
DERIVED HECKE ALGEBRA IN THE TAYLOR-WILES SETTING, I

ANDREW GRAHAM

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019.
These are notes taken by Ashwin Iyengar (ashwin.iyengar@kcl.ac.uk).

1. Introduction

Let G be a simply connected semisimple split algebraic group over Q. Fix a Borel B ⊂ G and a maximal
torus A ⊂ B. Fix a “base level” K0 ⊂ G(Af ) in the finite adeles, and let Y (1) = Y (K0) denote the usual
adèlic double quotient.

Let π denote a tempered, cohomological cuspidal automorphic representation of G such that πK0 6= 0.

Let T denote the set of all places where π is ramified, or where K0 is not hyperspecial. These are the “bad
primes”.

We have the derived Hecke algebra

T̃ =
⊕

v 6∈T∪{p}

T̃v,

with Zp-coefficients, for some fixed prime p� 0.

Theorem 1.1 (7.6 in [1]). Let m ⊂ TK0
be the maximal ideal associated to π. Under some assumptions on

m (which we will describe), the cohomology group

H∗(Y (1),Zp)m

is generated as a T̃-module by Hq(Y (1),Zp)m, where as usual

q =
1

2
(dimY (1)− δ),

and δ = rank G(R)− rankK∞ (where K∞ is a maximal compact subgroup of G(R)).

2. Notation and Assumptions

Let G/Zp be an integral model for G, with Borel and maximal torus A ⊂ B. Let A = T = AFp
and G = GFp

.
Let G∨ denote the dual group of G over Z, and let B∨ and A∨ = T∨ denote the dual Borel and dual
torus.

2.1. Assumptions on π. For simplicity, we assume the coefficient field of π is Q and we write TK0
for the

usual Hecke algebra
image(HK0

→ EndD(Zp)(Chains(Y (1),Zp)))

whereHK0
is the Zp-module generated by all Hecke operators prime to the level and to p, and Chains(Y (1),Zp)

denotes the complex of singular chains for Y (1) in the derived category of Zp-modules. The representation
π gives rise to a homomorphism TK0 → Zp → k := Fp, whose kernel is the maximal ideal associated to (the
mod p reduction of) π.

Choose p� 0 such that
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(1) H∗(Y (1),Zp) is torsion-free, and we want p - (#W ), where W is the Weyl group of G.

(2) There is a representation
ρ̃ : GQ → G∨(TK0,m)

satisfying the “usual properties” (see Section 6.2 of [2] for the exact assumptions). Let ρ = ρ̃ mod p.

(3) (No congruences) TK0,m
∼= Zp. In some sense this is saying that π is “minimally ramified”.

(4) Hj(Y (1),Zp)m is nonzero only in degrees [q, q + δ].

2.2. Assumptions on ρ̃ and Rρ.

• Assume ρ has “big image” (i.e. the image of ρ|Q(µp∞ ) contains the image of the k-points of the simply

connected cover of G∨), which in particular implies that Endk(ρ) = k×.

• ρ̃ is “crystalline at p”, in a precise deformation theoretic sense as in Conjecture 6.1 in [1].

• H0(Qq,Adρ) = H2(Qq,Adρ) = 0 for all q ∈ T ∪ {p}. This implies that the local deformation ring
Rρ is equal to Zp if q ∈ T , and formally smooth if q = p.

3. Taylor-Wiles Primes

Definition 3.1. A Taylor-Wiles datum is a set Qn = {q1, . . . , qs} of primes such that

(1) Qn is disjoint from T ∪ {p}.

(2) pn | (qi − 1) for i = 1, . . . , s.

(3) For i = 1, . . . , s, ρ(Frobqi) is conjugate to a “strongly regular” element FrobTqi ∈ T
∨(k), which means

that
CentG∨(FrobTqi) = T∨.

Note there are |W | choices of FrobTqi .

Briefly: these exist by the Chebotarev density theorem, and the fact that we have a big image assumption
on ρ.

4. Level Structures

For a Taylor-Wiles prime q ∈ Qn, let Y1(q) denote the locally symmetric space whose level is the preimage
of a unipotent radical under reduction mod q: G(Zq)→ G(Fq). We have a tower

Y1(q)→ Y1(q, n)→ Y0(q),

where Y0(q) has Iwahori level, i.e. the preimage of B(Fq) under the same reduction map.

This cover Y1(q) → Y0(q) is a Galois cover, with Galois group A(Fq) and the second map is the unique
subcover with Galois group

A(Fq)/p
n ∼= (Z/pnZ)r

where r is the rank of A. In general, we set

Y ∗1 (Qn) = Y1(q1, n)×Y (1) · · · ×Y (1) Y1(qs, n)

and
Y0(Qn) = Y0(q1)×Y (1) · · · ×Y (1) Y0(qs)

Then
Y ∗1 (Qn)→ Y0(Qn)
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is Galois with Galois group Tn :=
∏s
i=1 A(Fq)/p

n which is non-canonically isomorphic to (Z/pnZ)rs. From
now on, let R = rs, which will be the dimension of S∞ once we carry out the patching process.

5. Local-Global Compatibility

5.1. Relationship between Y0(Qn) and Y (1). Let Qn be a Taylor-Wiles datum. For q ∈ Qn, let

HKq
, HIq , HKq,Iq , HIq,Kq

be the (underived) spherical/Iwahori Hecke-algebras with Z/pnZ-coefficients.

The centre of HIq can be identified with HKq
and we assume that HKq

acts on H∗(Y0(q), k)m (via this
identification) by means of the same (generalised) eigencharacter HKq → k by which HKq acts on π.

As a consequence of this, we find that

H∗(Y (1),Z/pnZ)m ⊗(
⊗

q∈Qn
HKq )

⊗
q∈Qn

HKq,Iq
∼= H∗(Y0(Qn),Z/pnZ)m

and

H∗(Y0(Qn),Z/pnZ)m ⊗(
⊗

q∈Qn
HKq )

⊗
q∈Qn

HIq,Kq
∼= H∗(Y (1),Z/pnZ)m

In particular, we have the decomposition

H∗(Y0(Qn),Z/pnZ)m =
⊕
FrobT

H∗(Y0(Qn),Z/pnZ)m,FrobT

where FrobT = {FrobTqi : i = 1, . . . , s} and the subscript means that the “Uq Hecke operator” IqχIq acts

via multiplication by χ(FrobTq ), where χ ∈ X∗(T ) ∼= X∗(T∨) is a dominant cocharacter (with respect to the
Borel B). Note that

H∗(Y0(Qn),Z/pnZ)m,FrobT
∼= H∗(Y (1),Z/pnZ)m

5.2. Relationship between Y0(Qn) and Y ∗1 (Qn). Consider the universal deformation ringR≤nρ,Qn
parametriz-

ing deformations ρ of ρ that are

(1) unramified outside Qn ∪ T ∪ {p},

(2) crystalline at p

(3) inertia level ≤ n for all q ∈ Qn, i.e. the action of tame inertia factors through Iq/p
n.

Consider the universal deformation σ : GQ → G∨(R≤nρ,Qn
).

Lemma 5.1 (6.12 in GV). If Qn is a Taylor-Wiles set and q ∈ Qn, then σGQp
can be uniquely conjugated

to a representation

GQq
→ T∨(R≤nρ,Qn

).

landing in the torus where the image of a fixed uniformizer is FrobTqi .

If we restrict to F×q ⊂ Q×q , then we have

F×q → F×q /p
n → T∨(R≤nρ,Qn

)

and by pairing with characters in X∗(T∨), we get a map

A(Fq)→ A(Fq)/p
n → (R≤nρ,Qn

)×

Then we have a map

Tn → (R≤nρ,Qn
)× → Tm.
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Assume the action of Tn on H∗(Y ∗1 (Qn),Z/pnZ)m,FrobT via the above map coincides with the action via deck
transformations, where Tn is the Galois group of Y ∗1 (Qn) over Y0(Qn).

6. Patching

Let R denote the dimension of the dual Selmer group for Adρ̄ associated to the deformation functor
Defcrisρ .

(1) Define the group ring Sn = Z/pnZ[Tn], and let In denote the augmentation ideal, so that Sn/In ∼=
Z/pnZ. Let

S∞ = Zp‖x1, . . . , xR‖

and I∞ denote the ideal (x1, . . . , xR).

(2) We have perfect complexes

C0 = Chains(Y (1),Zp)m

and

Cn = Chains(Y ∗1 (Qn),Zp)m,FrobT

(3) We have deformation rings

R0 = Rρ → EndD(Zp)(C0)

and

Rn = R≤nρ,Qn
/(pn,mk(n)).

There is a map Sn → Rn, and can assume k(n) ≥ 2n.

(4) By the formal smoothness assumption on ρ, we get surjective maps

R∞ = Zp‖x1, . . . , xR−δ‖� Rn

such that Cn/In ∼= C0/p
n: this follows from local-global compatibility. We have a diagram

Rn EndD(Sn)(Cn)

Rn/p
n EndD(Z/pn)(C0/p

n)

We can choose a sequence of Taylor-Wiles data {Qn}n≥1. Then

(1) we get a perfect complex C∞ of S∞-modules concentrated in [−(q + δ),−q], such that

C∞ ⊗L
S∞

Sn ∼= Cn

and

C∞ ⊗L
S∞

Zp ∼= C0

(2) The map S∞ → R∞ is surjective by the no congruences assumption.

(3) Moreover, C∞ is quasi-isomorphic to to Hq(C∞) with the latter free over R∞.
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7. Proof of Theorem 1

By definition of the derived Hecke algebra, it is enough to prove it for H∗(Y (1),Z/pnZ)m for all n ≥ 1.

Assume that

Hq(HomS∞(C∞,Zp))× ExtjS∞
(Zp,Zp) � Hq+j(HomS∞(C∞,Zp))

is a surjection.1 Note

Hq(HomS∞(C∞,Zp)) = HomD(S∞)(C∞,Zp[q])

and

ExtjS∞
(Zp,Zp) = HomD(S∞)(Zp[q],Zp[q + j]),

so the map is just the natural composition map coming from this description.

We pass to level n:

Hq(HomS∞(C∞,Zp)) ExtjS∞
(Zp,Zp) Hq+j(HomS∞(C∞,Zp))

Hq(HomS∞(C∞,Zp)) ExtjS∞
(Zp,Z/p

nZ) Hq+j(HomS∞(C∞,Z/p
nZ))

Hq(HomSn(Cn,Z/p
nZ) ExtjSn

(Z/pnZ,Z/pnZ) Hq+j(HomSn(Cn,Z/p
nZ))

×

(†)

×

(∗∗)

×

(∗) ∼

This diagram is commutative in the sense that the maps (∗) and (∗∗) are adjoint. Furthermore, (∗) is
surjective by the unnumbered Lemma in [2, §6.4] and (†) is surjective by the no torsion assumption. Tracing
through the diagram, we see that the bottom row is surjective. But

• Hq+j(HomSn
(Cn,Z/p

nZ)) ∼= Hq+j(Y0(Qn),Z/pnZ)m,FrobT

• ExtjSn
(Z/pnZ,Z/pnZ) = Hj(Tn,Z/p

nZ) and the action factors through⊗
q∈Qn

HIq

by pulling back under Y0(Qn)→ BTn and cupping.

We have three surjective maps

(1)

Hq(Y (1),Z/pnZ)m ⊗(
⊗

q∈Qn
HKq )

⊗
q∈Qn

HKq,Iq � Hq(Y0(Qn),Z/pnZ)m

(2)

Hq(Y0(Qn),Z/pnZ)m ⊗(
⊗

q∈Qn
HKq )

⊗
q∈Qn

HIq � Hq(Y0(Qn),Z/pnZ)m

(3)

Hq+j(Y0(Qn),Z/pnZ)m ⊗(
⊗

q∈Qn
HKq )

⊗
q∈Qn

HIq,Kq
� Hq+j(Y (1),Z/pnZ)m

1This is proven in [2, Appendix B] and involves a Koszul resolution calculation. The key point is that C∞ is quasi-isomorphic

to a free R∞-module, and R∞ is a quotient of S∞.
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where the first and third maps follow from local-global compatibility. Furthermore the actions of these Hecke
algebras are compatible under the morphisms HKq,Iq ⊗HIq ⊗HIq,Kq → HKq .

Thus
⊗

qHKq acts surjectively on H∗(Y (1),Z/pnZ)m.
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