction map A ∩ K → A splits uniquely, and under our hypotheses
induces an isomorphism on cohomology with coefficients in S

H∗(A ∩K,S) ' H∗(A, S)

Following Venkatesh, we make this identification for the remainder.

To summarise, for the derived Hecke algebra of a torus we have taken the
spherical Hecke algebra of the torus and tensored it with H∗(A,S).

Theorem 6 (Derived Satake, 3.3). Let S = Z/`r, where ` is prime, `r |
(q−1), ` - ]W (strong assumptions). Then restriction defines an isomorphism
of algebras

HK
∼−→H W

A∩K.

Let h be as above. Let us explain what restriction means:

(x, y) ∈ (G/K)2 h(x, y) ∈ H∗(Gxy,S)

(x, y) ∈ (A/A ∩K)2 h′(x, y) ∈ H∗(Axy, S) ' H∗(A,S)

h

Axy ↪→Gxy

h′

The properties (1)-(2) for h′ are straightforward. In addition the G-invariance
of h means that h′ is also W-invariant.

Corollary 7. Under above assumptions on (`, q).

(1) HK is graded commutative.
(2) If `r | (q − 1), then the induced map

HK over S = Z/`r →HK over Z/`s

is surjective for all s < r.

Theorem 6 reduces Part 2 to the case of a torus, which follows from the fact:,
for C a finite cyclic group with `r | ]C, the map H∗(C,Z/`r)→ H∗(C,Z/`s)
is surjective.

Proof of Theorem 3.3. We first show that h 7→ h′ is a bijection. Using the
Cartan decomposition we have a decomposition (see last time for the details)
as an S-module:

HK =
⊕
a∈X+

∗

H∗(K ∩Ad(a)K,S)

We can write h =
∑
ha,α uniquely with a ∈ X+

∗ and α ∈ H∗(K∩Ad(a)K,S)
and

supp(ha,α) = G · (a, e), ha,α(a, e) = α.
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We have KaK ∩ X∗ = W · a. And the element h′a,α is characterized by the
following properties:

h′a,α is W-invariant;

h′a,α(x, e) = 0 unless x ∈W · a

ha,α(a, e) = Res
K∩Ad(a)K
A (α).

It is enough, to show each element of H (A,A∩K)W is uniquely the sum of
elements h′a,α. This follows from:

Claim: Res : H∗(K∩Ad(a)K,S)→ H∗(A, S)Wa is an isomorphism, where Wa =
StabW(a). The group K∩Ad(a)K is modulo its maximal normal pro-p sub-
group is equal to the Levi subgroup M(k) of G(k) that centralises a with
Weyl group Wa. Modulo its maximal pro-p subgroup A∩K is equal to torus
in M(k). So we can reduce to:

Lemma 8 (3.7). Under our assumptions on (q, `), the restriction map H∗(G,S)→
H∗(A,S)W is an isomorphism.

Proof. The restriction map defines an isomorphism H∗(B,S)
∼−→ H∗(A,S)

and its inverse is given by corestriction as B is the semidirect product of A
with a unipotent q-group of order congruent to 1 modulo `. We transport
the W-action on H∗(A,S) to an action on H∗(B, S) by

Cores ◦ [w]A ◦ Res.

We now forget about A now and consider the restriction map

H∗(G, S)→ H∗(B, S)

We have

ResGB ◦ CoresGB =
∑
w∈W

CoresBwBw−1∩BAd(w−1)∗ResBB∩w−1Bw

=
∑
w∈W

[w]B

as CoreswBw
−1∩B

A ◦ ReswBw
−1∩B

A = 1. Morevover, by the Bruhat decomposi-
tion under our hypotheses Cores ◦ Res = |W| ∈ S×. Hence Res is surjective
and Cores is injective, and by the above ResCores computation ResGB has
image the W-invariants. �

We now sketch why h 7→ h′ is an algebra homomorphism:

(h1h2)
′(x, z) = ResGxz

A “
∑

y∈G/K

h1(x, y) ∪ h2(y, z)”

=
∑

Gxz\G/K

ResGxz
A ◦ CoresGxz

Gxyz
(h1(x, y) ∪ h2(y, z))
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And

ResGxz
A ◦CoresGxz

Gxyz
(h1(x, y)∪h2(y, z)) =

∑
A\Gxz/Gxyz

Cores
A
Ay′

Res
Gxyz

Ay′
(h1(x, y)∪h2(y, z)).

Lemma 3.10 shows that these Cores
A
Ay′

( ) vanish (under our hypothesis)

unless y′ ∈ X∗ hence Ay′ = A and we get

(h1h2)
′(x, z) =

∑
y∈X∗

Res
Gxyz

A (h1(x, y) ∪ h2(y, z))

=
∑
y∈X∗

Res
Gxy

A h1(x, y) ∪ Res
Gyz

A h2(y, z)

= h′1h
′
2(x, z)

�

4. Iwahori–Hecke Algebras

4.1. Degree 0. Define the Iwahori–Hecke algebra HI in the same way as
the spherical Hecke algebra HK, replacing K with I. As q = 1 mod `r, the
structure of HI is particularly simple, we have an isomorphism

HI ' S[W̃]

1IwI → w.

This follows from the standard presentation of the Iwahori–Hecke algebra
where relations (Ts − q)(Ts + 1) simplify to T 2

s = 1 in our case.

Put

HKI = {f : G→ S compact supported, left I-invariant, right K-invariant}
' HomS[G](S[G/I],S[G/K])

HIK = {f : G→ S compact supported, left K-invariant, right I-invariant}
' HomS[G](S[G/K],S[G/I])

Let V be any G-representation. The Hecke algebra HK acts on the right on

VK = HomS[G](S[G/K],V),

by precomposition. Elements of HKI induce homomorphisms VK → VI,
Venkatesh’s slogan is HKI goes from K-invariants to I-invariants.

Remark 9. Let Z = S[X∗]
W. Then every element of Z is central in S[W̃]

so we have a map Z → centre(HI), and all the H? have the structure of Z-
modules. In Lemma 4.5, it is shown that the bimodules ⊗ZZM induce inverse
equivalences of categories between HK⊗ZZM and HI⊗ZZM-modules where M
is a maximal ideal of Z over which the map Z→ S[X∗] is étale.
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4.2. Derived Iwahori–Hecke algebras. We create derived versions in
exactly the same way as before:

HI = H (G, I) = Ext∗S[G](S[G/I],S[G/I]),

and this is isomorphic to an algebra of

h : (x, y) ∈ (G/I)2  h(x, y) ∈ H∗(Gxy,S)

with the same constraints (1)-(2) and product as before.

We also get derived versions HIK and HKI of HKI and HIK.

Lemma 10 (4.7). (1) The restriction map

HI → {f : W̃2 → H∗(A, S) supported on finitely many W̃-orbits}
is an algebra homomorphism.

(2) We can restrict an element of HIK to a function W̃×X∗ → H∗(A,S)
and this restriction is compatible with Part 1. Similarly for HKI.

Proof uses some of the same ideas we have seen in the derived Satake proof.


