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1 Recap

Recall the conjecture of Venkatesh.

Conjecture 1. Let G be a semi-simple simply connected split algebraic group over Q and let π be a
tempered cuspidal cohomological automorphic representations with associated p-adic Galois representation
ρπ,l. Then there is an action of

∧∗H1
f (Z[1/S],Ad∗ ρ(1))∨

on

H∗(Y (1),Qp)Π.

Assume that there is a motive Mcoad associated to π. Then the image of the motivic cohomology of Mcoad

should define a Q-structure on

∧∗H1
f (Z[1/S],Ad∗ ρ(1))∨

which we conjecture to preserve the Q-structure on

H∗(Y (1),Qp)Π

coming from H∗(Y (1),Q).

A consequence of this action at the motivic level is an action in the complex case. This leads explicit
verifiable statements that can give partial evidence for the conjecture. References is [PV16] sections 1,2,4

2 Classical Motives

Idea: Cohomology is functorial in correspondences and all the usual cohomology theories admit cycle
class maps.
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Definition 1. A Chow motive (resp. homological motive) over K is a triple

(X, e, n)

where X is a smooth projective variety over K of dimension d,the element e is an element of the rational
Chow group CHd(X×X) of codimension d cycles, up to rational equivalence (respectively up to homological
equivalence), that is an idempotent, and n ∈ Z. A morphism of Chow motives (resp homological motives)
(X, e, n)→ (Y, f,m) is an element of

f CHdX+m−n(X × Y )e,

composition is given by composition of correspondences. This gives us categories CHM and HomM.

Remark 1. Since homological equivalence is coarser than rational equivalence there is a forgetful functor

CHM→ HomM.

Moreover there is a functor h : SmProjVarop → CHM given by

X 7→ (X,∆X , 0),

with ∆X the class of the diagonal, and which sends a morphism f : X → Y to the graph

Γf ∈ CHdx(X × Y )

Example 1. Let C be a smooth projective curve, write h(C)(1) for (C,∆C , 1) and let 1 denote h(SpecK).
Then

homCHM(1, h(C)(1)) = Pic(C)

and

homHomM(1, h(C)(1)) =
Pic(C)

Pic0(C)
∼= Q.

Remark 2. By definition we obtain a factorisation

SmProjVarop HomM

PHSQ,

h

⊕
Hi

B

rH

where H i
B denotes the i-th singular cohomology and PHSQ denotes the category of Q-linear pure Hodge

structures. It is conjectured that rH is fully faithful (the Hodge conjecture).

3 Motivic Cohomology

The categories of Chow motives and homological motives don’t have the correct Ext groups. We can try
to correct this by comparing with topology. Grothendieck showed that

K0(X)Q ∼=
⊕
i

CHi(X)
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and also gave an intrinsic definition of the piece K
(i)
0 (X)Q mapping to CHi(X). This definition extends

to higher K-groups (always with rational coefficients). The Atiyah–Hirzebruch spectral sequence for a
CW-complex X is

Ep,q2 := Hp−q
B (X,Q(−q))⇒ K−p−q(X)Q.

It degenerates to give isomorphisms

H i
B(X,Q(n)) ∼= K

(n)
2n−i(X)Q

where K denotes topological K-theory. If X is a scheme then we set

H i
M(X,Q(n)) = K

(n)
2n−i(X)Q

to be the motivic cohomology of X, this extends to any Chow motive. There are issues with defining
motivic cohomology for homological motives. Conjecturally, this can be resolved by taking graded pieces
with respect to a filtration on motivic cohomology (see below), but we will ignore this issue.

Example 2. If F is a number field. Then

K0(F )Q = Q ⊂ K(0)
0 (F )Q.

More generally

KM
n (F )Q = K(n)

n (F )Q,

which in particular gives

K1(F )Q = KM
1 (F )Q = F× ⊗Z Q.

Borel calculated for j > 1 that

Kj(F )Q =


0 if j even
Qr1+r2 if j = 1 mod 4
Qr2 if j = 3 mod 4

,

and these classes lie in K
(t)
2t−1(F )Q.

As a table H i
M(F,Q(n)) is given by

i \ n 0 1 2 3 4 5

0 Q 0 0 0 0 · · ·
1 0 F× ⊗Z Q 0 Qr2 0 Qr1+r2

2 0 0 0 0 0 · · ·
...

...
...

...
...

...

Table 1: Motivic cohomology of a number field F .

Note that the motivic cohomology vanishes in negative degrees. This is not clear from the definition. It
is not supported in degrees [0, 2d], in this sense it is an “arithmetic cohomology theory” as a opposed to
a “geometric cohomology theory” (for example a Weil cohomology theory). For motives of weight zero
the group H1

M(M,Q(1)) is of particular interest. Having said this, “F× ⊗Z Q needs to be modified later
to be considered “correct”.
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4 Deligne cohomology

Cycle class maps

cl : H2n
M(X,Q(n))→ H2n

B (X,Q(n))

exists and assign cohomology classes to motivic classes. The kernel of this map consists of homologically
trivial cycles. There is another method for creating cohomology classes, called Abel–Jacobi maps.

Definition 2. Assume that X/C is a smooth projective variety. Then the p-th intermediate Jacobian is
defined to be

Jp(X) :=
H2p−1
B (X,C)

F pH2p−1
B (X,C) +H2p−1

B (X,Z)
.

This is a complex analytic torus of complex dimension 1/2 dimH2p−1
B (X,C).

Example 3. When p = 1 this is the Picard variety and when p = dimX this is the Albanese variety (which
are canonically isomorphic when X is a curve).

Fact 1. There is a canonical map

AJp : CHp(X)hom∼0 → Jp(X).

Example 4. If X is a curve, then the Abel–Jacobi map is constructed as follows. If we have a divisor

[P ]− [Q] ∼ 0.

Then we can choose a path γ from P to Q which gives us a functional in the dual space

H0(X,Ω1
X)∨ = H1(X,OX) = H1(X,C)/H0(X,Ω1

X),

where the first equality is given by Serre duality. Different choices of paths differ up to choices of loops,
which lie in

H1(X,Z).

In general we use higher cycles.

Definition 3. Let Z(p)D be the complex

(2πi)pZ→ OX → Ω1
X → · · · → Ωp−1

X .

We define the Deligne cohomology of X to be the hypercohomology of this complex, that is

H i
D(X,Z(p)) := Hi(X,Z(p)D).

Let Z(p) denote (2πi)pZ.

Lemma 1. We have a short exact sequence

0→ Jp(X)→ H2p
D (X,Zp)→ H2p

B (X,Z(p))(0,0) → 0.
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Proof. There is a short exact sequence of complexes

0→ Ω•,≤p−1
X → Z(p)D → Z(p)

which gives a long exact sequence in cohomology. Now the cohomology of the first complex is

H2p−1
dR (X)/F pH2p−1

dR (X)

and its image in H2p
D (X,Z(p)) is then

H2p−1
dR (X)/(F pH2p−1

dR (X) +H2p−1(X,Z)) = Jp(X).

Similarly, the kernel of
H2p
B (X,Z(p))→ H2p

dR(X)/F pH2p
dR(X)

is precisely the Hodge classes.

Theorem 1 (Deligne). There exists a canonical construction filling in the following diagram

0 CHp(X)hom∼0 CHp(X) CHp(X)
CHp(X)hom∼0

0

0 Jp(X) H2p
D (X,Zp) H2p

B (X,Z(p))(0,0) 0

AJp ∃ cl

Write H i
D(X,R(n)) for the analogous construction with Z replaces by R. These are R vector spaces and

this definition extends to motives.

Theorem 2 (Beilinson). This extends to a map

rD : H i
M(M,Q(n))→ H i

D(M,R(n))

called the Beilinson regulator.

Remark 3. It is expected that there is a decreasing filtration on motivic cohomology such that

F 0H i
M (X,Q(n)) = H i

M (X,Q(n))

F 1H2n
M (X,Q(n)) = F 1Hn(X) = CHn(X)hom∼0

and a bunch of other conditions. One hopes that F 0/F 1 can be seen using cycle class maps (e.g.
Hodge/Tate type conjectures) and that F 1/F 2 can be seen using Abel-Jacobi maps (e.g. Beilinson/Bloch–
Kato type conjectures).

Conjecture 2. If X is an algebraic variety over a number field K, then

F 2 = 0
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5 Beilinson Conjectures

Notation (due to Scholl). We define a subspace

H i
M(XZ,Q(n)) ⊂ H i

M(X,Q(n))

denote the “unramified” or “integral” elements. If X admits a proper regular model X , then

H i
M(XZ,Q(n)) = im

(
K

(n)
2n−i(X )Q → K

(n)
2n−i(X)Q

)
.

Example 5. When F is a number field then

K
(1)
1 (OF )Q = O×F ⊗Q ⊂ F× ⊗Q

is a finite dimensional vector space by Dirichlet’s unit theorem.

Notation: Let

H i
D(XR,R(n)) := H i

D(X,R(n))Φ=1

where Φ is the tensor product of complex conjugation on X(C) and of complex conjugation on the
coefficients.

Remark 4. Deligne defines L-factors at ∞ for L(M, s) in terms of the Hodge structure on MB. Then
L∞(M, s) has a pole of order

dimH i+1
B (MR,R(n))

at s = i− n

Conjecture 3 (Beilinson). If M is a motive of weight i and i− 2n < −2, then the Beilinson regulator

rD : H i+1
M (MZ,Q(n))⊗ R→ H i+1

D (MR,R(n))

is an isomorphism. If M has no Tate motives as summands then this should also be an isomorphism for
i− 2n = 2.

Corollary 1. If we have expected properties of L(M, s) then the dimensions of the motivic cohomology
groups can be computed as the order of vanishing of L(M, s) at certain points (and vice versa).

Remark 5. Since Deligne cohomology only depends on MR, a consequence of the conjecture is that these
dimensions don’t depend on the motive M , but only on the base change MR of M to R.

Fact 2. The conjecture is known for M = SpecF with F a number field (as a consequence of Borel’s
calculations of higher K-groups of number fields). Note that O×F ⊗Z Q only depends on F ⊗Z R.

Remark 6. The Deligne cohomology groups have a canonical Q-structure DR coming from the long exact
sequence from earlier.

Conjecture 4. With the same assumptions as in the previous conjecture, we have

rD
(
detH i+1

M (MZ,Q(n))
)

= L(M,n) · detDR ⊂ detH i+1
D (XR,R(n))

of Q vector spaces inside detH i+1
D (XR,R(n))
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6 Motives associated to automorphic forms

Let G be a reductive group over F and let π be a tempered cuspidal cohomological automorphic represen-
tation with associated p-adic Galois representation ρπ,l. Assume that πv is defined over Q for almost all
places v (we say that π has coefficient field Q). By Langlands, π should give rise to a representation of GF
taking values in LG. Composing with the adjoint representation of LG we obtain Galois representions:

Ad ρπ,l : GF → Aut(ĝQl
)

where ĝ := Lie(LG). Similarly, the archimedean parameter WFv → LG (here WFv is the Weil group at v)
for each infinite place allows us to define:

Ad ρπ,v : WFv → Aut(ĝC)

We use the representations Ad ρπ,l,Ad ρπ,v to constrain the adjoint motive Mad. This should be a motive
over Q, and the distinction between F and Q adds some technical complications to the conjecture.

Conjecture 5. There exists a homological motive Mad of weight 0 associated to π with the following
properties

1. (rationality): there exists some Lie algebra g′/Q for which g′C is a twist of ĝ and we have isomor-
phisms for all infinite places v:

iv : H i
B(Mad,v,C,Q)

∼−→ g′C.

2. (Galois equivariance of étale realisation): The isomorphism

H i
ét(Mad,F̄ ,Ql) ∼= H i

B(Mad,v,C,Q)⊗ Q̄l
∼−→ g′Q̄l

∼= ĝQ̄l

respects the action of GF on the left hand side given by étale cohomology and on the right hand side
given by Ad ρπ,l.

3. (Weil group equivariance of de Rham realisation):The isomorphism

H i
dR(Mad)⊗ C ∼= H i

B(Mad,v,C,Q)⊗ C ∼−→ g′C
∼= ĝC

respects the action of WFv on the left hand side given by de Rham cohomology and on the right hand
side given by Ad ρπ,v.

4. (bilinear forms are motivic) Every Q-valued bilinear form on ˆmathfrakgC which is “stable under
LG” arises from a pairing

Mad ⊗Mad → Q(−m).

We then set Mcoad to be M∨ad, where (−)∨ denotes dual within the category of homological motives. Since
Mad is of weight zero (if it exists), this coincides with the notion of “dual” which assigns to a motive N
a motive N∗ whose ith cohomology is H i(N)∨.
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