DERIVED HECKE ALGEBRA IN THE TAYLOR-WILES SETTING, I

ANDREW GRAHAM

A talk in the Derived Structures in the Langlands Program study group at UCL in Spring 2019. These are notes taken by Ashwin Iyengar (ashwin.iyengar@kcl.ac.uk).

1. INTRODUCTION

Let **G** be a simply connected semisimple split algebraic group over **Q**. Fix a Borel **B** \subset **G** and a maximal torus **A** \subset **B**. Fix a "base level" $K_0 \subset$ **G**(**A**_f) in the finite adeles, and let $Y(1) = Y(K_0)$ denote the usual adèlic double quotient.

Let π denote a tempered, cohomological cuspidal automorphic representation of **G** such that $\pi^{K_0} \neq 0$.

Let T denote the set of all places where π is ramified, or where K_0 is not hyperspecial. These are the "bad primes".

We have the derived Hecke algebra

$$\widetilde{\mathbf{T}} = \bigoplus_{v \not\in T \cup \{p\}} \widetilde{\mathbf{T}}_v,$$

with \mathbf{Z}_p -coefficients, for some fixed prime $p \gg 0$.

Theorem 1.1 (7.6 in [1]). Let $\mathfrak{m} \subset \mathbf{T}_{K_0}$ be the maximal ideal associated to π . Under some assumptions on \mathfrak{m} (which we will describe), the cohomology group

$$H^*(Y(1), \mathbf{Z}_p)_{\mathfrak{m}}$$

is generated as a $\widetilde{\mathbf{T}}$ -module by $H^q(Y(1), \mathbf{Z}_p)_{\mathfrak{m}}$, where as usual

$$q = \frac{1}{2}(\dim Y(1) - \delta)$$

and $\delta = \operatorname{rank} \mathbf{G}(\mathbf{R}) - \operatorname{rank} K_{\infty}$ (where K_{∞} is a maximal compact subgroup of $\mathbf{G}(\mathbf{R})$).

2. NOTATION AND ASSUMPTIONS

Let \mathcal{G}/\mathbb{Z}_p be an integral model for \mathbf{G} , with Borel and maximal torus $\mathcal{A} \subset \mathcal{B}$. Let $A = T = \mathcal{A}_{\mathbf{F}_p}$ and $G = \mathcal{G}_{\mathbf{F}_p}$. Let G^{\vee} denote the dual group of \mathbf{G} over \mathbf{Z} , and let B^{\vee} and $A^{\vee} = T^{\vee}$ denote the dual Borel and dual torus.

2.1. Assumptions on π . For simplicity, we assume the coefficient field of π is **Q** and we write \mathbf{T}_{K_0} for the usual Hecke algebra

$$\operatorname{image}(H_{K_0} \to \operatorname{End}_{D(\mathbf{Z}_p)}(\operatorname{Chains}(Y(1), \mathbf{Z}_p)))$$

where H_{K_0} is the \mathbf{Z}_p -module generated by all Hecke operators prime to the level and to p, and $\text{Chains}(Y(1), \mathbf{Z}_p)$ denotes the complex of singular chains for Y(1) in the derived category of \mathbf{Z}_p -modules. The representation π gives rise to a homomorphism $\mathbf{T}_{K_0} \to \mathbf{Z}_p \to k := \mathbf{F}_p$, whose kernel is the maximal ideal associated to (the mod p reduction of) π .

Choose $p \gg 0$ such that

Date: Feb 13, 2019.

ANDREW GRAHAM

- (1) $H^*(Y(1), \mathbb{Z}_p)$ is torsion-free, and we want $p \nmid (\#W)$, where W is the Weyl group of G.
- (2) There is a representation

$$\widetilde{\rho}: G_{\mathbf{Q}} \to G^{\vee}(\mathbf{T}_{K_0, \mathfrak{m}})$$

satisfying the "usual properties" (see Section 6.2 of [2] for the exact assumptions). Let $\overline{\rho} = \widetilde{\rho} \mod p$.

- (3) (No congruences) $\mathbf{T}_{K_0,\mathfrak{m}} \cong \mathbf{Z}_p$. In some sense this is saying that π is "minimally ramified".
- (4) $H_i(Y(1), \mathbf{Z}_p)_{\mathfrak{m}}$ is nonzero only in degrees $[q, q + \delta]$.

2.2. Assumptions on $\tilde{\rho}$ and $R_{\overline{\rho}}$.

- Assume $\overline{\rho}$ has "big image" (i.e. the image of $\overline{\rho}|_{\mathbf{Q}(\mu_{p^{\infty}})}$ contains the image of the k-points of the simply connected cover of G^{\vee}), which in particular implies that $\operatorname{End}_k(\overline{\rho}) = k^{\times}$.
- $\tilde{\rho}$ is "crystalline at p", in a precise deformation theoretic sense as in Conjecture 6.1 in [1].
- $H^0(\mathbf{Q}_q, \operatorname{Ad}\overline{\rho}) = H^2(\mathbf{Q}_q, \operatorname{Ad}\overline{\rho}) = 0$ for all $q \in T \cup \{p\}$. This implies that the local deformation ring $R_{\overline{\rho}}$ is equal to \mathbf{Z}_p if $q \in T$, and formally smooth if q = p.

3. TAYLOR-WILES PRIMES

Definition 3.1. A Taylor-Wiles datum is a set $Q_n = \{q_1, \ldots, q_s\}$ of primes such that

- (1) Q_n is disjoint from $T \cup \{p\}$.
- (2) $p^n \mid (q_i 1)$ for $i = 1, \ldots, s$.
- (3) For i = 1, ..., s, $\overline{\rho}(\operatorname{Frob}_{q_i})$ is conjugate to a "strongly regular" element $\operatorname{Frob}_{q_i}^T \in T^{\vee}(k)$, which means that

$$\operatorname{Cent}_{G^{\vee}}(\operatorname{Frob}_{q_i}^T) = T^{\vee}.$$

Note there are |W| choices of $\operatorname{Frob}_{q_i}^T$.

Briefly: these exist by the Chebotarev density theorem, and the fact that we have a big image assumption on $\overline{\rho}$.

4. Level Structures

For a Taylor-Wiles prime $q \in Q_n$, let $Y_1(q)$ denote the locally symmetric space whose level is the preimage of a unipotent radical under reduction mod $q: \mathcal{G}(\mathbf{Z}_q) \to \mathcal{G}(\mathbf{F}_q)$. We have a tower

$$Y_1(q) \rightarrow Y_1(q, n) \rightarrow Y_0(q),$$

where $Y_0(q)$ has Iwahori level, i.e. the preimage of $\mathcal{B}(\mathbf{F}_q)$ under the same reduction map.

This cover $Y_1(q) \to Y_0(q)$ is a Galois cover, with Galois group $\mathbf{A}(\mathbf{F}_q)$ and the second map is the unique subcover with Galois group

$$\mathbf{A}(\mathbf{F}_q)/p^n \cong (\mathbf{Z}/p^n \mathbf{Z})^r$$

where r is the rank of **A**. In general, we set

$$Y_1^*(Q_n) = Y_1(q_1, n) \times_{Y(1)} \cdots \times_{Y(1)} Y_1(q_s, n)$$

and

$$Y_0(Q_n) = Y_0(q_1) \times_{Y(1)} \cdots \times_{Y(1)} Y_0(q_s)$$

Then

$$Y_1^*(Q_n) \to Y_0(Q_n)$$

is Galois with Galois group $T_n := \prod_{i=1}^s \mathbf{A}(\mathbf{F}_q)/p^n$ which is non-canonically isomorphic to $(\mathbf{Z}/p^n \mathbf{Z})^{rs}$. From now on, let R = rs, which will be the dimension of S_{∞} once we carry out the patching process.

5. Local-Global Compatibility

5.1. Relationship between $Y_0(Q_n)$ and Y(1). Let Q_n be a Taylor-Wiles datum. For $q \in Q_n$, let

$$H_{K_q}, H_{I_q}, H_{K_q, I_q}, H_{I_q, K_q}$$

be the (underived) spherical/Iwahori Hecke-algebras with $\mathbf{Z}/p^{n}\mathbf{Z}$ -coefficients.

The centre of H_{I_q} can be identified with H_{K_q} and we assume that H_{K_q} acts on $H_*(Y_0(q), k)_{\mathfrak{m}}$ (via this identification) by means of the same (generalised) eigencharacter $H_{K_q} \to k$ by which H_{K_q} acts on π .

As a consequence of this, we find that

$$H^*(Y(1), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}} \otimes_{(\bigotimes_{q \in Q_n} H_{K_q})} \bigotimes_{q \in Q_n} H_{K_q, I_q} \cong H^*(Y_0(Q_n), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}}$$

and

$$H^*(Y_0(Q_n), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}} \otimes_{(\bigotimes_{q \in Q_n} H_{K_q})} \bigotimes_{q \in Q_n} H_{I_q, K_q} \cong H^*(Y(1), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}}$$

In particular, we have the decomposition

$$H^*(Y_0(Q_n), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}} = \bigoplus_{\text{Frob}^T} H^*(Y_0(Q_n), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}, \text{Frob}^T}$$

where $\operatorname{Frob}^T = {\operatorname{Frob}_{q_i}^T : i = 1, \ldots, s}$ and the subscript means that the " U_q Hecke operator" $I_q \chi I_q$ acts via multiplication by $\chi(\operatorname{Frob}_q^T)$, where $\chi \in X_*(T) \cong X^*(T^{\vee})$ is a dominant cocharacter (with respect to the Borel **B**). Note that

$$H^*(Y_0(Q_n), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}, \operatorname{Frob}^T} \cong H^*(Y(1), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}}$$

5.2. Relationship between $Y_0(Q_n)$ and $Y_1^*(Q_n)$. Consider the universal deformation ring $R_{\overline{\rho},Q_n}^{\leq n}$ parametrizing deformations ρ of $\overline{\rho}$ that are

- (1) unramified outside $Q_n \cup T \cup \{p\}$,
- (2) crystalline at p
- (3) inertia level $\leq n$ for all $q \in Q_n$, i.e. the action of tame inertia factors through I_q/p^n .

Consider the universal deformation $\sigma: G_{\mathbf{Q}} \to G^{\vee}(R^{\leq n}_{\overline{\rho},Q_n}).$

Lemma 5.1 (6.12 in GV). If Q_n is a Taylor-Wiles set and $q \in Q_n$, then $\sigma_{G_{\mathbf{Q}_p}}$ can be uniquely conjugated to a representation

$$G_{\mathbf{Q}_q} \to T^{\vee}(R^{\leq n}_{\overline{\rho},Q_n}).$$

landing in the torus where the image of a fixed uniformizer is $\operatorname{Frob}_{a_i}^T$.

If we restrict to $\mathbf{F}_q^{\times} \subset \mathbf{Q}_q^{\times}$, then we have

$$\mathbf{F}_q^{\times} \to \mathbf{F}_q^{\times}/p^n \to T^{\vee}(R_{\overline{\rho},Q_n}^{\leq n})$$

and by pairing with characters in $X^*(T^{\vee})$, we get a map

$$A(\mathbf{F}_q) \to \mathbf{A}(\mathbf{F}_q)/p^n \to (R^{\leq n}_{\overline{\rho},Q_n})^{\times}$$

Then we have a map

$$T_n \to (R_{\overline{\rho},Q_n}^{\leq n})^{\times} \to \mathbf{T}_{\mathfrak{m}}.$$

ANDREW GRAHAM

Assume the action of T_n on $H^*(Y_1^*(Q_n), \mathbb{Z}/p^n \mathbb{Z})_{\mathfrak{m}, \operatorname{Frob}^T}$ via the above map coincides with the action via deck transformations, where T_n is the Galois group of $Y_1^*(Q_n)$ over $Y_0(Q_n)$.

6. Patching

Let R denote the dimension of the dual Selmer group for $\operatorname{Ad}_{\bar{\rho}}$ associated to the deformation functor $\operatorname{Def}_{\bar{\rho}}^{\operatorname{cris}}$.

(1) Define the group ring $S_n = \mathbf{Z}/p^n \mathbf{Z}[T_n]$, and let I_n denote the augmentation ideal, so that $S_n/I_n \cong \mathbf{Z}/p^n \mathbf{Z}$. Let

$$S_{\infty} = \mathbf{Z}_p \| x_1, \dots, x_R \|$$

and I_{∞} denote the ideal (x_1, \ldots, x_R) .

(2) We have perfect complexes

$$C_0 = \text{Chains}(Y(1), \mathbf{Z}_p)_{\mathfrak{m}}$$

and

$$C_n = \text{Chains}(Y_1^*(Q_n), \mathbf{Z}_p)_{\mathfrak{m}, \text{Frob}^T}$$

(3) We have deformation rings

$$R_0 = R_{\overline{\rho}} \to \operatorname{End}_{D(\mathbf{Z}_p)}(C_0)$$

and

$$R_n = R_{\overline{\rho}, Q_n}^{\leq n} / (p^n, \mathfrak{m}^{k(n)}).$$

There is a map $S_n \to R_n$, and can assume $k(n) \ge 2n$.

(4) By the formal smoothness assumption on $\overline{\rho}$, we get surjective maps

$$R_{\infty} = \mathbf{Z}_p \| x_1, \dots, x_{R-\delta} \| \twoheadrightarrow R_n$$

such that $C_n/I_n \cong C_0/p^n$: this follows from local-global compatibility. We have a diagram

$$\begin{array}{cccc}
R_n & \longrightarrow & \operatorname{End}_{D(S_n)}(C_n) \\
\downarrow & & \downarrow \\
R_n/p^n & \longrightarrow & \operatorname{End}_{D(\mathbf{Z}/p^n)}(C_0/p^n)
\end{array}$$

We can choose a sequence of Taylor-Wiles data $\{Q_n\}_{n\geq 1}$. Then

(1) we get a perfect complex C_{∞} of S_{∞} -modules concentrated in $[-(q+\delta), -q]$, such that

$$C_{\infty} \otimes_{S_{\infty}}^{\mathbf{L}} S_n \cong C_n$$

and

$$C_{\infty} \otimes_{S_{\infty}}^{\mathbf{L}} \mathbf{Z}_p \cong C_0$$

- (2) The map $S_{\infty} \to R_{\infty}$ is surjective by the no congruences assumption.
- (3) Moreover, C_{∞} is quasi-isomorphic to to $H_q(C_{\infty})$ with the latter free over R_{∞} .

7. Proof of Theorem 1

By definition of the derived Hecke algebra, it is enough to prove it for $H^*(Y(1), \mathbb{Z}/p^n \mathbb{Z})_{\mathfrak{m}}$ for all $n \ge 1$. Assume that

$$H^{q}(\operatorname{Hom}_{S_{\infty}}(C_{\infty}, \mathbf{Z}_{p})) \times \operatorname{Ext}_{S_{\infty}}^{j}(\mathbf{Z}_{p}, \mathbf{Z}_{p}) \twoheadrightarrow H^{q+j}(\operatorname{Hom}_{S_{\infty}}(C_{\infty}, \mathbf{Z}_{p}))$$

is a surjection.¹ Note

$$H^{q}(\operatorname{Hom}_{S_{\infty}}(C_{\infty}, \mathbf{Z}_{p})) = \operatorname{Hom}_{D(S_{\infty})}(C_{\infty}, \mathbf{Z}_{p}[q])$$

and

$$\operatorname{Ext}_{S_{\infty}}^{j}(\mathbf{Z}_{p},\mathbf{Z}_{p}) = \operatorname{Hom}_{D(S_{\infty})}(\mathbf{Z}_{p}[q],\mathbf{Z}_{p}[q+j])$$

so the map is just the natural composition map coming from this description. We pass to level n:

This diagram is commutative in the sense that the maps (*) and (**) are adjoint. Furthermore, (*) is surjective by the unnumbered Lemma in [2, §6.4] and (†) is surjective by the no torsion assumption. Tracing through the diagram, we see that the bottom row is surjective. But

- $H^{q+j}(\operatorname{Hom}_{S_n}(C_n, \mathbb{Z}/p^n\mathbb{Z})) \cong H^{q+j}(Y_0(Q_n), \mathbb{Z}/p^n\mathbb{Z})_{\mathfrak{m}, \operatorname{Frob}^T}$
- $\operatorname{Ext}_{S_n}^j(\mathbf{Z}/p^n\mathbf{Z},\mathbf{Z}/p^n\mathbf{Z}) = H^j(T_n,\mathbf{Z}/p^n\mathbf{Z})$ and the action factors through

$$\bigotimes_{q \in Q_n} \mathcal{H}_{I_q}$$

by pulling back under $Y_0(Q_n) \to BT_n$ and cupping.

We have three *surjective* maps

(1)

$$H^{q}(Y(1), \mathbf{Z}/p^{n}\mathbf{Z})_{\mathfrak{m}} \otimes_{(\bigotimes_{q \in Q_{n}} H_{K_{q}})} \bigotimes_{q \in Q_{n}} H_{K_{q}, I_{q}} \twoheadrightarrow H^{q}(Y_{0}(Q_{n}), \mathbf{Z}/p^{n}\mathbf{Z})_{\mathfrak{m}}$$

(2)

$$H^{q}(Y_{0}(Q_{n}), \mathbf{Z}/p^{n}\mathbf{Z})_{\mathfrak{m}} \otimes_{(\bigotimes_{q \in Q_{n}} H_{K_{q}})} \bigotimes_{q \in Q_{n}} \mathcal{H}_{I_{q}} \twoheadrightarrow H^{q}(Y_{0}(Q_{n}), \mathbf{Z}/p^{n}\mathbf{Z})_{\mathfrak{m}}$$

(3)

$$H^{q+j}(Y_0(Q_n), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}} \otimes_{(\bigotimes_{q \in Q_n} H_{K_q})} \bigotimes_{q \in Q_n} H_{I_q, K_q} \twoheadrightarrow H^{q+j}(Y(1), \mathbf{Z}/p^n \mathbf{Z})_{\mathfrak{m}}$$

¹This is proven in [2, Appendix B] and involves a Koszul resolution calculation. The key point is that C_{∞} is quasi-isomorphic to a free R_{∞} -module, and R_{∞} is a quotient of S_{∞} .

ANDREW GRAHAM

where the first and third maps follow from local-global compatibility. Furthermore the actions of these Hecke algebras are compatible under the morphisms $H_{K_q,I_q} \otimes \mathcal{H}_{I_q} \otimes \mathcal{H}_{I_q,K_q} \to \mathcal{H}_{K_q}$.

Thus $\bigotimes_{q} \mathcal{H}_{K_{q}}$ acts surjectively on $H^{*}(Y(1), \mathbb{Z}/p^{n}\mathbb{Z})_{\mathfrak{m}}$.

References

- [1] S. Galatius and A. Venkatesh. Derived Galois deformation rings. Adv. Math., 327:470-623, 2018.
- [2] Akshay Venkatesh. Derived Hecke algebra and cohomology of arithmetic groups. arXiv e-prints, page arXiv:1608.07234, Aug 2016.