1. Notation and statemant of results

Let G be a simply connected semisimple split algebraic group over \mathbb{Q}. Let A be a split maximal torus of G.

Let G^{\vee} be the Langlands dual of G, considered as a split Chevalley group over \mathbb{Z}. Let T^{\vee} be a split maximal torus of G^{\vee}.

For a compact open subgroup $K \subset G\left(\mathbb{A}_{f}\right)$, let

$$
Y(K):=G(\mathbb{Q}) \backslash G(\mathbb{A}) / K K_{\infty}
$$

Let \mathbb{T}_{K} be the image of the Hecke algebra in End $R \Gamma\left(Y(K), \mathbb{Z}_{p}\right)$.
We will fix a level K_{0} as our "base level" and write $Y(1)$ for $Y\left(K_{0}\right)$. The level K_{0} need not be a maximal compact subgroup of $G\left(\mathbb{A}_{f}\right)$.

Venkatesh makes quite a few technical assumptions. I will not attempt to list all of them, but I will try to indicate when I make use of an assumption.

Assume that we are given a homomorphism $\mathbb{T}_{K_{0}} \rightarrow \mathbb{Z}_{p}$ and a corresponding Galois representation $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G^{\vee}\left(\mathbb{Z}_{p}\right)$. We will write $\bar{\rho}$ for the $\bmod p$ reduction of ρ. Let \mathfrak{m} be the maximal ideal of $\mathbb{T}_{K_{0}}$ given by

$$
\mathfrak{m}:=\operatorname{ker}\left(\mathbb{T}_{K_{0}} \rightarrow \mathbb{F}_{p}\right)
$$

Let

$$
V:=H_{f}^{1}\left(\mathbb{Z}\left[\frac{1}{S}\right], \operatorname{Ad}^{*} \rho(1)\right)^{\vee}
$$

We will define an action of V on $H^{*}\left(Y(1), \mathbb{Z}_{p}\right)_{\mathfrak{m}}$.
Recall that for $n \in \mathbb{N}$, a Taylor-Wiles prime of level n is a prime q such that:
(1) K_{0} is hyperspecial at q.
(2) $q \equiv 1\left(\bmod p^{n}\right)$,
(3) $\bar{\rho}\left(\operatorname{Frob}_{q}\right)$ is conjugate to a strongly regular element of $T^{\vee}(k)$ (i.e. an element whose centralizer inside G^{\vee} is equal to T^{\vee}).
For q is a Taylor-Wiles prime of level n, we define

$$
T_{q}:=A\left(\mathbb{F}_{q}\right) / p^{n}
$$

We will construct a natural embedding

$$
\iota_{q, n}: H^{1}\left(T_{q}, \mathbb{Z} / p^{n}\right) \hookrightarrow\left(\mathscr{H}_{q, \mathbb{Z} / p^{n}}^{(1)}\right)_{\mathfrak{m}}
$$

as well as a map

$$
f_{q, n}: H^{1}\left(T_{q}, \mathbb{Z} / p^{n}\right) \rightarrow V / p^{n}
$$

Theorem 1. There exists a function $a: \mathbb{Z}_{\geq 1} \rightarrow \mathbb{Z}_{\geq 1}$ and an action of V on $H^{*}\left(Y(1), \mathbb{Z}_{p}\right)_{\mathfrak{m}}$ by endomorphisms of degree 1 having the following property:
$\left(^{*}\right)$ For any $n \geq 1$ and any prime $q \equiv 1(\bmod p)^{a(n)}$, equipped with a strongly regular element of $T^{\vee}(k)$ conjugate to $\bar{\rho}\left(\operatorname{Frob}_{q}\right)$, the actions of $H^{1}\left(T_{q}, \mathbb{Z} / p^{n}\right)$ on $H^{*}\left(Y(K), \mathbb{Z} / p^{n}\right)_{\mathfrak{m}}$ via $f_{q, n}$ and $\iota_{q, n}$ coincide.
The property (*) uniquely characterizes the V-action.
Moreover, V freely generates an exterior algebra inside the ring of endomorphisms of $H^{*}\left(Y(K), \mathbb{Z}_{p}\right)_{\mathfrak{m}}$, and the global derived Hecke algebra $\tilde{\mathbb{T}}$ coincides with this exterior algebra.
Remark 2. Venkatesh also shows that if $H^{*}\left(Y(1), \mathbb{Z}_{p}\right)_{\mathfrak{m}} \cong \mathbb{Z}_{p}$, then $\wedge^{*} V \rightarrow \tilde{\mathbb{T}}_{K_{0}}$ is an isomorphism. In general, we only expect this map to be an isomorphism after tensoring with \mathbb{Q}_{p}.

Now we state a conjecture about the rationality of this action. The Langlands program predicts that there is a motive $M_{\text {coad }}$ associated with the automorphic representation Π and the coadjoint representation G^{\vee}. We assume that this motive has \mathbb{Q}-coefficients. The étale realization of $M_{\text {coad }}$ should be $\operatorname{Ad}^{*} \rho \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$. There should be a regulator map

$$
H_{\mathrm{mot}}^{1}\left(\mathbb{Q}, M_{\text {coad }, \mathbb{Z}}(1)\right) \rightarrow H_{f}^{1}\left(\mathbb{Z}\left[\frac{1}{S}\right] \mathrm{Ad}^{*} \rho(1)\right) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}
$$

We assume that the above map becomes an isomorphism after tensoring the lefthand side with \mathbb{Q}_{p}. Let $V_{\mathbb{Q}_{p}}:=V \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$. Let $V_{\mathbb{Q}}$ consist of those classes in $V_{\mathbb{Q}_{p}}$ whose pairing with the image of the above map lies in \mathbb{Q}.

Conjecture 3. The action of $\bigwedge^{*} V_{\mathbb{Q}_{p}}$ on $H^{*}\left(Y(K), \mathbb{Q}_{p}\right)_{\Pi}$ defined in Theorem 1 has the property that the action of $V_{\mathbb{Q}}$ preserves $H^{*}(Y(K), \mathbb{Q})_{\Pi}$.

2. The MAP $\iota_{q, n}$

Now we explain the construction of the map $\iota_{q, n}$. Let $\operatorname{Frob}_{q}^{T} \in T^{\vee}\left(\mathbb{F}_{p}\right)$ be an element conjugate to $\rho\left(\operatorname{Frob}_{q}\right)$. A rough description of $\iota_{q, n}$ is "pull back to $Y_{0}(q)$, project to $\operatorname{Frob}_{q}^{T}$-eigenspace, cup with α, push down to $Y(1)$."

Recall that we previously defined a Satake isomorphism

$$
\mathscr{H}_{q} \xrightarrow{\sim}\left(\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right] \otimes H^{*}\left(\mathbf{A}\left(\mathbb{F}_{q}\right), \mathbb{Z} / p^{n}\right)\right)^{W}
$$

Note that $H^{1}\left(T_{q}, \mathbb{Z} / p^{n}\right) \rightarrow H^{1}\left(\mathbf{A}\left(\mathbb{F}_{q}\right), \mathbb{Z} / p^{n}\right)$ is an isomorphism, so in degree 1 the isomorphism can be written

$$
\mathscr{H}_{q}^{(1)} \xrightarrow{\sim}\left(\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right] \otimes H^{1}\left(T_{q}, \mathbb{Z} / p^{n}\right)\right)^{W}
$$

Now let $\chi: X_{*}(\mathbf{A})=X^{*}\left(T^{\vee}\right) \rightarrow \mathbb{F}_{p}^{\times}$be the character determined by $\operatorname{Frob}_{q}^{T}$. This character determines a map $\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right] \rightarrow \mathbb{F}_{p}$. Let \mathfrak{m} denote the kernel of the restriction $\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right]^{W} \rightarrow \mathbb{F}_{p}$, and let $\tilde{\mathfrak{m}}=\mathfrak{m}\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right]$. Then

$$
\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right]_{\tilde{\mathfrak{m}}} \cong \bigoplus_{w \in W}\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right]_{w \chi}
$$

where $\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right]_{w \chi}$ is the competion of $\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right]$ at the kernel of $w \chi$. The composite
$\left(\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right] \otimes H^{*}\left(T_{q}, \mathbb{Z} / p^{n}\right)\right)_{\mathfrak{m}}^{W} \rightarrow\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right]_{\tilde{\mathfrak{m}}} \otimes H^{*}\left(T_{q}, \mathbb{Z} / p^{n}\right) \rightarrow\left(\mathbb{Z} / p^{n}\right)\left[X_{*}\right]_{\chi} \otimes H^{*}\left(T_{q}, \mathbb{Z} / p^{n}\right)$
is an isomorphism. So to define the action of $H^{1}\left(T_{q}, \mathbb{Z} / p^{n}\right)$, we just need to exhibit a map

$$
H^{1}\left(T_{q}, \mathbb{Z} / p^{n}\right) \rightarrow \mathbb{Z} / p^{n}\left[X_{*}\right]_{\chi} \otimes H^{*}\left(T_{q}, \mathbb{Z} / p^{n}\right)
$$

We just take

$$
x \mapsto 1 \otimes x
$$

3. The map $f_{q, n}$

Now we define the map $f_{q, n}$. Venkatesh shows that for all $q \in Q_{n}$, any deformation of $\left.\rho\right|_{G_{Q_{q}}}$ is conjugate to one with image in T^{\vee}, so in particular the deformation must be abelian. (The proof is by an explicit computation. The representation must factor through the tame quotient of G_{q}, with has the presentation $F t F^{-1}=t^{q}$. Since F is strongly regular, it is conjugate to an element in T^{\vee}. After conjugating,
t must be in the normalizer of T^{\vee}. But any element of the normalizer that reduces to the identity must be in T^{\vee}.)

Let ρ_{n} be the mod- p^{n} reduction of ρ. We can compute the cohomology of $\left.\left(\operatorname{Ad} \rho_{n}\right)\right|_{G_{\mathbb{Q}}}$ using $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{q} / \mathbb{Q}_{q}\right)^{\text {ab }} \cong \widehat{\mathbb{Q}_{q}^{\times}} \cong \hat{\mathbb{Z}} \times \mathbb{F}_{q}^{\times} \times \mathbb{Z}_{q}$. In particular, we get an isomorphism
$\frac{H^{1}\left(\mathbb{Q}_{q}, \operatorname{Ad} \rho_{n}\right)}{H_{\mathrm{ur}}^{1}\left(\mathbb{Q}_{q}, \operatorname{Ad} \rho_{n}\right)} \cong H^{1}\left(\mathbb{F}_{q}^{\times}, \operatorname{Ad} \rho_{n}\right) \cong \operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, \operatorname{Lie}\left(T^{\vee}\right) \otimes \mathbb{Z} / p^{n}\right) \cong \operatorname{Hom}\left(T_{q}, \mathbb{Z} / p^{n}\right) \cong H^{1}\left(T_{q}, \mathbb{Z} / p^{n}\right)$.
There is a pairing

$$
\begin{gathered}
H_{f}^{1}\left(\mathbb{Z}[1 / S], \operatorname{Ad}^{*} \rho(1)\right) \times \frac{H^{1}\left(\mathbb{Q}_{q}, \operatorname{Ad} \rho_{n}\right)}{H_{\mathrm{ur}}^{1}\left(\mathbb{Q}_{q}, \operatorname{Ad} \rho_{n}\right)} \rightarrow \mathbb{Z} / p^{n} \\
\alpha, \beta_{q} \mapsto\left(\alpha_{q} \bmod p^{n}, \beta_{q}\right)_{q}
\end{gathered}
$$

which induces a map

$$
H^{1}\left(T_{q}, \mathbb{Z} / p^{n}\right) \rightarrow \operatorname{Hom}\left(H_{f}^{1}\left(\mathbb{Z}[1 / S], \operatorname{Ad}^{*} \rho(1)\right), \mathbb{Z} / p^{n}\right) \cong V / p^{n}
$$

here we used the fact that $H_{f}^{1}\left(\mathbb{Z}[1 / S], \mathrm{Ad}^{*} \rho(1)\right)$ has no torsion. (This uses the assumption that $H^{0}(\mathbb{Z}[1 / S], \operatorname{Ad} \bar{\rho})=H^{2}(\mathbb{Z}[1 / S], \operatorname{Ad} \bar{\rho})=0$.

4. Convergent sequences of Taylor-Wiles data

We still need to show that $\iota_{q, n}$ factors through $f_{q, n}$. We will need to make use of convergent sequences of Taylor-Wiles data.

Recall that a Taylor-Wiles datum Q is a collection of Taylor-Wiles primes. We want to consider a sequence $\left\{Q_{n}\right\}$ of Taylor-Wiles data. Define

$$
\begin{gathered}
T_{n}:=\prod_{q \in Q} T_{q} \\
S_{n}:=\left(\mathbb{Z} / p^{n}\right)\left[T_{n}\right]
\end{gathered}
$$

R_{n}, \bar{R}_{n}, certain quotients of the Galois deformation ring at level Q
C_{n}, a complex computing the cohomology of $Y_{0}\left(Q_{n}\right)$:

$$
R \Gamma\left(\operatorname{Hom}_{S_{n}}\left(C_{n}, \mathbb{Z} / p^{n}\right)\right) \xrightarrow{\sim} R \Gamma\left(Y(1), \mathbb{Z} / p^{n}\right)
$$

It is possible to find a sequence of Taylor-Wiles data that are convergent, so that we can find limits S, R, C along with maps $S \rightarrow S_{n}, R \rightarrow R_{n}, C \rightarrow C_{n}$ such that
(1) R and S are power series rings over \mathbb{Z}_{p}.
(2) C is quasi-isomorphic to a shift of R.
(3) $H^{*}\left(\operatorname{Hom}_{S}\left(C, \mathbb{Z} / p^{n}\right)\right) \cong H^{*}\left(\operatorname{Hom}_{S_{n}}\left(C_{n}, \mathbb{Z} / p^{n}\right)\right) \cong H^{*}\left(Y(1), \mathbb{Z} / p^{n}\right)_{\mathfrak{m}}$.

5. Relation Between $\iota_{Q_{n}}$ and $f_{Q_{n}}$

Given a Taylor-Wiles datum Q_{n}, we can assemble the maps $\iota_{q, n}, f_{q, n}$ for $q \in Q_{n}$ into maps

$$
\begin{gathered}
\iota_{Q_{n}}: H^{1}\left(T_{n}, \mathbb{Z} / p^{n}\right) \rightarrow \bigotimes_{q \in Q_{n}}\left(\mathscr{H}_{q}\right)_{\mathfrak{m}} \\
f_{Q_{n}}: \operatorname{Hom}\left(T_{n}, \mathbb{Z} / p^{n}\right) \rightarrow V / p^{n}
\end{gathered}
$$

We want to show that if Q_{n} is part of a convergent sequence, then $\iota_{Q_{n}}$ factors through $f_{Q_{n}}$. We claim that:
(1) $H^{1}\left(T_{n}, \mathbb{Z} / p^{n}\right) \cong \mathfrak{t}_{S_{n}}$, the tangent space to S_{n}

4
(2) Under this identification, $\mathfrak{t}_{R_{n}}$, the tangent space to R_{n}, acts trivially.
(3) Let $W_{n}:=\operatorname{coker}\left(\mathfrak{t}_{R_{n}} \rightarrow \mathfrak{t}_{S_{n}}\right)$; then $W_{n} \cong V / p^{n}$.

The first claim is straightforward to prove. Recall that
$\mathfrak{t}_{S_{n}} \cong \operatorname{Hom}\left(I_{n} / I_{n}^{2}, \mathbb{Z} / p^{n}\right) \cong \operatorname{Hom}_{S_{n}}\left(I_{n}, \mathbb{Z} / p^{n}\right) \cong \operatorname{Ext}_{S_{n}}^{1}\left(\mathbb{Z} / p^{n}, \mathbb{Z} / p^{n}\right) \cong H^{1}\left(T_{n}, \mathbb{Z} / p^{n}\right)$
where I_{n} is the augmentation ideal of S_{n}.

6. VANISHING OF $\mathfrak{t}_{R_{n}}$-ACTION

Now we prove the second claim. In the following diagram (which also appeared in section 7 of the paper), the first row is the cup product that appears in the definition of the Hecke operator. The second row shows that the action factors through $\operatorname{Ext}_{S}^{j}\left(\mathbb{Z} / p^{n}, \mathbb{Z} / p^{n}\right)$. Because we assumed that $H^{i}\left(\operatorname{Hom}_{S}\left(C, \mathbb{Z} / p^{n}\right)\right)$ is torsionfree, we can lift to $H^{i}\left(\operatorname{Hom}_{S}\left(C, \mathbb{Z}_{p}\right)\right)$, thus allowing us to compute the action using the third row. Using the torsionfree assumption again allows us to move to the fourth row.

In the fourth row, since S and R are power series rings over \mathbb{Z}_{p}, it is straightforward to check that

$$
\begin{gathered}
\operatorname{Ext}_{S}^{*}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \cong \wedge^{*} \mathfrak{t}_{S} \\
H^{*}\left(\operatorname{Hom}_{S}\left(C, \mathbb{Z}_{p}\right)\right) \cong \operatorname{Ext}_{S}^{*}\left(R, \mathbb{Z}_{p}\right) \cong \wedge^{*}\left(\mathfrak{t}_{S} / \mathfrak{t}_{R}\right)
\end{gathered}
$$

and $\mathfrak{t}_{R} \subset \mathfrak{t}_{S}$ acts trivially on this module.

7. Relationship between W_{n} and V / p^{n}

Recall from earlier in the lecture that

$$
\mathfrak{t}_{S_{n}} \cong \bigoplus_{q \in Q_{n}} \frac{H^{1}\left(\mathbb{Q}_{q}, \operatorname{Ad} \rho_{n}\right)}{H_{\mathrm{ur}}^{1}\left(\mathbb{Q}_{q}, \operatorname{Ad} \rho_{n}\right)}
$$

Similarly, we can identify

$$
\mathfrak{t}_{R_{n}} \cong H_{f}^{1}\left(\mathbb{Z}\left[\frac{1}{S Q_{n}}\right], \operatorname{Ad} \rho_{n}\right)
$$

The pairing that we defined previously extends to a pairing

$$
\begin{gathered}
H_{f}^{1}\left(\mathbb{Z}\left[\frac{1}{S}\right], \operatorname{Ad}^{*} \rho_{n}(1)\right) \times W_{n} \rightarrow \mathbb{Z} / p^{n} \\
\alpha,\left(\beta_{v}\right)_{v \in Q_{n}} \mapsto \sum_{v \in Q_{n}}\left(\alpha_{v}, \beta_{v}\right)_{v}
\end{gathered}
$$

This pairing is well-defined since each α_{v} is unramified, and if $\left(\beta_{v}\right)$ comes from a global class, then the pairing vanishes by global reciprocity.

Now we want to show that the above pairing is perfect. By our assumptions, both W_{n} and $H_{f}^{1}\left(\mathbb{Z}\left[\frac{1}{S}\right], \operatorname{Ad}^{*} \rho_{n}(1)\right)$ are free \mathbb{Z} / p^{n}-modules. An Euler characteristic computation shows that they both have rank δ, the defect of G.

So it suffices to check that

$$
\mathfrak{t}_{S_{n}} \rightarrow H_{f}^{1}\left(\mathbb{Z}[1 / S], \operatorname{Ad}^{*} \bar{\rho}(1)\right)^{\vee}
$$

is surjective. Recall that we chose the Taylor-Wiles set Q_{n} so that

$$
H_{f}^{1}\left(\mathbb{Z}[1 / S], \operatorname{Ad}^{*} \bar{\rho}(1)\right) \hookrightarrow \prod_{v \in Q_{n}} H^{1}\left(\mathbb{Q}_{v}, \operatorname{Ad}^{*} \bar{\rho}(1)\right)
$$

In fact, the image is contained in the subspace of unramified classes. Applying local Tate duality gives us exactly the surjection that we need.

In conclusion, we have shown

$$
W_{n} \cong V / p^{n}:=H_{f}^{1}\left(\mathbb{Z}[1 / S], \operatorname{Ad}^{*} \rho_{n}(1)\right)^{\vee}
$$

Defining the action of V requires a bit of additional work to show that if Q_{n} belongs to a convergent sequence of Taylor-Wiles data, then the action of V_{n} does not depend on any choices.

