1. NOTATION AND STATEMANT OF RESULTS

Let G be a simply connected semisimple split algebraic group over \mathbb{Q} . Let A be a split maximal torus of G.

Let G^{\vee} be the Langlands dual of G, considered as a split Chevalley group over \mathbb{Z} . Let T^{\vee} be a split maximal torus of G^{\vee} .

For a compact open subgroup $K \subset G(\mathbb{A}_f)$, let

$$Y(K) := G(\mathbb{Q}) \setminus G(\mathbb{A}) / KK_{\infty}$$

Let \mathbb{T}_K be the image of the Hecke algebra in End $R\Gamma(Y(K), \mathbb{Z}_p)$.

We will fix a level K_0 as our "base level" and write Y(1) for $Y(K_0)$. The level K_0 need not be a maximal compact subgroup of $G(\mathbb{A}_f)$.

Venkatesh makes quite a few technical assumptions. I will not attempt to list all of them, but I will try to indicate when I make use of an assumption.

Assume that we are given a homomorphism $\mathbb{T}_{K_0} \to \mathbb{Z}_p$ and a corresponding Galois representation ρ : $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to G^{\vee}(\mathbb{Z}_p)$. We will write $\overline{\rho}$ for the mod p reduction of ρ . Let \mathfrak{m} be the maximal ideal of \mathbb{T}_{K_0} given by

$$\mathfrak{m} := \ker(\mathbb{T}_{K_0} \to \mathbb{F}_p).$$

Let

$$V := H_f^1\left(\mathbb{Z}\left[\frac{1}{S}\right], \operatorname{Ad}^* \rho(1)\right)^{\vee}.$$

We will define an action of V on $H^*(Y(1), \mathbb{Z}_p)_{\mathfrak{m}}$.

Recall that for $n \in \mathbb{N}$, a Taylor-Wiles prime of level n is a prime q such that:

- (1) K_0 is hyperspecial at q.
- (2) $q \equiv 1 \pmod{p^n}$,
- (3) $\bar{\rho}(\operatorname{Frob}_q)$ is conjugate to a strongly regular element of $T^{\vee}(k)$ (i.e. an element whose centralizer inside G^{\vee} is equal to T^{\vee}).

For q is a Taylor-Wiles prime of level n, we define

$$T_q := A(\mathbb{F}_q)/p^n$$
.

We will construct a natural embedding

$$\iota_{q,n} \colon H^1(T_q, \mathbb{Z}/p^n) \hookrightarrow \left(\mathscr{H}^{(1)}_{q, \mathbb{Z}/p^n}\right)_{\mathfrak{m}}$$

as well as a map

$$f_{q,n} \colon H^1(T_q, \mathbb{Z}/p^n) \to V/p^n$$
.

Theorem 1. There exists a function $a: \mathbb{Z}_{\geq 1} \to \mathbb{Z}_{\geq 1}$ and an action of V on $H^*(Y(1), \mathbb{Z}_p)_{\mathfrak{m}}$ by endomorphisms of degree 1 having the following property:

(*) For any $n \ge 1$ and any prime $q \equiv 1 \pmod{p^{a(n)}}$, equipped with a strongly regular element of $T^{\vee}(k)$ conjugate to $\bar{\rho}(\operatorname{Frob}_q)$, the actions of $H^1(T_q, \mathbb{Z}/p^n)$ on $H^*(Y(K), \mathbb{Z}/p^n)_{\mathfrak{m}}$ via $f_{q,n}$ and $\iota_{q,n}$ coincide.

The property (*) uniquely characterizes the V-action.

Moreover, V freely generates an exterior algebra inside the ring of endomorphisms of $H^*(Y(K), \mathbb{Z}_p)_{\mathfrak{m}}$, and the global derived Hecke algebra $\tilde{\mathbb{T}}$ coincides with this exterior algebra.

Remark 2. Venkatesh also shows that if $H^*(Y(1), \mathbb{Z}_p)_{\mathfrak{m}} \cong \mathbb{Z}_p$, then $\wedge^* V \to \mathbb{T}_{K_0}$ is an isomorphism. In general, we only expect this map to be an isomorphism after tensoring with \mathbb{Q}_p . Now we state a conjecture about the rationality of this action. The Langlands program predicts that there is a motive M_{coad} associated with the automorphic representation II and the coadjoint representation G^{\vee} . We assume that this motive has \mathbb{Q} -coefficients. The étale realization of M_{coad} should be $\operatorname{Ad}^* \rho \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. There should be a regulator map

$$H^1_{\mathrm{mot}}(\mathbb{Q}, M_{\mathrm{coad},\mathbb{Z}}(1)) \to H^1_f\left(\mathbb{Z}\left[\frac{1}{S}\right] \mathrm{Ad}^* \rho(1)\right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p.$$

We assume that the above map becomes an isomorphism after tensoring the lefthand side with \mathbb{Q}_p . Let $V_{\mathbb{Q}_p} := V \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. Let $V_{\mathbb{Q}}$ consist of those classes in $V_{\mathbb{Q}_p}$ whose pairing with the image of the above map lies in \mathbb{Q} .

Conjecture 3. The action of $\bigwedge^* V_{\mathbb{Q}_p}$ on $H^*(Y(K), \mathbb{Q}_p)_{\Pi}$ defined in Theorem 1 has the property that the action of $V_{\mathbb{Q}}$ preserves $H^*(Y(K), \mathbb{Q})_{\Pi}$.

2. The map $\iota_{q,n}$

Now we explain the construction of the map $\iota_{q,n}$. Let $\operatorname{Frob}_q^T \in T^{\vee}(\mathbb{F}_p)$ be an element conjugate to $\rho(\operatorname{Frob}_q)$. A rough description of $\iota_{q,n}$ is "pull back to $Y_0(q)$, project to Frob_q^T -eigenspace, cup with α , push down to Y(1)."

Recall that we previously defined a Satake isomorphism

$$\mathscr{H}_q \xrightarrow{\sim} \left((\mathbb{Z}/p^n)[X_*] \otimes H^*(\mathbf{A}(\mathbb{F}_q), \mathbb{Z}/p^n) \right)^W$$

Note that $H^1(T_q, \mathbb{Z}/p^n) \to H^1(\mathbf{A}(\mathbb{F}_q), \mathbb{Z}/p^n)$ is an isomorphism, so in degree 1 the isomorphism can be written

$$\mathscr{H}_{q}^{(1)} \xrightarrow{\sim} \left((\mathbb{Z}/p^{n})[X_{*}] \otimes H^{1}(T_{q}, \mathbb{Z}/p^{n}) \right)^{W}$$

Now let $\chi: X_*(\mathbf{A}) = X^*(T^{\vee}) \to \mathbb{F}_p^{\times}$ be the character determined by Frob_q^T . This character determines a map $(\mathbb{Z}/p^n)[X_*] \to \mathbb{F}_p$. Let \mathfrak{m} denote the kernel of the restriction $(\mathbb{Z}/p^n)[X_*]^W \to \mathbb{F}_p$, and let $\tilde{\mathfrak{m}} = \mathfrak{m}(\mathbb{Z}/p^n)[X_*]$. Then

$$(\mathbb{Z}/p^n)[X_*]_{\tilde{\mathfrak{m}}} \cong \bigoplus_{w \in W} (\mathbb{Z}/p^n)[X_*]_{w\chi}$$

where $(\mathbb{Z}/p^n)[X_*]_{w\chi}$ is the competition of $(\mathbb{Z}/p^n)[X_*]$ at the kernel of $w\chi$. The composite

$$((\mathbb{Z}/p^n)[X_*] \otimes H^*(T_q, \mathbb{Z}/p^n))^W_{\mathfrak{m}} \to (\mathbb{Z}/p^n)[X_*]_{\tilde{\mathfrak{m}}} \otimes H^*(T_q, \mathbb{Z}/p^n) \to (\mathbb{Z}/p^n)[X_*]_{\chi} \otimes H^*(T_q, \mathbb{Z}/p^n)$$

is an isomorphism. So to define the action of $H^1(T_q, \mathbb{Z}/p^n)$, we just need to exhibit a map

$$H^1(T_q, \mathbb{Z}/p^n) \to \mathbb{Z}/p^n[X_*]_\chi \otimes H^*(T_q, \mathbb{Z}/p^n).$$

We just take

$$x \mapsto 1 \otimes x$$

3. The map
$$f_{q,n}$$

Now we define the map $f_{q,n}$. Venkatesh shows that for all $q \in Q_n$, any deformation of $\rho|_{G_{\mathbb{Q}_q}}$ is conjugate to one with image in T^{\vee} , so in particular the deformation must be abelian. (The proof is by an explicit computation. The representation must factor through the tame quotient of G_q , with has the presentation $FtF^{-1} = t^q$. Since F is strongly regular, it is conjugate to an element in T^{\vee} . After conjugating, t must be in the normalizer of T^{\vee} . But any element of the normalizer that reduces to the identity must be in T^{\vee} .)

Let ρ_n be the mod- p^n reduction of ρ . We can compute the cohomology of $(\operatorname{Ad} \rho_n)|_{G_{\mathbb{Q}_q}}$ using $\operatorname{Gal}(\overline{\mathbb{Q}}_q/\mathbb{Q}_q)^{\operatorname{ab}} \cong \widehat{\mathbb{Q}_q^{\times}} \cong \widehat{\mathbb{Z}} \times \mathbb{F}_q^{\times} \times \mathbb{Z}_q$. In particular, we get an isomorphism

 $\frac{H^1(\mathbb{Q}_q, \operatorname{Ad} \rho_n)}{H^1_{\operatorname{ur}}(\mathbb{Q}_q, \operatorname{Ad} \rho_n)} \cong H^1(\mathbb{F}_q^{\times}, \operatorname{Ad} \rho_n) \cong \operatorname{Hom}(\mathbb{F}_q^{\times}, \operatorname{Lie}(T^{\vee}) \otimes \mathbb{Z}/p^n) \cong \operatorname{Hom}(T_q, \mathbb{Z}/p^n) \cong H^1(T_q, \mathbb{Z}/p^n) \,.$ There is a pairing

There is a pairing

$$H^1_f(\mathbb{Z}[1/S], \operatorname{Ad}^* \rho(1)) \times \frac{H^1(\mathbb{Q}_q, \operatorname{Ad} \rho_n)}{H^1_{\operatorname{ur}}(\mathbb{Q}_q, \operatorname{Ad} \rho_n)} \to \mathbb{Z}/p^n$$
$$\alpha, \beta_q \mapsto (\alpha_q \bmod p^n, \beta_q)_q$$

which induces a map

$$H^1(T_q, \mathbb{Z}/p^n) \to \operatorname{Hom}\left(H^1_f(\mathbb{Z}[1/S], \operatorname{Ad}^* \rho(1)), \mathbb{Z}/p^n\right) \cong V/p^n;$$

here we used the fact that $H^1_f(\mathbb{Z}[1/S], \operatorname{Ad}^* \rho(1))$ has no torsion. (This uses the assumption that $H^0(\mathbb{Z}[1/S], \operatorname{Ad} \bar{\rho}) = H^2(\mathbb{Z}[1/S], \operatorname{Ad} \bar{\rho}) = 0.$)

4. Convergent sequences of Taylor-Wiles data

We still need to show that $\iota_{q,n}$ factors through $f_{q,n}$. We will need to make use of convergent sequences of Taylor-Wiles data.

Recall that a Taylor-Wiles datum Q is a collection of Taylor-Wiles primes. We want to consider a sequence $\{Q_n\}$ of Taylor-Wiles data. Define

$$T_n := \prod_{q \in Q} T_q$$

$$S_n := (\mathbb{Z}/p^n)[T_n]$$

 R_n , \overline{R}_n , certain quotients of the Galois deformation ring at level Q C_n , a complex computing the cohomology of $Y_0(Q_n)$:

$$R\Gamma(\operatorname{Hom}_{S_n}(C_n, \mathbb{Z}/p^n)) \xrightarrow{\sim} R\Gamma(Y(1), \mathbb{Z}/p^n)$$

It is possible to find a sequence of Taylor-Wiles data that are convergent, so that we can find limits S, R, C along with maps $S \to S_n, R \to R_n, C \to C_n$ such that

- (1) R and S are power series rings over \mathbb{Z}_p .
- (2) C is quasi-isomorphic to a shift of R.
- (3) $H^*(\operatorname{Hom}_S(C, \mathbb{Z}/p^n)) \cong H^*(\operatorname{Hom}_{S_n}(C_n, \mathbb{Z}/p^n)) \cong H^*(Y(1), \mathbb{Z}/p^n)_{\mathfrak{m}}.$

5. Relation between ι_{Q_n} and f_{Q_n}

Given a Taylor-Wiles datum Q_n , we can assemble the maps $\iota_{q,n}$, $f_{q,n}$ for $q \in Q_n$ into maps

$$\iota_{Q_n} \colon H^1(T_n, \mathbb{Z}/p^n) \to \bigotimes_{q \in Q_n} (\mathscr{H}_q)_{\mathfrak{m}}$$
$$f_{Q_n} \colon \operatorname{Hom}(T_n, \mathbb{Z}/p^n) \to V/p^n \,.$$

We want to show that if Q_n is part of a convergent sequence, then ι_{Q_n} factors through f_{Q_n} . We claim that:

(1) $H^1(T_n, \mathbb{Z}/p^n) \cong \mathfrak{t}_{S_n}$, the tangent space to S_n

- (2) Under this identification, \mathfrak{t}_{R_n} , the tangent space to R_n , acts trivially.
- (3) Let $W_n := \operatorname{coker}(\mathfrak{t}_{R_n} \to \mathfrak{t}_{S_n})$; then $W_n \cong V/p^n$.

The first claim is straightforward to prove. Recall that

 $\mathfrak{t}_{S_n} \cong \mathrm{Hom}(I_n/I_n^2, \mathbb{Z}/p^n) \cong \mathrm{Hom}_{S_n}(I_n, \mathbb{Z}/p^n) \cong \mathrm{Ext}_{S_n}^1(\mathbb{Z}/p^n, \mathbb{Z}/p^n) \cong H^1(T_n, \mathbb{Z}/p^n)$ where I_n is the augmentation ideal of S_n .

6. VANISHING OF \mathfrak{t}_{R_n} -ACTION

Now we prove the second claim. In the following diagram (which also appeared in section 7 of the paper), the first row is the cup product that appears in the definition of the Hecke operator. The second row shows that the action factors through $\operatorname{Ext}_{S}^{i}(\mathbb{Z}/p^{n},\mathbb{Z}/p^{n})$. Because we assumed that $H^{i}(\operatorname{Hom}_{S}(C,\mathbb{Z}/p^{n}))$ is torsionfree, we can lift to $H^{i}(\operatorname{Hom}_{S}(C,\mathbb{Z}_{p}))$, thus allowing us to compute the action using the third row. Using the torsionfree assumption again allows us to move to the fourth row.

In the fourth row, since S and R are power series rings over \mathbb{Z}_p , it is straightforward to check that

$$\operatorname{Ext}^*_S(\mathbb{Z}_p, \mathbb{Z}_p) \cong \wedge^* \mathfrak{t}_S$$
$$H^* (\operatorname{Hom}_S(C, \mathbb{Z}_p)) \cong \operatorname{Ext}^*_S(R, \mathbb{Z}_p) \cong \wedge^* (\mathfrak{t}_S/\mathfrak{t}_R)$$

and $\mathfrak{t}_R \subset \mathfrak{t}_S$ acts trivially on this module.

7. Relationship between W_n and V/p^n

Recall from earlier in the lecture that

$$\mathfrak{t}_{S_n} \cong \bigoplus_{q \in Q_n} \frac{H^1(\mathbb{Q}_q, \operatorname{Ad} \rho_n)}{H^1_{\operatorname{ur}}(\mathbb{Q}_q, \operatorname{Ad} \rho_n)} \,.$$

Similarly, we can identify

$$\mathfrak{t}_{R_n} \cong H^1_f\left(\mathbb{Z}\left[\frac{1}{SQ_n}\right], \operatorname{Ad}\rho_n\right).$$

The pairing that we defined previously extends to a pairing

$$H_f^1\left(\mathbb{Z}\left[\frac{1}{S}\right], \operatorname{Ad}^* \rho_n(1)\right) \times W_n \to \mathbb{Z}/p^n$$
$$\alpha, (\beta_v)_{v \in Q_n} \mapsto \sum_{v \in Q_n} (\alpha_v, \beta_v)_v$$

4

This pairing is well-defined since each α_v is unramified, and if (β_v) comes from a global class, then the pairing vanishes by global reciprocity.

Now we want to show that the above pairing is perfect. By our assumptions, both W_n and $H_f^1\left(\mathbb{Z}\left[\frac{1}{S}\right], \operatorname{Ad}^* \rho_n(1)\right)$ are free \mathbb{Z}/p^n -modules. An Euler characteristic computation shows that they both have rank δ , the defect of G.

So it suffices to check that

$$\mathfrak{t}_{S_n} \to H^1_f(\mathbb{Z}[1/S], \mathrm{Ad}^* \bar{\rho}(1))^{\vee}$$

is surjective. Recall that we chose the Taylor-Wiles set Q_n so that

$$H_f^1(\mathbb{Z}[1/S], \mathrm{Ad}^* \bar{\rho}(1)) \hookrightarrow \prod_{v \in Q_n} H^1(\mathbb{Q}_v, \mathrm{Ad}^* \bar{\rho}(1))$$
.

In fact, the image is contained in the subspace of unramified classes. Applying local Tate duality gives us exactly the surjection that we need.

In conclusion, we have shown

$$W_n \cong V/p^n := H^1_f \left(\mathbb{Z} \left[1/S \right], \operatorname{Ad}^* \rho_n(1) \right)^{\vee}$$

Defining the action of V requires a bit of additional work to show that if Q_n belongs to a convergent sequence of Taylor-Wiles data, then the action of V_n does not depend on any choices.