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1. INTRODUCTION

Let G be a simply connected semisimple split algebraic group over Q. Fix a Borel B C G and a maximal
torus A C B. Fix a “base level” Ky C G(Ay) in the finite adeles, and let Y (1) = Y (X)) denote the usual
adelic double quotient.

Let 7 denote a tempered, cohomological cuspidal automorphic representation of G such that 70 #£ 0.

Let T denote the set of all places where 7 is ramified, or where K is not hyperspecial. These are the “bad
primes”.
We have the derived Hecke algebra
T- @ T
vgTU{p}
with Z,-coefficients, for some fixed prime p > 0.

Theorem 1.1 (7.6 in [1]). Let m C Tk, be the mazimal ideal associated to w. Under some assumptions on
m (which we will describe), the cohomology group

H*(Y(1),Zp)m
is generated as a T-module by H1(Y (1), Z,)wm, where as usual
1
¢= S (@my (1) - )

and § = rank G(R) — rank K, (where Ko is a mazimal compact subgroup of G(R)).

2. NOTATION AND ASSUMPTIONS

Let G/Z, be an integral model for G, with Borel and maximal torus A C B. Let A =T = Ar, and G = Gp,.
Let GV denote the dual group of G over Z, and let BY and AV = TV denote the dual Borel and dual
torus.

2.1. Assumptions on 7. For simplicity, we assume the coefficient field of 7 is Q and we write Tk, for the
usual Hecke algebra

image(Hr, — Endpz,)(Chains(Y (1), Z,)))
where Hp, is the Z,-module generated by all Hecke operators prime to the level and to p, and Chains(Y (1), Z,,)
denotes the complex of singular chains for Y'(1) in the derived category of Z,-modules. The representation
m gives rise to a homomorphism T, — Z, — k := F,,, whose kernel is the maximal ideal associated to (the
mod p reduction of) 7.

Choose p > 0 such that
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1) H*(Y(1),Z,) is torsion-free, and we want p 1 (#W), where W is the Weyl group of G.
P

(2) There is a representation
5:Gq — G¥(Txym)
satisfying the “usual properties” (see Section 6.2 of [2] for the exact assumptions). Let p = p mod p.

(3) (No congruences) Tk, m = Z,. In some sense this is saying that 7 is “minimally ramified”.

(4) H;(Y(1),Z,)w is nonzero only in degrees [g, ¢ + 0].

2.2. Assumptions on p and Rj.

e Assume p has “big image” (i.e. the image of p|q(y,~) contains the image of the k-points of the simply
connected cover of GV), which in particular implies that Endy(p) = k*.

e pis “crystalline at p”, in a precise deformation theoretic sense as in Conjecture 6.1 in [1].

o HY(Q,,Adp) = H*(Qg,Adp) = 0 for all ¢ € T U {p}. This implies that the local deformation ring
R5 is equal to Z,, if ¢ € T, and formally smooth if ¢ = p.

3. TAYLOR-WILES PRIMES

Definition 3.1. A Taylor-Wiles datum is a set Q,, = {q1,...,¢s} of primes such that
(1) @ is disjoint from T U {p}.
(2) p" | (g —1) fori=1,...,s.

(3) Fori=1,...,s, p(Frob,,) is conjugate to a “strongly regular” element Frobg; € TV (k), which means
that
Centgv (Froqui) =TV,

Note there are |W| choices of Froqui.

Briefly: these exist by the Chebotarev density theorem, and the fact that we have a big image assumption
on p.

4. LEVEL STRUCTURES

For a Taylor-Wiles prime g € @, let Y1(¢q) denote the locally symmetric space whose level is the preimage
of a unipotent radical under reduction mod ¢: G(Z,) — G(F,). We have a tower

where Yy(q) has Iwahori level, i.e. the preimage of B(F,) under the same reduction map.

This cover Y1(q) — Yo(q) is a Galois cover, with Galois group A(F,) and the second map is the unique
subcover with Galois group

A(F,)/p" = (Z/p"Z)"
where 7 is the rank of A. In general, we set

Y1 (Qn) = Yi(q1,1) Xy) -+ Xyq) Y1(gs,n)
and
Yo(@n) = Yo(q1) Xy (1) -+ Xy Yo(gs)
Then
Y7(Qn) — Yo(Qn)
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is Galois with Galois group T), := [[;_; A(F,)/p" which is non-canonically isomorphic to (Z/p™Z)"*. From
now on, let R = rs, which will be the dimension of S, once we carry out the patching process.

5. LOCAL-GLOBAL COMPATIBILITY

5.1. Relationship between Y;(Q,,) and Y (1). Let @, be a Taylor-Wiles datum. For ¢ € Q,,, let
HKq’ qu ’ HanIq ? ququ
be the (underived) spherical/Iwahori Hecke-algebras with Z/p™Z-coefficients.

The centre of Hj, can be identified with Hg, and we assume that Hp, acts on H.(Yp(q),k)m (via this
identification) by means of the same (generalised) eigencharacter Hg, — k by which H, acts on 7.

As a consequence of this, we find that
H (Y(1),Z/p"2)m ©(®, 0, 1x,) Q) Hryt, = H* (Yo(Qn), Z/p"Z)m
q€Qn
and
H (Yo(Qu)s 2/0" B (@, 1y @) Hiyte, = H' (Y (1), 2/5"Z)n
4€Qn
In particular, we have the decomposition

H*(Yo(Qn), Z/p"Z)m = D H"(Yo(Qn). Z/p" L)y protr
Frob”
where Frob? = {Frobgi :4=1,...,s} and the subscript means that the “U, Hecke operator” I,xI, acts
via multiplication by X(Frob(:;), where x € X, (T) = X*(TV) is a dominant cocharacter (with respect to the
Borel B). Note that
H*(Yo(@n), Z/P" L) wropr = H*(Y (1), Z/p" Z)m

5.2. Relationship between Y,(Q,,) and Y;*(Q,). Consider the universal deformation ring Rﬁg’gn parametriz-
ing deformations p of p that are

(1) unramified outside @, UT U {p},

(2) crystalline at p

(3) inertia level < n for all ¢ € @y, i.e. the action of tame inertia factors through I,/p".
Consider the universal deformation o : Gg — GV(RES’EH).

Lemma 5.1 (6.12 in GV). If Q,, is a Taylor-Wiles set and q € Q,,, then 0Gq, can be uniquely conjugated
to a representation

Gq, = TV(RSE).

landing in the torus where the image of a fized uniformizer is Frobi,.

If we restrict to F* C Q. then we have

n <n
Fr —F:/p" — TV(REQH)

and by pairing with characters in X*(T"V), we get a map

AFy) = AF)/p" = (R55,)"
Then we have a map

<n
T — (R55,)" = T
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Assume the action of T;, on H* (Y (Qn), Z/p"Z)y probr Via the above map coincides with the action via deck
transformations, where T}, is the Galois group of Y;*(Q,) over Yy(Qy).

6. PATCHING

Let R denote the dimension of the dual Selmer group for Adp associated to the deformation functor
Def<™s,
I

(1) Define the group ring S,, = Z/p"Z[T,], and let I,, denote the augmentation ideal, so that S, /I, =
Z/p"Z. Let

Soo = Zp||a:1, e ,JTRH
and I, denote the ideal (z1,...,zR).

(2) We have perfect complexes
Co = Chains(Y (1), Zp)m
and
Cp = Chains (Y[ (Qn), Zp)m,FrobT

(3) We have deformation rings
Ry = Ry — Endp(z,)(Co)
and
R, = R5g, /(p",m*™).
There is a map S, — R,, and can assume k(n) > 2n.
(4) By the formal smoothness assumption on p, we get surjective maps
Ry =Zp||z1,...,xr-s]| > Rn

such that C,,/I,, = Cy/p™: this follows from local-global compatibility. We have a diagram

R, —— Endp(s,)(Cy)

J !

Ry, /p" —— Endpz/pn)(Co/p")
We can choose a sequence of Taylor-Wiles data {Qy, }n>1. Then
(1) we get a perfect complex Co 0of Soo-modules concentrated in [—(q + ), —g], such that
Coo ®5_ S 20,
and
Coo ®%_ Z, = Cy
(2) The map So, — R is surjective by the no congruences assumption.

(3) Moreover, C is quasi-isomorphic to to Hy(Cs) with the latter free over Ro.
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7. PROOF OF THEOREM 1

By definition of the derived Hecke algebra, it is enough to prove it for H*(Y (1), Z/p"Z), for all n > 1.

Assume that
HY(Homs_ (Coo, Zp)) x Extly,_(Z,,Zp) —» H' (Homg_ (Coo, Zy))
is a surjection.! Note
H(Homg, (Coo, Zp)) = Homps_)(Coo, Zp[q])
and
EXt{?w (Zy,Z,,) = Homp(s,.)(Zpla): Zplq + j]).

so the map is just the natural composition map coming from this description.

We pass to level n:

H9(Homg_ (Coo, Zy)) X Exty (Zp,Zy) H9% (Homg_ (Coo, Zyp))

H | [

Hi(Homs_(Cwo,Z,)) % Ext} (Z,,Z/p"Z) —————— H7(Homs_ (Cx, Z/p"Z))

J(**) Te }

Hi(Homg, (Cy,Z/p"Z) x Ext{gn(Z/p"Z,Z/p"Z)4>Hq+j(Homsn(Cn,Z/p”Z))

This diagram is commutative in the sense that the maps (x) and (x*) are adjoint. Furthermore, (x) is
surjective by the unnumbered Lemma in [2, §6.4] and (}) is surjective by the no torsion assumption. Tracing
through the diagram, we see that the bottom row is surjective. But

o H™ (Homs, (Cn, Z/p"Z)) = HT (Yo(Qn), Z/P" L) rrob

. Ext{gn(Z/p”Z7 Z/p"Z) = HI(T,,Z/p"Z) and the action factors through
® 1,
q€Qn

by pulling back under Yy(Q,) — BT,, and cupping.

We have three surjective maps

(1)

HUY (1), 2/p"L)n (@, g, 1x,) Q) Hrcpo1, = H(Yo(Qn), Z/p" D
qun

(2)

HY(Yo(Qn), Z/p"Z)m ¥(® Hy,) ® Hr, = HU(Yo(Qn), Z/p" L)

qE€EQn

aEQn

(3)
HY (Yo(Qn), Z2/0" 2w (@, Hiey) Q) Hiyxc, » H (Y (1), Z/p"Z)m

q€Qn

9€EQn

IThis is proven in [2, Appendix B] and involves a Koszul resolution calculation. The key point is that C is quasi-isomorphic
to a free Roo-module, and R~ is a quotient of Soc.
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where the first and third maps follow from local-global compatibility. Furthermore the actions of these Hecke
algebras are compatible under the morphisms H Ko I, @Hr, ® Hr, kx, — Hik,-

Thus @, Hrk, acts surjectively on H*(Y(1),Z/p"Z)w.
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