
1. Notation and statemant of results

Let G be a simply connected semisimple split algebraic group over Q. Let A be
a split maximal torus of G.

Let G∨ be the Langlands dual of G, considered as a split Chevalley group over
Z. Let T∨ be a split maximal torus of G∨.

For a compact open subgroup K ⊂ G(Af ), let

Y (K) := G(Q)\G(A)/KK∞ .

Let TK be the image of the Hecke algebra in EndRΓ(Y (K),Zp).
We will fix a level K0 as our “base level” and write Y (1) for Y (K0). The level

K0 need not be a maximal compact subgroup of G(Af ).
Venkatesh makes quite a few technical assumptions. I will not attempt to list

all of them, but I will try to indicate when I make use of an assumption.
Assume that we are given a homomorphism TK0

→ Zp and a corresponding
Galois representation ρ : Gal(Q̄/Q) → G∨(Zp). We will write ρ̄ for the mod p
reduction of ρ. Let m be the maximal ideal of TK0 given by

m := ker(TK0
→ Fp) .

Let

V := H1
f

(
Z
[

1

S

]
,Ad∗ ρ(1)

)∨
.

We will define an action of V on H∗(Y (1),Zp)m.
Recall that for n ∈ N, a Taylor-Wiles prime of level n is a prime q such that:

(1) K0 is hyperspecial at q.
(2) q ≡ 1 (mod pn),
(3) ρ̄(Frobq) is conjugate to a strongly regular element of T∨(k) (i.e. an element

whose centralizer inside G∨ is equal to T∨).

For q is a Taylor-Wiles prime of level n, we define

Tq := A(Fq)/pn .
We will construct a natural embedding

ιq,n : H1(Tq,Z/pn) ↪→
(
H

(1)
q,Z/pn

)
m

as well as a map
fq,n : H1(Tq,Z/pn)→ V/pn .

Theorem 1. There exists a function a : Z≥1 → Z≥1 and an action of V on
H∗(Y (1),Zp)m by endomorphisms of degree 1 having the following property:

(*) For any n ≥ 1 and any prime q ≡ 1 (mod p)a(n), equipped with a strongly
regular element of T∨(k) conjugate to ρ̄(Frobq), the actions of H1(Tq,Z/pn)
on H∗(Y (K),Z/pn)m via fq,n and ιq,n coincide.

The property (*) uniquely characterizes the V -action.
Moreover, V freely generates an exterior algebra inside the ring of endomor-

phisms of H∗(Y (K),Zp)m, and the global derived Hecke algebra T̃ coincides with
this exterior algebra.

Remark 2. Venkatesh also shows that if H∗(Y (1),Zp)m ∼= Zp, then ∧∗V → T̃K0 is
an isomorphism. In general, we only expect this map to be an isomorphism after
tensoring with Qp.
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Now we state a conjecture about the rationality of this action. The Langlands
program predicts that there is a motive Mcoad associated with the automorphic
representation Π and the coadjoint representation G∨. We assume that this motive
has Q-coefficients. The étale realization of Mcoad should be Ad∗ ρ ⊗Zp

Qp. There
should be a regulator map

H1
mot(Q,Mcoad,Z(1))→ H1

f

(
Z
[

1

S

]
Ad∗ ρ(1)

)
⊗Zp Qp .

We assume that the above map becomes an isomorphism after tensoring the left-
hand side with Qp. Let VQp

:= V ⊗Zp
Qp. Let VQ consist of those classes in VQp

whose pairing with the image of the above map lies in Q.

Conjecture 3. The action of
∧∗

VQp on H∗(Y (K),Qp)Π defined in Theorem 1
has the property that the action of VQ preserves H∗(Y (K),Q)Π.

2. The map ιq,n

Now we explain the construction of the map ιq,n. Let FrobTq ∈ T∨(Fp) be an
element conjugate to ρ(Frobq). A rough description of ιq,n is “pull back to Y0(q),

project to FrobTq -eigenspace, cup with α, push down to Y (1).”
Recall that we previously defined a Satake isomorphism

Hq
∼−→ ((Z/pn)[X∗]⊗H∗(A(Fq),Z/pn))

W

Note that H1(Tq,Z/pn)→ H1(A(Fq),Z/pn) is an isomorphism, so in degree 1 the
isomorphism can be written

H (1)
q

∼−→
(
(Z/pn)[X∗]⊗H1(Tq,Z/pn)

)W
Now let χ : X∗(A) = X∗(T∨) → F×p be the character determined by FrobTq .

This character determines a map (Z/pn)[X∗]→ Fp. Let m denote the kernel of the
restriction (Z/pn)[X∗]

W → Fp, and let m̃ = m(Z/pn)[X∗]. Then

(Z/pn)[X∗]m̃ ∼=
⊕
w∈W

(Z/pn)[X∗]wχ

where (Z/pn)[X∗]wχ is the competion of (Z/pn)[X∗] at the kernel of wχ. The
composite

((Z/pn)[X∗]⊗H∗(Tq,Z/pn))Wm → (Z/pn)[X∗]m̃⊗H∗(Tq,Z/pn)→ (Z/pn)[X∗]χ⊗H∗(Tq,Z/pn)

is an isomorphism. So to define the action of H1(Tq,Z/pn), we just need to exhibit
a map

H1(Tq,Z/pn)→ Z/pn[X∗]χ ⊗H∗(Tq,Z/pn) .

We just take

x 7→ 1⊗ x .

3. The map fq,n

Now we define the map fq,n. Venkatesh shows that for all q ∈ Qn, any deforma-
tion of ρ|GQq

is conjugate to one with image in T∨, so in particular the deformation

must be abelian. (The proof is by an explicit computation. The representation must
factor through the tame quotient of Gq, with has the presentation FtF−1 = tq.
Since F is strongly regular, it is conjugate to an element in T∨. After conjugating,
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t must be in the normalizer of T∨. But any element of the normalizer that reduces
to the identity must be in T∨.)

Let ρn be the mod-pn reduction of ρ. We can compute the cohomology of

(Ad ρn)|GQq
using Gal(Qq/Qq)ab ∼= Q̂×q ∼= Ẑ × F×q × Zq. In particular, we get an

isomorphism

H1(Qq,Ad ρn)

H1
ur(Qq,Ad ρn)

∼= H1(F×q ,Ad ρn) ∼= Hom(F×q ,Lie(T∨)⊗Z/pn) ∼= Hom(Tq,Z/pn) ∼= H1(Tq,Z/pn) .

There is a pairing

H1
f (Z[1/S],Ad∗ ρ(1))× H1(Qq,Ad ρn)

H1
ur(Qq,Ad ρn)

→ Z/pn

α, βq 7→ (αq mod pn, βq)q

which induces a map

H1(Tq,Z/pn)→ Hom
(
H1
f (Z[1/S],Ad∗ ρ(1)),Z/pn

) ∼= V/pn ;

here we used the fact that H1
f (Z[1/S],Ad∗ ρ(1)) has no torsion. (This uses the

assumption that H0(Z[1/S],Ad ρ̄) = H2(Z[1/S],Ad ρ̄) = 0.)

4. Convergent sequences of Taylor-Wiles data

We still need to show that ιq,n factors through fq,n. We will need to make use
of convergent sequences of Taylor-Wiles data.

Recall that a Taylor-Wiles datum Q is a collection of Taylor-Wiles primes. We
want to consider a sequence {Qn} of Taylor-Wiles data. Define

Tn :=
∏
q∈Q

Tq

Sn := (Z/pn)[Tn]

Rn, R̄n, certain quotients of the Galois deformation ring at level Q
Cn, a complex computing the cohomology of Y0(Qn):

RΓ(HomSn(Cn,Z/pn))
∼−→ RΓ(Y (1),Z/pn)

It is possible to find a sequence of Taylor-Wiles data that are convergent, so that
we can find limits S, R, C along with maps S → Sn, R→ Rn, C → Cn such that

(1) R and S are power series rings over Zp.
(2) C is quasi-isomorphic to a shift of R.
(3) H∗(HomS(C,Z/pn)) ∼= H∗(HomSn

(Cn,Z/pn)) ∼= H∗(Y (1),Z/pn)m.

5. Relation between ιQn
and fQn

Given a Taylor-Wiles datum Qn, we can assemble the maps ιq,n, fq,n for q ∈ Qn
into maps

ιQn
: H1(Tn,Z/pn)→

⊗
q∈Qn

(Hq)m

fQn : Hom(Tn,Z/pn)→ V/pn .

We want to show that if Qn is part of a convergent sequence, then ιQn factors
through fQn . We claim that:

(1) H1(Tn,Z/pn) ∼= tSn
, the tangent space to Sn
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(2) Under this identification, tRn
, the tangent space to Rn, acts trivially.

(3) Let Wn := coker(tRn → tSn); then Wn
∼= V/pn.

The first claim is straightforward to prove. Recall that

tSn
∼= Hom(In/I

2
n,Z/pn) ∼= HomSn

(In,Z/pn) ∼= Ext1
Sn

(Z/pn,Z/pn) ∼= H1(Tn,Z/pn)

where In is the augmentation ideal of Sn.

6. Vanishing of tRn
-action

Now we prove the second claim. In the following diagram (which also appeared in
section 7 of the paper), the first row is the cup product that appears in the definition
of the Hecke operator. The second row shows that the action factors through
ExtjS(Z/pn,Z/pn). Because we assumed that Hi(HomS(C,Z/pn)) is torsionfree,
we can lift to Hi(HomS(C,Zp)), thus allowing us to compute the action using the
third row. Using the torsionfree assumption again allows us to move to the fourth
row.

Hi (HomSn
(C ⊗S Sn,Z/pn)) ExtjSn

(Z/pn,Z/pn) Hi+j (HomSn
(C ⊗S Sn,Z/pn))

Hi (HomS(C,Z/pn)) ExtjS(Z/pn,Z/pn) Hi+j (HomS(C,Z/pn))

Hi (HomS(C,Zp)) ExtjS(Zp,Z/pn) Hi+j (HomS(C,Z/pn))

Hi (HomS(C,Zp)) ExtjS(Zp,Zp) Hi+j (HomS(C,Zp))

×

∼ ∼

×

×

×

In the fourth row, since S and R are power series rings over Zp, it is straightforward
to check that

Ext∗S(Zp,Zp) ∼= ∧∗tS
H∗ (HomS(C,Zp)) ∼= Ext∗S(R,Zp) ∼= ∧∗(tS/tR)

and tR ⊂ tS acts trivially on this module.

7. Relationship between Wn and V/pn

Recall from earlier in the lecture that

tSn
∼=
⊕
q∈Qn

H1(Qq,Ad ρn)

H1
ur(Qq,Ad ρn)

.

Similarly, we can identify

tRn
∼= H1

f

(
Z
[

1

SQn

]
,Ad ρn

)
.

The pairing that we defined previously extends to a pairing

H1
f

(
Z
[

1

S

]
,Ad∗ ρn(1)

)
×Wn → Z/pn

α, (βv)v∈Qn
7→

∑
v∈Qn

(αv, βv)v
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This pairing is well-defined since each αv is unramified, and if (βv) comes from a
global class, then the pairing vanishes by global reciprocity.

Now we want to show that the above pairing is perfect. By our assumptions,
both Wn and H1

f

(
Z
[

1
S

]
,Ad∗ ρn(1)

)
are free Z/pn-modules. An Euler characteristic

computation shows that they both have rank δ, the defect of G.
So it suffices to check that

tSn
→ H1

f (Z[1/S],Ad∗ ρ̄(1))
∨

is surjective. Recall that we chose the Taylor-Wiles set Qn so that

H1
f (Z [1/S] ,Ad∗ ρ̄(1)) ↪→

∏
v∈Qn

H1 (Qv,Ad∗ ρ̄(1)) .

In fact, the image is contained in the subspace of unramified classes. Applying local
Tate duality gives us exactly the surjection that we need.

In conclusion, we have shown

Wn
∼= V/pn := H1

f (Z [1/S] ,Ad∗ ρn(1))
∨
.

Defining the action of V requires a bit of additional work to show that if Qn
belongs to a convergent sequence of Taylor-Wiles data, then the action of Vn does
not depend on any choices.


