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1. Introduction

Intersection theory is an essential part of algebraic geometry, but becomes increasingly com-
plicated as our objects of study become more general. For example, intersection theory on a
nice smooth surface over an algebraically closed field is much simpler than intersection theory
on a nice smooth variety of arbitrary dimension over an algebraically closed field, which is
in turn simpler than a nice smooth variety of arbitrary dimension over SpecZ (or any ring).
And even then, we can allow singularities, and the theory becomes more complex.

The standard conjectures on algebraic cycles are conjectures that concern properties of the
intersection pairings on the Chow groups of an algebraic variety, which are groups that house
the basic objects of study in intersection theory: substructures of a geometric object that will
be intersected with other ones. They were initially formulated by Alexander Grothendieck
in the 1960s (see [Gro68] for an introduction) to prove that the category of pure motives is
semisimple and abelian, but their full proofs have remained elusive since then.

The standard conjectures illustrate the aforementioned phenomenon nicely: in the case of
surfaces over k = k̄, the Hodge index theorem follows quite quickly after the development
of basic intersection theory, using the Riemann-Roch theorem, and other auxiliary lemmas.
But once we consider varieties of arbitrary dimension, we already cannot prove the more
general Hodge standard conjecture for varieties in characteristic p > 0. Furthermore, all of
the other conjectures remain unresolved in full generality, although some progress has been
made towards their resolution.

The development of arithmetic intersection theory complicates the picture even more by
considering schemes over SpecZ. Even in the case of arithmetic surfaces, there is already
more information to keep track of, in the form of fibral and infinite divisors. Once we pass
to higher dimensional arithmetic varieties, then even defining the basic objects that we work
with (arithmetic Chow groups) takes significant work.

The aim of this thesis is to try to sew a thin thread through the evolution of intersection
theory and the standard conjectures in these various cases. We start with classical intersection
theory over k = k̄ and prove the Hodge index theorem. We then define intersection theory
on higher dimensional varieties, and state the standard conjectures. We then do the exact
same thing for the arithmetic case, while trying to link the arithmetic and geometric stories
back together at each step. This thesis is fairly self contained at the beginning, but appeals
to other texts for certain technical proofs later on in the document.

In addition to the works cited in the paper, we also found [Tra07] and [Kle] useful in the
preparation of this thesis.

2. Preliminaries

First, we will introduce some preliminary notions that are essential for a treatment of inter-
section theory.

2.1. Cartier divisors. We consider the notion of a Cartier divisor, which can be defined on
an arbitrary scheme.
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2.1.1. Meromorphic Functions. Fix a scheme X. If U is an open set in X, let S(U) denote
the set of elements in OX(U) whose images in OX,x are nonzerodivisors for all x ∈ U . Then
S(U) is a multiplicative set, so we can form the localization MX(U) = S(U)−1OX(U). Then
it is clear that MX is a presheaf, so we can associate a sheaf MX to it. We call this the sheaf
of meromorphic functions on X.

Note there is a natural morphism of sheaves OX →MX . which is a monomorphism because
of the nonzerodivisor condition.

2.1.2. Example. If k is a field and X = Spec k[x], then OX(U) is the ring of rational functions
on an open set U in X. The image of any nonzero f ∈ OX(U) in OX,x = k[x]p (x corresponds
to a prime p ⊂ k[x]) is a nonzerodivisor for any x, since the localization of an integral domain
is again an integral domain, so MX(U) is the fraction field of OX(U), which is clearly k(x).
As such,MX = MX is just the constant sheaf k(x), which is also isomorphic to OX,ξ = k[x](0),
where ξ is the generic point (0).

In fact, for any integral scheme X, MX is the constant sheaf associated to OX,ξ, by the same
argument.

2.1.3. Invertible Elements. To a sheaf of rings F on X, we can construct the sheaf F ∗ of
invertible of elements, which is a sheaf of abelian groups, by defining

F ∗(U) = {s ∈ F : st = 1U for some t ∈ F (U)}
This is a presheaf: note if st = 1U in F (U) and V ⊆ U , then s|V t|V = 1V . Furthermore, one
shows easily that this is a sheaf of abelian groups.

The natural monomorphism of sheaves OX →MX restricts to a morphism O∗X →M ∗
X . By

taking the cokernel in ModOX , we obtain the short exact sequence

0→ O∗X →M ∗
X →M ∗

X/O
∗
X → 0

2.1.4. Cartier Divisors. By applying the global sections functor Γ(X,−), we obtain

0→ Γ(X,O∗X)→ Γ(X,M ∗
X)→ Γ(X,M ∗

X/O
∗
X)→ H1(M ∗

X/O
∗
X)→ · · ·

Let Ca(X) := Γ(X,M ∗
X/O

∗
X). We call this the group of Cartier divisors on X. Using

the explicit construction of the sheafification functor, we see that a Cartier divisor can be
described by a collection {(Ui, fi)}i∈I , where {Ui}i∈I is an open cover of X and fi ∈M ∗

X(Ui),
such that

fi/fj ∈ O∗X(W )

for some W ⊆ Ui∩Uj whenever i 6= j. Note that such a description is not necessarily unique:
one can add or remove sets from the collection (subject to compatibility on intersections) as
long as the Ui continue to cover X.

2.1.5. Principal Divisors. If a Cartier divisor is in the image of Γ(X,M ∗
X) → Ca(X), then

it is called principal. Note a principal divisor can be described with the singleton collection
{(X, f)} for f ∈ M ∗

X(X). The group of Cartier divisors mod principal divisors is denoted
CaCl(X). If two Cartier divisors represent the same element in CaCl(X), they are called
linearly equivalent.
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2.2. Weil Divisors. The definition of a divisor was motivated by the need to develop an
intersection theory on the codimension 1 subschemes (subvarieties) of a scheme (algebraic
variety over a field k). Under sufficient conditions, a divisor group with good structure can be
constructed by taking the free abelian group on the irreducible codimension 1 substructures
on a scheme or variety X. We now spell out those conditions and develop the theory of Weil
divisors on a scheme.

For this section, let X be a Noetherian integral scheme.

2.2.1. Prime Divisors. Denote by X(1) the set of closed integral subschemes of codimension
1, or equivalently, their generic points. Elements of X(1) are called prime divisors. Then the
set of Weil divisors Div(X) is the free abelian group on X(1). We typically write such sums
as
∑

Z nZZ, where Z runs over the prime divisors.

2.2.2. Principal Divisors. As in the case of Cartier divisors, we can define a notion of a
principal divisor. For a Cartier divisor, a principal divisor corresponds to a meromorphic
(rational) function on X. One way of seeing the relationship between Cartier and Weil
divisors says that the coefficients of a Weil divisor correspond to multiplicities of zeros and
poles along the prime divisors with respect to a rational function.

Note X is integral, so M is the constant sheaf associated to OX,ξ
∼= Frac(OX(X)), where

Frac denotes the fraction field. Call this K(X), the field of rational functions on X. For any
f ∈ K(X), we intend to define a principal Weil divisor div(f).

By integrality, each prime divisor Z ⊂ X has a generic point ξZ whose closure is all of Z.
We define the multiplicity (order) ordZ : O∗X(X)→ Z by

ordZ(g) = `OX,ξZ (OX,ξZ/(g)),

where `R(M) denotes the length of the R-module M , and g denotes the image of g in the
stalk OX,ξZ by abuse of notation. For clarity and legibility, we typically write OX,Z instead
of OX,ξZ .

2.2.2.1. Lemma. For any prime divisor Z ⊂ X, ordZ is a well-defined group homomorphism.

Proof. Fix g ∈ O∗X(X). Note OX,Z is Noetherian of dimension 1 since Z is of codimension 1.
If (g)OX,Z is prime, then it is maximal, so OX,Z/(g) is a field, and thus has Krull dimension
0. If not, then OX,Z/(g) clearly has dimension 0, because (0) is not a prime ideal in the
quotient. But then Spec OX,Z/(g) is finite and discrete, so OX,Z/(g) is an Artinian ring.

Now note that OX,Z/(g) is an Artinian OX,Z-module (since ideals in OX,Z/(g) are in 1-
1 correspondence with OX,Z-sub-modules) and is Noetherian as well, so by the Akizuki-
Hopkins-Levitzki theorem, OX,Z/(g) has a composition series, and thus has finite length.

One shows easily that ` is additive on short exact sequences, so to show ordZ is a group
homomorphism, one only needs to consider the sequence

0→ (g)OX,Z/(gh)→ OX,Z/(gh)→ OX,Z/(h)→ 0

and note that (g)OX,Z/(gh) ∼= OX,Z/(h). �
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We can extend ordZ to a homomorphism M ∗
X(X)→ Z by defining

ordZ(g/h) = ordZ(g)− ordZ(h).

Then, for f ∈ K(X)∗, we define the principal divisor

div(f) :=
∑
Z

ordZ(f)Z,

where the sum is taken over all prime divisors. To see that this is well defined, note that
there exists some nonempty Zariski open affine subset U = SpecA on which f restricts to a
regular function in O∗X(U). Note that X \U is a proper closed subset. Since X is Noetherian,
there can only be finitely many prime divisors in X \U . So we can treat the case where f is
regular. If Y ⊆ U is a prime divisor on X, then ordY (f) > 0 if and only if Y is contained in
the closed subset SpecA/fA, which is again proper closed, so contains finitely many prime
divisors. Otherwise, ordY (f) = 0.

We denote the group of principal divisors by P (X). We then define

Cl(X) = Div(X)/P (X).

Like in the case of Cartier divisors, we say that two Weil divisors are linearly equivalent if
they represent the same class in Cl(X) and write D ∼ D′.

2.2.3. Example. If X is an algebraic curve over C, then Weil divisors correspond exactly
to closed points of X. In this case, the principal Weil divisor associated to a meromorphic
function on X really is given by the order of the zeros and poles at each point.

2.3. Relationship between Cartier and Weil divisors. Let X be a locally Noetherian
integral scheme, so that Weil divisors are defined.

2.3.1. There is a natural map Ca(X) → Div(X) as follows. Fix a Cartier divisor C =
{(Ui, fi)}, and consider a prime Weil divisor Z. Then pick an i for which Ui ∩ Z 6= 0, and
define

nZ = ordZ(fi).

Then the map is given by

{(Ui, fi)} = C 7→
∑
Z

nZZ ∈ Div(X).

This is well-defined: if we pick j with Uj ∩ Z 6= 0, then fi/fj ∈ OX(Ui ∩ Uj)∗, so the image
of fi/fj in any stalk is invertible, so

ordZ(fi/fj) = 0,

so ordZ(fi) = ordZ(fj).
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2.3.2. Remark. If, in addition, the stalks OX,Z are regular rings for all prime divisors Z ⊂ X,
then their unique maximal ideals are principal, and thus they are discrete valuation rings
with valuation valZ . In that case, if g ∈ K(X), then one can show

ordZ(g) = valZ(g).

This situation occurs, in particular, when X is smooth.

In fact, we will now show that in this case, the Weil divisors and Cartier divisors (and the
corresponding class groups) agree.

2.3.3. Theorem. Let X be a locally Noetherian integral scheme, whose local rings are unique
factorization domains (we say X is locally factorial). Then the map defined in 2.3.1 is an
isomorphism, and takes the principal Cartier divisors to principal Weil divisors.

Proof. We start with a Weil divisor, which consists of prime divisors and multiplicities, and
are looking for rational functions to properly represent them. The idea of the proof then is to
restrict the divisors to divisors on the local scheme Xx = Spec OX,x (whose underlying set is a
subset ofX, and whose function field is stillK(X)), then to show that these restricted divisors
are principal, which gives us a rational function. It then remains to show compatibility
relations between the found functions. The key here is that a ring is a unique factorization
domain if and only if every prime ideal of height 1 is principal.

We construct an inverse map Div(X) → Ca(X). Fix any point x ∈ X. Prime divisors on
Spec OX,x correspond to prime ideals of height 1, which are all principal. So each prime
divisor (corresponding to) p can be written (f) for some f ∈ OX,x. Note ordp(f) = 1 because
OXx,p is a discrete valuation ring with maximal ideal (f). But if p′ is another distinct prime
divisor, then p′ 6= p, then f 6∈ p′, for otherwise we would have p ⊆ p′, which contradicts the
fact that ht(p′) = 1, therefore f is a unit in OXx,p′ , so ordp′(f) = 0. We conclude that

Cl(Spec OX,x) = 0,

i.e. every divisor is principal.

Consider a Weil divisor D ∈ Div(X). For any x ∈ X, we may consider the restricted Weil
divisor Dx on Xx given by

Dx =
∑

x∈Xx∩X(1)

nx{x}

This is principal, i.e. there is an fx ∈ K(X) with div(fx) = Dx.

Note that div(fx) also defines a divisor on all of X. Since div(fx) and D have the same
restriction to Xx, they differ only on codimension 1 subschemes outside of Xx, of which there
are finitely many; call their union Wx. Then Ux = X \Wx is open, and div(fx) = D on Ux
(the restriction of a divisor to an open set U just restricts the sum to X(1) ∩ U).

Then {(Ux, fx)} is a Cartier divisor: to see this, note that on Ux∩Uy, we have div(fx/fy) = 0.
IfW ⊆ Ux∩Uy is any affine, then fx/fy is a unit on all stalks ofW , and is thus not contained
in any prime ideal of OX(W ), so is a unit in OX(W ). Thus, by using the sheaf axiom on an
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open cover of Ux ∩ Uy by affines, we see that fx/fy ∈ OX(Ux ∩ Uy)∗. This does not depend
on the choice of fx: another choice would yield an equivalent Cartier divisor.

These constructions are inverse to one another. Starting with {(Ui, fi)}, we form the corre-
sponding Weil divisor. Then for a point x ∈ X, the principal divisor on the local scheme
can be taken to be induced by fi. Conversely, given a Weil divisor

∑
Z nZZ, we form the

corresponding Cartier divisor. Then for any prime divisor Z, pick a point x ∈ Z. Then
valZ(fx) = nZ by construction, and we’re done.

Finally, the principal Cartier divisor corresponding to f is sent to
∑

Z valZ(f)Z, which is
exactly the principal Weil divisor. �

2.3.4. A variety is a Noetherian integral separated scheme over an algebraically closed field.
A variety is smooth if all of its local rings are regular. Theorem 2.3.3 works, for example,
in the case of smooth varieties, or for regular schemes, more generally. In these cases, we
may speak of the divisor group of a scheme, or the class group, without specifying any
namesake.

2.4. Invertible Sheaves and Line Bundles. Invertible sheaves, equivalently (geometric)
line bundles, are another type of gadget used commonly in intersection theory, which under
certain conditions will be equivalent to the group of Cartier divisors.

2.4.1. Invertible Sheaves. A sheaf L of OX-modules is called invertible (or locally free of
rank 1) if there exists an open cover {Ui}i∈I of X such that for all i there exists an isomor-
phism

L |Ui ∼= OX |Ui
as OX |Ui-modules.

An equivalent characterization is that there exists another locally free sheaf L ′ such that
L ⊗OX L ′ is isomorphic to OX as an OX-module.

2.4.2. Line Bundles. Every invertible sheaf on X realizes the sheaf of sections of a certain
line bundle (a vector bundle of rank 1) π : E → X. Recall that a line bundle is given by a
scheme E and a morphism E → X, along with an open cover {Ui} of X and isomorphisms
ψi : π−1(Ui) → A1

Ui
satisfying the compatibility condition that θij = ψj ◦ ψ−1

i is a linear
automorphism of A1

V for every open affine V ⊆ Ui ∩ Uj and every i, j (in other words, θi is
the identity on OV (V ), and takes x to cx for c ∈ OV (V )). The collection {Ui, ψi} will be
called a trivializing cover.

A section of a line bundle π : E → X is a morphism s : X → E such that π ◦ s = idX . For
any open U ⊂ E, we define

LE(U) = {s : U → E : π ◦ s = idU}.

The restriction map s 7→ s|V for V ⊆ U makes s into a presheaf, and in fact s is a sheaf, by
the usual gluing of morphisms. We call LE the sheaf of sections on E.
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2.4.3. Isomorphisms. An isomorphism of line bundles ϕ : (π,E) → (π′, E ′) is given by an
isomorphism of schemes ϕ : E → E ′ such that

(1) π′ ◦ ϕ = π

(2) If {Ui, ψi} and {U ′j, ψ′j} are trivializing covers of E and E ′ respectively, then the
collection

{Ui, ψi} ∪ {U ′j, ψ′j ◦ ϕ}
is a trivializing cover of E.

2.4.4. Lemma. For any line bundle π : E → X, LE is an invertible OX-module.

Proof. First we show that LE has the natural structure of an OX-module. If s : U → E
is a section, we take an open affine V = SpecR ⊂ U that is contained in one of the Ui.
Then ψi ◦ s|V : V → A1

V corresponds to s̃ : R[x] → R, and there is a natural action of R
on HomR(R[x], R), and we get an OV -module structure. The condition that the ψi preserves
the coordinate ring of an affine is enough to show that this uniquely determines an OU -
module structure, if we cover U with open affines V contained in some Ui. Thus we have a
well-defined module structure.

Note for any open affine V = SpecR contained in a Ui, the identification of
LE(V ) ∼= HomR(R[x], R) ∼= R

shows that LE is locally free of rank 1, hence is invertible. �

2.4.5. Conversely, given an invertible sheaf L , we can construct a line bundle whose sheaf
of sections is the dual of L . Thus, the notion of invertible sheaves and line bundles are dual
to one another.

2.4.6. Picard Group. The Picard group of a scheme X, denoted Pic(X) is given by the set
of isomorphism classes of invertible sheaves on X, with the group operation ⊗. As noted in
2.4.1, this indeed gives a group structure, with identity OX .

2.4.7. There is a close relationship between Cartier divisors and invertible sheaves: namely,
given a Cartier divisor on any schemeX, we can associate to it an invertible subsheaf, and un-
der certain conditions, this will essentially give an equivalence between the two notions.

Suppose {(Ui, fi)} represents the Cartier divisor D. Then to each Ui, we define a subsheaf
of MUi on Ui by (for V ⊆ Ui)

L (D)i(V ) =
1

fi|V
OX(V )

One checks that this forms a sheaf on Ui, and by [EH00] I-14, glues together to a subsheaf
L (D) of MX on X.

2.4.8. Proposition. The aforementioned map L (−) : Ca(X) → {subsheaves of MX} is an
injective group homomorphism, under which the image of a principal divisor is isomorphic
to OX as an OX-module (not necessarily equal as a subsheaf of M ).
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Proof. Suppose D ∈ Ca(X) is represented by {(Ui, fi)} such that L (D) = OX as a subsheaf
of MX . Then in all OX(Ui), fi is a unit. Since a Cartier divisor is a section of M ∗

X/O
∗
X , so

is it clear that D is trivial.

Fix D,E ∈ Ca(X). By taking refinements, we can assume they are represented by the same
open cover {Ui} so that D = {(Ui, fi)} and E = {(Ui, gi}). Then D + D′ is represented
by {(Ui, figi)}. The corresponding invertible sheaf is defined on Ui by (1/figi)OUi . But this
clearly gives the same sheaf as the tensor product (1/fi)OUi⊗OUi

(1/gi)OUi , which shows that

L (D + E) ∼= L (D)⊗OX L (E).

If f ∈M ∗
X(X), then L (div(f)) is just (1/f)OX , which is isomorphic (abstractly) to OX by

the OX-module morphism 1 7→ f . �

2.4.9. Corollary. The homomorphism Ca(X)→ Pic(X) is injective, and surjective when X
is integral.

Proof. Injectivity is clear from 2.4.8. If X is integral, then it suffices to show that every
invertible sheaf on X is isomorphic to a subsheaf of MX , which in this case is just the
constant sheaf corresponding to K(X).

Consider the diagram

L |Ui L |Ui ⊗OUi
MX |Ui

OX |Ui OX |Ui ⊗OUi
MX |Ui MX |Ui

∼ ∼

∼

We see that L ⊗OX MX is locally constant, and thus is globally constant, since X is irre-
ducible. Thus, we see that L ↪→ L ⊗OX MX

∼−→ MX , exhibiting L as a subsheaf of the
constant sheaf MX . �

2.4.10. Equivalences. We finally see that ifX is a Noetherian locally factorial integral scheme,
then 2.3.3, 2.4.4, 2.4.5, and 2.4.9 tell us that

Cartier divisors, Weil divisors, invertible sheaves, line bundles

are all equivalent notions. Most of the theory we will concern ourselves with will land us in
this case.

2.5. Ampleness. The notion of ampleness comes up frequently when dealing with intersec-
tion theory. We introduce it here. Heuristically, an invertible sheaf L on X is ample if
a high enough tensor power L ⊗n has enough global sections to embed X into a projective
space.
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2.5.1. Definitions. Given schemes X, Y and an invertible sheaf L , we say L is very ample
relative to Y if there exists a closed immersion π : X ↪→ PN

Y for some N > 0, such that

L = π∗OPNY
(1),

the tautological hyperplane bundle on PN .

An invertible sheaf L on a scheme X is called ample if for all coherent sheaves F on X,
there exists n > 0 such that F ⊗L n is generated by global sections. Equivalently, one can
show that a sheaf is ample if there exists an integer n > 0 such that L n is very ample.

2.5.2. Ample Divisors. Ampleness of a divisor is that of its corresponding invertible sheaf.

We will need a few lemmas involving ampleness for when we later study intersection theory
on surfaces.

2.5.3. Lemma. Let X be a scheme of finite type over a field K. Then if L is very ample
and F is generated by global sections, then F ⊗L is very ample.

Proof. Ampleness of L gives an immersion φL : X → Pn
K for some n, and GBGS for F

gives a morphism X → Pm
K . If we take the Segre embedding Pn

K ×Pm
K ↪→ PN

K , then we can
define a map

φL × φF : X → Pn
K ×Pm

K ↪→ PN
K ,

which is an immersion because φL is, and satisfies the property that the pullback of O(1) on
PN
K is L ⊗F . �

2.5.4. Lemma. Let X be a scheme of finite type over a field. Then if F is any invertible
sheaf and L is ample, there exists some n > 0 such that F ⊗L ⊗n is very ample.

Proof. By the first definition of ampleness, there exists some k > 0 such that F ⊗L ⊗k is
generated by global sections. By the equivalent definition of ampleness, there exists some
l > 0 such that L ⊗l is very ample. Thus by 2.5.3, F ⊗L ⊗k+l is very ample. �

2.6. Sheaf of Differentials. In differential geometry, differential forms are a basic object
of study, and they lead to rich and sophisticated theory. Classically, one defines the tangent
space at a point in a manifold, which extends to the notion of a tangent bundle. Then the
sheaf of differential forms is essentially given by the dual of the tangent bundle (cotangent
bundle).

In algebraic geometry, we will define the notion of the sheaf of differentials intrinsically. To
motivate the construction, we consider the affine case.
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2.6.1. Derivations. Suppose A is a commutative ring, B is an A-algebra, and M is a B-
module. Then an A-derivation of B into M is a map d : B →M satisfying the usual axioms
of a derivation: namely that

d(b+ b′) = db+ db′,

d(bb′) = bdb′ + b′db,

and
da = 0 for all a ∈ A.

Then the module of relative differential forms of B over A is a B module ΩB/A and an A-
derivation d : B → ΩB/A satisfying the universal property that if d′ : B →M is a derivation,
then there exists a unique B-module homomorphism f : B → M such that the following
diagram commutes

B ΩB/A

M

d

d′
f

Thus, ΩB/A can be thought of as the universal target of a derivation. More precisely, ΩB/A

represents the functor DerA(B,−) : ModB → Ab, so that there is a natural isomorphism

DerA(B,M) ∼= HomB(ΩB/A,M)

2.6.2. Lemma. ΩB/A exists, and is unique up to unique isomorphism.

Proof. We give a simple construction of ΩB/A, and another one which will motivate the
general definition for schemes.

The first construction is to define ΩB/A = FB/I, where FB is the free B-module on the set
of symbols {δb : b ∈ B}, and I is the submodule generated by the expressions defining a
derivation (additivity, Leibniz rule, and δa = 0). Then if d : B →M is a derivation, one can
define the B-module homomorphism f : FB →M by f(δb) = db (and extending B-linearly),
and this clearly takes I to 0.

The second construction, which extends to the general definition, is as follows. Consider the
“diagonal” map

∆ : B ⊗A B → B, b⊗ b′ 7→ bb′

and define I = ker ∆. Note B ⊗A B is a B-module via multiplication on the left. Note I/I2

then inherits the structure of a B-module. In particular, if
∑
bi⊗ b′i ∈ I, then

∑
bib
′
i = 0, so∑

cbib
′
i = 0 for c ∈ B. We then define

d : B → I/I2, b 7→ b⊗ 1− 1⊗ b.
It is straightforward to show that d is an A-derivation. Furthermore, if d′ : B → M is an
A-derivation, then define the B-module homomorphism f : B×B →M by f(b, b′) = b′d′(b).
One checks that this is A-bilinear, and takes I2 to 0. �

The following technical lemma will be useful.
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2.6.3. Lemma. If B is an A-algebra, I ⊆ B is an ideal, then

I/I2 δ−→ ΩB/A ⊗B (B/I)→ Ω(B/I)/A → 0

is an exact sequence of B/I-modules, where δ(b) = db⊗ 1.

Proof. Omitted. �

2.6.4. Sheaf of Differentials. Motivated by the second proof of Lemma 2.6.2, we make the
following definition. If X → Y is a scheme in SchY , then let ∆X : X → X ×Y X be
the diagonal map. Let ∆(X) denote the scheme-theoretic image of X in X ×Y X, which
is isomorphic to X via ∆, and is closed in some open W ⊆ X ×Y X. We define I (an
OW -module) by the exact sequence

0→ I → OW → i∗O∆(X)

where i is the inclusion i : ∆(X) ↪→ W .

Note I /I 2 is a quasi-coherent OW -module killed by I , so there exists some quasi-coherent
OX-module ΩX/Y whose pushforward under X → ∆(X) ↪→ W is exactly I /I 2. This is
called the sheaf of differentials of X over Y .

2.6.5. Affine Differentials. If X = SpecB is an affine scheme over Y = SpecA, then the
diagonal mapX → X×YX corresponds to the diagonal map B⊗AB → B, which is surjective,
hence X → X×Y X is a closed immersion. Note the inclusion X ∼−→ ∆(X) ↪→ X×Y X again
corresponds to the diagonal morphism B ⊗A B → B, whose kernel is the ideal I from
the proof of 2.6.2, which shows that the sheaf I given in 2.6.4 is Ĩ. Thus we see that
ΩX/Y = Ω̃B/A.

In view of this, given any scheme f : X → Y , one can take an affine V ⊆ Y and affine
U ⊆ f−1(V ), compute the affine sheaves of differentials, and glue them together to get ΩX/Y .
Furthermore, the derivations d : B → ΩB/A glue together to give a map OX → ΩX/Y which
is a derivation on the local rings.

2.6.6. Corollary. If X → Y is a morphism of schemes and i : Z ↪→ X is a closed subscheme
of X whose sheaf of ideals is I , then there is an exact sequence of OZ-modules

I /I 2 → i∗ΩX/Y → ΩZ/Y → 0.

Note I is an OX-module so I /I 2 is naturally an OX/I ∼= OZ-module.

Proof. This is clear in light of 2.6.5 and 2.6.3. �

2.7. Canonical Divisors. The sheaf of differentials will be pertinent to our study of in-
tersection theory because they allow us to define the canonical divisor, which is a crucial
ingredient in the definition of Serre duality, and thus is involved with the Riemann-Roch
theorem. We will define it now.
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2.7.1. Smooth Curves. The canonical divisor will be defined only for smooth varieties (see
2.3.4). The following theorem motivates this restriction.

2.7.2. Theorem. A variety X over an algebraically closed field k is smooth if and only if
ΩX/k is a locally free sheaf of dimension n = dimX. Furthermore, if X is smooth and Y ⊂ X
is an irreducible closed subscheme of X defined by a sheaf of ideals I , then Y is smooth if
and only if

(1) ΩY/k is a locally free OY -module, and

(2) the sequence in 2.6.6 is exact on the left side as well.

Proof. Omitted. �

2.7.3. Canonical Sheaf. If X is a smooth variety over a field k of dimension n, then the
canonical sheaf is defined by

ωX =
∧n

ΩX/k,

the nth exterior power of ΩX/k. Locally this is just
∧n On

U
∼= OU , which shows that ωX is

an invertible sheaf. Now since X is integral and smooth, there is a corresponding Weil (or
Cartier) divisor called the canonical divisor, typically denoted KX . This will appear in the
statement of the Riemann-Roch theorem, and

2.7.4. Canonical Divisor. As X is smooth and integral (X is a variety), the equivalences
in 2.4.10 show us that to ωX is associated a divisor (Cartier or Weil), which we denote
by KX . This plays an important role in Serre duality and the Riemann-Roch theorem for
surfaces.

2.8. Adjunction Formula. As we are concerned with subschemes and subvarieties of a suffi-
ciently nice scheme X on which to do intersection theory, we would like to see the relationship
between the canonical divisor of a scheme and that of its subschemes. Fortunately, there is a
close relationship, given by the following theorem, known as the “adjunction formula”.

2.8.1. Theorem. If iY : Y ↪→ X is a smooth subvariety of codimension r with sheaf of ideals
IY , then

ωY ∼= (iY )∗ωX ⊗OY

∧r
Hom(IY /IY ,OY )

Proof. By taking the highest exterior powers of the terms in the exact sequence
0→ IY /IY → i∗ΩX/k → ΩY/k → 0

given in Theorem 2.7.2, we get an isomorphism

(iY )∗ωX ∼=
∧r

(IY /I
2
Y )⊗OY ωY .

Since exterior products commute with taking the dual of an OY -module, we find that

(iY )∗ωX ⊗OY

∧r
Hom(IY /I

2
Y ,OY ) ∼= ωY .

�
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2.8.2. Divisors. If r = 1, then iY : Y ↪→ X is a divisor, and thus there is an invertible OX-
module L associated to Y , such that L −1 is the sheaf of ideals of Y . In this case, IY /I 2

Y

is just the restriction of IY
∼= L −1 to Y , so we find that

ωY ∼= (iY )∗ωX⊗OY Hom((iY )∗L −1,OY ) ∼= (iY )∗ωX⊗OY (iY )∗Hom(L −1,OX) ∼= (iY )∗ωX⊗OY (iY )∗(L ),

so that
ωY ∼= (iY )∗(ωX ⊗OX L ).

2.9. Cohomology. We will need to use the tools of cohomology in order to formulate some
auxiliary results, particularly the Riemann-Roch theorem. We will quickly review a definition
of sheaf cohomology, and state some basic properties we will need in our proofs.

2.9.1. Definition. The cohomology functors are functors H i(X,−) : ModOX → ModOX(X)

for each i ≥ 0, defined as follows. Given a sheaf F ∈ ModOX , we first take an injective
resolution

0→ F → I0 → I1 → . . . .

Applying the global sections functor and removing F , we get

0→ I0(X)
d0−→ I1(X)

d1−→ . . . .

Then H i(X,F ) := ker di/ im di−1. Note H0(X,F ) = F (X).

2.9.2. Coherent Sheaves. When F is a coherent sheaf, one can show that H i(X,F ) is a
finitely generated OX(X)-module. In particular, if X = Spec k for a field k, then H i(X,F )
is a finite dimensional vector space. We omit the proof here, instead referring the reader to
[Har77].

2.9.3. Long Exact Sequence. To any short exact sequence

0→ F ′ → F → F/F ′ → 0

of OX-modules, there is an associated long exact sequence

0→ H0(X,F ′)→ H0(X,F )→ H0(X,F/F ′)→ H1(X,F )→ H1(X,F )→ . . .

This sequence is often used to show the vanishing of cohomology groups.

2.9.4. Serre Duality. In particular, we will need this result only in the case where X is a
projective smooth variety over an algebraically closed field k of dimension dimX = n. There
is then a natural isomorphism, for each i ≥ 0,

H i(X,F ) ∼= Hn−i(X,F∨ ⊗OX ωX),

where F is an OX-module, F∨ is its dual module, and ωX is the canonical sheaf as defined
in 2.7.3.
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2.9.5. Euler Characteristic. Classically, the Euler characteristic was introduced as an alternating-
sum invariant of polyhedra involving the faces and edges. There is a generalization to coherent
sheaves: given a coherent OX-module F , we define

χ(F ) =
n∑
i=0

(−1)i dimH i(X,F )

We mention the following useful lemma.

2.9.6. Lemma. The Euler characteristic is additive on short exact sequences of coherent
sheaves.

3. Intersection Theory on Surfaces

3.1. Curves. Here we recall some facts about curves that we will need in order to work with
surfaces. Since prime divisors on on surface are essentially irreducible curves, we will need
some fundamental definitions and in particular, the Riemann-Roch theorem.

Fix an algebraically closed field k = k.

3.1.1. Definition. A curve C → Spec k is a smooth projective variety of dimension 1.

3.1.2. Divisors. In this case, Cartier and Weil divisors are the same. Since prime divisors
are codimension 1 subvarieties, in the case of curves they simply correspond to the closed
points of the curve. In this setting, we can define the degree of the divisor to be the sum of
the coefficients of the divisor:

deg(
∑
P

nPP ) =
∑
P

nP .

A divisor D is called effective if D > 0.

3.1.3. Remark. If we consider a curve C over a non-algebraically closed field, then the degree
of a prime divisor generalizes nicely. If P ∈ C is a point, then deg(P ) = [κ(P ) : k], where
κ(P ) is the residue field of P in C, which is a finite extension of k. If k is algebraically closed,
then κ(P ) = k always, and we recover the previous definition. This will be important later
when we discuss divisors on a curve over a number field.

3.1.4. Theorem (Riemann-Roch for Curves). If D is a divisor on a curve X, then

χ(L (D)) = deg(D) + 1− gX .
where gX = dimH1(X,OX) is the genus of X.

Proof. [Har77] IV.1.3 �

3.2. Surfaces. We now study intersection theory of surfaces, and prove the Hodge index
theorem, which is a particular case of the Hodge standard conjecture in the case of an
algebraic surface.
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3.2.1. Definition. As in the case of curves, a surface is a smooth projective variety of dimen-
sion 2 over an algebraically closed field k. Again, Cl(X) ∼= CaCl(X).

3.2.2. Intersection of Divisors. On a surface, elements of Cl(X) are finite Z-linear combina-
tions of (possibly singular) curves. Since these are the only divisors we need consider, we will
be concerned with their intersection. For this, we need a few lemmas.

Ideally, curves C,D will intersect transversally at a point p ∈ C ∩D, which intuitively means
that they have linearly independent tangent lines at p, and precisely says that if f, g define
C,D locally at point p, then the ideal generated by fp, gp in OX,p is the maximal ideal mp.
Alternatively, it means that the curves do not share a common 1-dimensional component.
In particular, note that since X is Noetherian, the intersection of transversally intersecting
curves is finite.

Intersection theory on a surface is summarized by the following theorem.

3.2.3. Theorem. There is a unique intersection product i : Cl(X) × Cl(X) → Z satisfying
the following axioms

(1) i(C,D) = #(C ∩D) if C,D are curves intersecting transversally.

(2) i(C,D) = i(D,C)

(3) iC : D 7→ i(C,D) is a group homomorphism for all C ∈ Cl(X).

3.2.4. Remark. Note in particular that intersection with any principal divisor is always
0.

3.2.5. Moving Lemma. Note that for transversally intersecting curves, the intersection prod-
uct is uniquely defined, so it remains to see what happens for curve with bad (nontransversal)
intersection. Classically, this corresponds to the case

dim span(Tp(C) + Tp(D)) = 1

as opposed to 2 in the transversal case.

Fortunately, for curves on a surface there is a “moving lemma” of sorts, which lets us swap
out a curve with bad intersection for a linearly equivalent one with transversal intersection
without changing the intersection product. This crucially relies on the fact that X is pro-
jective, or equivalently, that there exists a very ample divisor on X. Therefore, we can use
Bertini’s theorem to our advantage.

3.2.6. Lemma. For irreducible curves C1, . . . , Cn on a surface X, and a very ample divisor
D, then there exists a very ample divisor D′ such that D′ ∼ D and each Ci intersects D′
transversally.

Proof. [Har77] V.1.2. This basically makes use of Bertini’s theorem, which says that most
hyperplanes have regular intersection with a subvariety of projective space. �



THE CLASSICAL AND ARITHMETIC STANDARD CONJECTURES 17

Proof of 3.2.3: First we define the intersection product for very ample divisors, then extend
to the general case.

If C,D are very ample, then by Lemma 3.2.6, we can pick nonsingular D′ ∼ D and nonsin-
gular C ′ ∼ C such that C ′ and D′ intersect transversally. In this case, we define

i(C,D) = #(C ′ ∩D′).

To show that this is well-defined, we first show that the sequence

0→ (i′C)∗L (−D′)→ OC′ → (iC′∩D′)∗OC′∩D′ → 0

is exact, where iC′ : C ′ ↪→ D′ and iC′∩D′ : C ′ ∩ D′ ↪→ C ′. Suppose at a point x ∈ C ′ that
C ′, D” are locally defined by f, g ∈ OX,x. Localizing at x, we get the sequence

0→ gOX,x ⊗OX,x OX,x/(f)→ OX,x/(f)→ OX,x/(f, g)→ 0

Note OX,x is a UFD and C ′ and D′ intersect transversally, so f, g are coprime. Therefore, we
can replace the first term in the sequence to find

0→ gOX,x/(f)→ OX,x/(f)→ OX,x/(f, g)→ 0,

which is exact, so the original sequence is exact. Since pullback preserves the tensor product,
this shows that (i′C)∗L (D′) is the ideal sheaf of C ′∩D′. Since the intersection is transversal,
its degree is #(C ′ ∩D′). Thus if we choose any other D′′ ∼ D, we’ll have L (D′′) ∼= L (D′),
so we’ll have

#(C ′ ∩D′′) = #(C ′ ∩D′).
By the same argument, we can pick another C ′′ ∼ C and nothing will change. Note by 2.5.3,
the sum of two very ample divisors is again very ample. Furthermore, the degree is additive
on divisors, so the intersection pairing is additive on very ample divisors.

Now let C,D be arbitrary divisors in Div(X). Fix an ample divisor H on X. By 2.5.4, there
exists n such that C +nH,D+nH, nH are all very ample. Then using Lemma 3.2.6, choose
nonsingular curves

(1) C ′ ∼ C + nH

(2) D′ ∼ D + nH transversal to C ′.

(3) E ′ ∼ nH transversal to D′.

(4) F ′ ∼ nH transversal to C ′ and E ′

Note C ∼ C ′ − E ′ and D ∼ D′ − F ′. Now define

i(C,D) = i(C ′, D′)− i(C ′, F ′)− i(E ′, D′) + i(E ′, F ′).

One can show that this is well defined, and in fact this shows uniqueness, since this gives an
explicit expression for the intersection number, since each of the terms in the definition is
actually just #(C ′ ∩D′) since they are nonsingular and meet transversally. �
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3.2.7. Riemann-Roch. There is a corresponding Riemann-Roch theorem for surfaces that is
useful in the proof of the Hodge index theorem.

3.2.7.1. Theorem. If D ∈ Div(X), then

χ(L (D)) =
1

2
i(D,D +K) + χ(OX),

where K is the canonical divisor.

Proof. [Har77] V.1.6 �

3.2.8. Corollary. If H is ample and D ∈ Div(X) with i(D,H) > 0 and i(D,D) > 0, then
for all n >> 0, nD ∼ E where E is effective.

Proof. Since i(D,H) > 0, for all n >> 0, we have ni(D,H) > n0, where n0 is as in [Har77]
V.1.7. Therefore, dimkH

0(X,ΩX −L (D)⊗n) = 0. Since dimkH
1(L (D)⊗n) ≥ 0, we have

by Riemann-Roch that

dimkH
0(X,L (D)⊗n) =

1

2
n2i(D,D)− 1

2
ni(D,K) + χ(OX).

But i(D,D) > 0, so as n becomes large, we have dimkH
0(X,L (D)⊗n) > 0. So nD is

effective if n is large enough. �

3.3. Hodge Index Theorem.

3.3.1. Numerical Equivalence. The Hodge index theorem is a statement about definiteness
of the nondegenerate bilinear form given by intersection of divisors on surfaces. However, the
intersection product on the class group is not necessarily nondegenerate. Given a curve, one
can always find another divisor whose intersection is nonzero, but given two nonzero divisors
in Cl(X), it is not necessarily true that their intersection product is nonzero. For this reason,
we define a subgroup of Cl(X)

Cl0(X) = {D ∈ Cl(X) : i(D,E) = 0 for all E ∈ Cl(X)},
and then define

Num(X) = Cl(X)/Cl0(X).

Two divisors D,E are called numerically equivalent (we write D ∼num E if their difference is
contained in Cl0(X).

3.3.2. Theorem (Hodge Index Theorem). Let X be a smooth projective surface. Let H be
an ample divisor on X and let D ∈ Div(X) be a divisor such that D 6∼num 0, but such that
i(D,H) = 0. Then i(D,D) < 0.

Proof. Suppose i(D,D) > 0. By Lemma 2.5.4, we can choose n > 0 such that H ′ = D+ nH
is very ample. Furthermore, note that

i(D,H ′) = i(D,D) + ni(D,H) = i(D,D) > 0,
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so by Corollary 3.2.8, there exists m > 0 such that mD is an effective divisor (mod linear
equivalence). Thus, i(mD,H) > 0, so i(D,H) > 0, a contradiction.

Suppose i(D,D) = 0. We will then construct another divisor D′ 6∼num 0 satisfying i(D′, H) =
0 and i(D′, D′) > 0, then refer to the first case. then since D 6∼num 0, there exists some E
such that i(D,E) 6= 0. Now define E ′ = i(H,H)E − i(E,H)H. Then i(E ′, H) = 0, and

i(D,E ′) = i(H,H)i(D,E)− i(E,H)i(D,H) = i(H,H)i(D,E) > 0.

If D′ = nD + E, then i(D′, H) = 0, and

i(D′, D′) = n2i(D,D) + 2ni(D,E) + i(E,E) = 2ni(D,E) + i(E,E).

Thus for some good choice of n, i(D′, D′) > 0, and we get a contradiction by the first part
of the proof. �

3.3.3. Definiteness. The Hodge index theorem should be thought of as a statement about
the intersection pairing on Num(X). More precisely, note that Num(X) is defined pre-
cisely so that Num(X)× Num(X) → Z is nondegenerate. One can show that Num(X) is a
finitely generated abelian group. Thus, by nondegeneracy, one can diagonalize the pairing
on Num(X)R = Num(X) ⊗Z R. The Hodge index theorem says that the resulting matrix
will look like 

+
−

. . .
−

 .

The first row corresponds to the choice of hyperplane section (i.e. choice of ample divisor),
and the negativity of the remaining rows comes from the Hodge index theorem.

Later on, when we discuss the Hodge standard conjecture, we will see how the negative-
definiteness of the intersection pairing away from H generalizes (conjecturally) to higher
dimensions.

4. Higher Dimensional Intersection Theory

4.1. Chow Groups. The divisor group of a scheme parametrizes the substructures of codi-
mension 1. In the case of surfaces, intersecting curves was the entire theory, so we could use
the language of divisors. However, to develop a more general intersection theory, we need to
consider higher codimension subvarieties. For this, we introduce the Chow groups.

For this section, an algebraic scheme will always be a scheme of finite type over an alge-
braically closed field k. If it is integral, it will be called an algebraic variety.

4.1.1. Cycles. The notion of a divisor is generalized to the notion of a cycle. If X is an
algebraic scheme, then let Zp(X) denote the free abelian group on the set of codimension p
closed integral subvarieties. Note a codimension p integral subvariety can be identified with
its generic point whose local ring has dimension p. Thus Zp(X) is the free abelian group on
the set

{ξ ∈ X : dim OX,ξ = p}
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4.1.2. Rational Equivalence. Consider W ∈ Zp−1(X). Then W is integral, and Div(W ) =
Zp(X) immediately by definition. Then as in the notation introduced in 2.2.2, we define
Rp(X) to be the subgroup of Zp(X) generated by⋃

W∈Zp−1(X)

P (W ).

In other words, given a (p − 1)-cycle W and a rational function f ∈ K(W ), the principal
divisor div(f) is a generator for Rp(X).

4.1.3. Chow Group. The pth Chow group is then defined to be

CHp(X) = Zp(X)/Rp(X).

Note CHp(X) = 0 for p < 0 and p > n.

4.1.4. Remark. Since Z1(X) is the set of divisors, and R1(X) is the set of principal divisors,
we have CH1(X) = Cl(X). Furthermore, note R0(X) = 0 by definition and X itself is the
only irreducible 0-codimensional integral subvariety of X, so

CH0(X) = Z0(X) ∼= Z.

4.1.5. Affine Space. Consider An
k = Spec k[x1, . . . , xn]. An integral hypersurface Y in An

k is
cut out by a regular polynomial f ∈ k[x1, . . . , xn], so Y = div(f), which shows that

CH1(X) = 0.

If we take a point (c1, . . . , cn) in An
k , it is the divisor of the function on any line containing

that point which vanishes uniquely at that point. So

CHn(X) = 0.

4.2. Intersection Pairing. Having defined the Chow groups, we now have a natural setting
in which to do intersection theory. Whereas in the case of surfaces, we had only to define a
map Cl(X)× Cl(X)→ Z, in the general case we will construct maps

CHp(X)× CHq(X)→ CHp+q(X),

which will involve more sophisticated versions of the intersection multiplicities.

Fulton’s book [Ful98] outlines a general intersection theory for varieties that are not necessar-
ily projective, or even quasi-projective, but it is quite technically involved, and requires a few
auxiliary structures in order to define the intersection of two cycles. To state the standard
conjectures on cycles, as formulated by Grothendieck, it will suffice to look at projective
varieties over a field. In this particular case we define an intersection theory more simply,
by first defining intersection multiplicities for the case of proper intersection of subvarieties,
and then using a moving lemma, as in the case of surfaces.
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4.2.1. Proper Intersection. In the case of surfaces, we defined a notion of transversal inter-
section, which required that the intersection of two lines was simply the sum of points.

We say that two subvarieties V ∈ Zp(X) and W ∈ Zq(X) intersect properly if for every
(there are finitely many) irreducible component Z of V ∩W , we have

codimX(Z) = codimX(V ) + codimX(W )

This definition is justified by the following lemma.

4.2.2. Proposition. Let X be a smooth projective variety and let V,W be two closed subva-
rieties. Then for every irreducible component Z of V ∩W ,

codimX(Z) ≤ codimX(V ) + codimX(W )

Proof. This proposition can be shown locally, since dimension can be computed at the stalk
of a closed points of a variety. The variety X is separated, so ∆ : X → X ×k X is a closed
immersion, so locally we can assume X ×k X = Spec(A), with X ∼= ∆(X) a closed subset.
Since X and X ×k X are smooth, we can assume that

X = Spec(A/(f1, . . . , fd))

where d = dim(X) and f1, . . . , fd is a regular sequence in A. Now note that V ×k W is a
variety, and thus irreducible, so V ×kW is Spec(A/p) for some prime p in A of height cV +cW
where cV = codimX(V ), and cW = codimX(W ). Thus

V ∩W ∼= V ×k W ∩∆(X) ∼= Spec(A/(p + (f1, . . . , fd))).

An irreducible component Z of V ∩W corresponds to a minimal prime q over p+(f1, . . . , fd).
Since adding an fi to p + (f1, . . . , fi−1) can increase the height (of a minimal prime over it)
by at most one, we have

ht q ≤ ht p + d.

But by substituting ht q = 2d− dim(Z) and ht p = cV + cW , we get

cZ ≤ cV + cW

as desired. �

4.2.3. Remark. Proper intersection emphasizes a desired stability in our definition of intersec-
tion. For example, in a 3-dimensional variety, the intersection of two surfaces will generically
give us a union of curves, which is to say that if we shift the surfaces by a small amount, we
will typically still get a union of curves.

On the other hand, suppose we intersect two curves in 3-dimensional space. Then although
they may have points in common, shifting them by a small amount will render them dis-
joint. The domain and target of the intersection pairing reflect the notion of proper intersec-
tion.
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4.2.4. Intersection Multiplicities. This treatment is due to Serre in [Ser58]. Suppose V,W
are closed subvarieties of X with codimension p and q respectively, with p+ q ≤ n. Suppose
further that they intersect properly. Then at some irreducible component Z in V ∩W we
define the following intersection multiplicity

e(X, V,W,Z) =

dim(X)∑
n=0

`OX,Z (TorOX,Z
n (OV,Z ,OW,Z))

Then we define
V ·W =

∑
Z

e(X, V,W,Z)Z

where the sum runs over all irreducible components of V ∩W . Extend bilinearly to define a
map

Zp × Zq → Zp+q.

To show that this gives us an intersection product on the Chow groups, we need the following
proposition.

4.2.5. Proposition. If α ∈ Rp(X) and β ∈ Zq(X), then α · β ∈ Rp+q(X).

Proof. [Sta17] Theorem 25.2 �

4.2.6. Corollary. The intersection pairing descends to a map

CHp(X)× CHq(X)→ CHp+q(X).

4.3. Moving Lemma. To extend the intersection pairing to arbitrary non-proper intersec-
tion, we need the following lemma.

4.3.1. Lemma. Let X be a smooth projective variety. Let α ∈ Zp(X) and β ∈ Zq(X). Then
there exists an α′ ∈ Zp(X) such that [α′] = [α] in CHp(X) (rationally equivalent) and such
that α′ and β intersect properly.

Proof. [Sta17] Lemma 24.3 �

This concludes our discussion of intersection pairings on the Chow groups. We will now
discuss their relevance to the standard conjectures.

5. Standard Conjectures

5.1. Weil Cohomology Theories. Although Chow groups provide us with a complete
description of the intersection theory on a smooth projective variety, in general they are
huge, complex objects that are difficult to work with.

However, a lot of information can be gleaned about the structure of algebraic varieties and
their intersection by attaching simpler objects to the varieties that are compatible with the
intersection pairing structure, and then studying these objects.
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Weil cohomology theories are often useful in this endeavor. A Weil cohomology theory
associates to a variety a graded K-algebra for some field K in which each graded component
has finite dimension, as well as maps between the graded components that reflect some of
the structure of the underlying intersection theory. Although lots of information will be lost
in the “linearization”, working with vector spaces over a field of characteristic 0 can be much
simpler than working with Chow groups.

5.1.1. Definition. We follow a note of de Jong [dJ07]. Fix a field K of characteristic 0 and an
algebraically closed field k. A Weil cohomology theory is given by the following data:

(1) A contravariant functor

H∗ : {smooth projective varieties over k} → {graded commutative K-algebras}.

The grading is denoted
H∗(X) =

⊕
Hn(X),

where the Hn are functors taking values in VectK . Multiplication in this algebra is
denoted α ^ β. We write f ∗ : Y → X for H(f), for f : X → Y .

(2) For each X of dimension n, a “trace” isomorphism

TrX : H2n(X)
∼−→ K

(3) A group homomorphism clX : Zp(X)→ H2p(X) called the cycle class map.

The axioms are as follows:

(1) Each H i(X) is a finite dimensional vector space, and H i(X) = 0 for i < 0 and if
i > 2n, where n = dim(X).

(2) If pX and pY are the projections from X ×k Y , then the K-algebra map

H∗(X)⊗K H∗(Y )→ H∗(X ×k Y ), α⊗ β 7→ p∗X(α) ^ p∗Y (β)

is an isomorphism.

(3) (Poincaré Duality) Suppose X has dimension n. For 0 ≤ i ≤ 2n,

TrX ◦^ : H i(X)⊗K H2n−i(X)→ K

is a perfect bilinear pairing.

(4) The trace commutes with products: in other words, for α ∈ H2n(X) and β ∈ H2n(Y ),

TrX×kY (p∗X(α) ^ p∗Y (β)) = TrX(α) TrY (β).

(5) The map clX commutes with products: in other words, if X and Y are smooth
projective varieties over k and V ⊆ X and W ⊆ Y are closed integral subvarieties,
then

clX×kY (V ×k W ) = p∗X(clX(V )) ^ p∗Y (clY (W ))
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(6) If f : X → Y is a morphism of smooth projective varieties, Z ⊆ X is a closed integral
subvariety, and α ∈ H2 dim(Z)(Y ), then

TrX(clX(Z) ^ f ∗(α)) = dTrY (clY (f(Z)) ^ α)

where d is the degree of the morphism f : Z → f(Z).

(7) If f : X → Y is as above, then suppose W ⊆ Y is a closed integral subvariety such
that the components of f−1(W ) have pure dimension dim(W ) + dim(X) − dim(Y ),
and either f is flat in a neighborhood of W or f−1(W ) is generically smooth. Then

f ∗(clY (W )) =
r∑
i=1

`OX,Wi (OZ,Wi
) clX(Wi)

where the Wi are the irreducible components of f−1(W ).

(8) In the case of a point, where x Spec k, then clx(x) = 1, and Trx(1) = 1.

5.1.2. Pushforward. Functoriality of H∗ gives us pullback maps, but one can use the Poincaré
duality to obtain pushforward maps as well.

Fix X, Y smooth projective varieties of dimensions n,m respectively. Given f : X → Y ,
we get a map f ∗ : H∗(Y ) → H∗(X) compatible with the grading. This induces a dual map
(f ∗)t : HomK(H∗(X), K)→ HomK(H∗(Y ), K). The following commutative diagram defines
the pushforward:

H i(X) HomK(H2n−i(X), K)

H i−2(n−m)(Y ) HomK(H2n−i(Y ), K)

∼

f∗ (f∗)t

∼

After unraveling the definition, one sees that given a cycle α ∈ H i(X), the pushforward f∗(α)
is the unique element in H i−2(n−m) such that for all β we have

TrY (f∗(α) ^ β) = TrX(α ^ f ∗(β)).

5.1.3. Intersection Pairing. One nice property of a Weil cohomology theory is that it is
compatible with the intersection pairing, in the following sense.

5.1.3.1. Proposition. If X is a smooth projective variety, H∗ is a Weil cohomology theory,
and V ∈ Zp(X), W ∈ Zq(X) are closed integral subvarieties that intersect properly, then

clX(V ·W ) = clX(V ) ^ clX(W ).

Proof. Suppose V ·W =
∑

i niZi. Letting ∆ : X → X ×k X, we have

∆−1(V ×W ) =
⋃
i

Zi.
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Then by axiom 7,

clX(V ·W ) =
∑
i

ni clX(Zi) = ∆∗(clX×kX(V ×k W )).

By axiom 5,
∆∗(clX×kX(V ×k W )) = ∆∗(p∗X(clX(V )) ^ p∗X(clY (W ))).

Finally, by functoriality,

∆∗(p∗X(clX(V )) ^ p∗X(clY (W ))) = (pX ◦∆)∗(clX(V ) ^ clX(W )) = clX(V ) ^ clX(W ).

�

5.2. Statement of the Conjectures. Having defined the notion of a Weil cohomology
theory, we can now state the standard conjectures.

Grothendieck originally included these conjectures in his formulation of the category of pure
motives. If the standard conjectures are true, then the category of pure motives will be a
semisimple abelian category. The conjectures were formulated in the 1960s, but since then,
not much progress has been made in proving them in full generality.

5.2.1. Lefschetz Operator. If X ⊆ Pn is a smooth projective variety and H ⊆ Pn is a
hyperplane, then W = H ∩X defines a hyperplane section in X. Then define

L : Hp(X)→ Hp+2(X), α 7→ α ^ cl(W ).

We will need the following theorem to formulate the first conjectures:

5.2.2. Theorem (Strong Lefschetz). The iterated map

Ln−p : Hp(X)→ H2n−p(X)

is an isomorphism.

With this, we can define the Lefschetz operator as the map Λ in the following diagram

Hp(X) H2n−p

Hp−2(X) H2n−p+2

Ln−p

Λ L

Ln−p+1

This makes sense because the top and bottom row are isomorphisms by 5.2.2.

5.2.3. Conjecture (Conjecture B). The Lefschetz operator Λ is algebraic. In other words,
there exists a cycle V ⊂ X ×k X of dimension n− 1 such that

Λ(α) = p2,∗(p
∗
1(α) ^ clX(V ))

for all α ∈ H i(X).
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The second standard conjecture is a generalization of the Hodge Index Theorem, and concerns
the positive (or negative, depending on the dimension)-definiteness of an intersection pairing
on certain cohomology classes induced by algebraic cycles.

Specifically, the intersection pairing will be defined on the image of the map

clQX : Zp(X)⊗Z Q→ H2p(X), α⊗ q 7→ q clX(α).

The image is a sub-Q-vector space of H2p(X), which we call Cp(X). By Proposition 5.1.3.1,
the cup product restricts nicely to the Cp(X), and we get maps

Cp(X)⊗Q C
q(X)

^−→ Cp+q(X).

An element of Cn(X) is a Q-linear combination of elements of the form clX(x), where x ∈ X
is a closed point. But by the pushforward formula in 5.1.2,

Trx(clx(x)) = TrX(clX(x)),

but one can show easily that Trx(clx(x)) = 1. Thus,

TrX |Cn(X) : Cn(X)→ Q.

Furthermore, the cup product restricts nicely to the Cp(X)

5.2.4. Conjecture (Hodge Standard Conjecture). Fix a hyperplane section W = H ∩X in
X and define the map L as before. Fix j ≤ dim(X)/2. Then consider sub-Q-vector space
Cj(X) of H2j(X) defined by

Cj
Pr = {α ∈ im(clX : Zj(X)→ H2j(X)) :Ln−2j+1(α) = 0}

Then the intersection pairing Cj
Pr(X) × C

j
Pr(X) → K on Cj(X) given by

(α, β) 7→ (−1)j TrX(α ^ β ^ clX(W )^n−2j)

is positive definite.

5.2.5. Characteristic 0. In fact, the Hodge standard conjecture is known for fields of charac-
teristic 0, using classical methods from Hodge theory of complex algebraic varieties.

5.2.6. Remark. If dim(X) = 2 and j = 1, then this is just the Hodge index theorem for sur-
faces. To see this, note that hyperplane sections correspond to ample divisors, so application
of L is just intersection with a very ample divisor. Note further that the trace just gives the
intersection product when restricted to divisors.

But the key to the generalization is the fact that numerical equivalence (see 3.3.1) is the
same as homological equivalence for divisors: this is to say that Num(X) ∼= H2(X) via the
cycle class map.

Does this hold more generally? Let

CHp
0(X) = {α ∈ CHp(X) : deg(α, β) = 0 for all β ∈ CHn−p(X)}.

Then two cycles are called numerically equivalent if their difference lies in CHp
0(X).
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5.2.7. Conjecture (Conjecture D). Numerical equivalence and homological equivalence of
cycles is the same equivalence relation.

In fact, if the Hodge standard conjecture is true, one can show that that conjecture D and
conjecture B are the same.

6. Arithmetic Surfaces

We now turn our attention to the arithmetic reformulation of the standard conjectures.
To begin, we will discuss Arakelov’s original motivation [Ara74] for developing arithmetic
intersection theory on models for algebraic curves over finite extensions of Q, and develop
an analogous version of the Hodge index theorem in this case. Then we will develop a
more modern formulation of arithmetic intersection, developed primarily by Gillet and Soulé
[GS94].

6.1. Arithmetic Surfaces.

6.1.1. Definitions. For our purposes, the definition of curves and surfaces over an arbitrary
scheme is similar to the definition over an algebraically closed field.

6.1.2. Models. If C → SpecK is a smooth curve (see Definition 3.1.1), then a smooth model
for C is a smooth projective scheme S → SpecOK of relative dimension 1 such that the
following is a pullback diagram:

C SpecK

S SpecOK

Equivalently, the fiber of the map S → SpecOK over the zero ideal in OK is isomorphic to
C. For example, if K = Q, then smooth models are smooth projective surfaces over SpecZ.
Note that SpecZ has dimension 1, so C is a 2-dimensional scheme. This motivates the
following definition: an arithmetic surface is a smooth projective scheme over S → SpecOK

of relative dimension 1 for some number field K. Furthermore, C will always be geometrically
connected and geometrically irreducible.

We will take for granted the fact that there always exists a smooth model as defined above.
A proof can be found in Chapter 10 of [Liu06].

6.1.3. Analogy. By 2.4.10, the notions of line bundles, Cartier divisors, Weil divisors and
invertible sheaves are all the same. However, for arithmetic objects, to get a good notion of
intersection theory we need to add more structure.

One way to see this is to consider the following: given a curve C in an affine space over an
algebraically closed field, one can always define a map

Div(C)→ Z.
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However, this map does not descend to a map on Cl(C) → Z; for example, take a rational
function which has a single zero, but no poles. To get a map Cl(C)→ Z, we need to consider
completions of such curves in a projective space. Then we get the following lemma.

6.1.3.1. Lemma. If C is a smooth projective curve over an algebraically closed field k and
f ∈ K(C), then

deg div(f) = 0.

Proof. This is essentially a reflection of the fact that a rational function on a projective curve
is given by a quotient of homogeneous polynomials of the same degree in the coordinate ring.
For more precise details, see for example [Har77] Corollary 6.10. �

Lemma 6.1.3.1 is correctly interpreted as the analog of a product formula in arithmetic. To
see this, note that

deg div(f) =
∑
P∈C

vP (f),

where vP (f) is the order of vanishing of f at P . The product formula for a number field K
(written using a sum) states for a ∈ K that∑

ι:K↪→C

− log |ι(a)|+
∑
p

vp(a) = 0

where the p are closed points in SpecOK , and the vp are the p-adic absolute values. This
analogy is part of a larger analogy between number fields and function fields for curves over
finite fields.

However, if we merely consider divisors on SpecOK , we don’t get the product formula, because
the prime divisors in SpecOK correspond to closed points, which are nonzero prime ideals
in OK , so we are missing points corresponding to the infinite places. Arakelov’s idea was to
build these “missing points” into the intersection theory directly, rather than adding them to
the scheme structure of SpecOK , or to an arithmetic surface over SpecOK .

6.1.4. Divisors over ∞. If [K : Q] = n, then there are n embeddings ιk : K ↪→ C preserving
Q. For each of these embeddings ι1, . . . , ιn, we can form the pullback

Sk = C ×SpecK,ιk SpecC SpecC

C SpecK

Spec ιk

or equivalently, if ιk : OK ↪→ C,

Sk = S ×SpecOK ,ιk SpecC SpecC

S SpecOK

Spec ιk
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This gives us a 1-dimensional irreducible smooth scheme over SpecC, which by Serre’s GAGA
theorem, corresponds to a 1-dimensional irreducible compact smooth complex manifold, i.e.
a compact Riemann surface. Arakelov’s novel idea was to treat these Riemann surfaces as
though they were (prime) divisors over infinity. To justify this terminology, note the following
topological lemma:

6.1.4.1. Lemma. If D ∈ Cl(S) is an irreducible (Weil) divisor, then its image under π : S →
SpecOK is either all of SpecOK or a singleton {p} where p is a closed point.

Proof. Note π is continuous and D is irreducible, so π(D) is irreducible. Note π is projective
=⇒ proper =⇒ closed, so π(D) is an irreducible closed subset. Thus, it is either a point
(if it’s 0-dimensional) or the entire space, since SpecOK is integral, thus irreducible. �

If the image of D is SpecOK , we say that D is horizontal, and if the image is a point, we
say that D is vertical. Note that the fiber over a point in SpecOK may not necessarily be
irreducible, but the “fibers over infinity” in this context are simply the Sk.

With this in mind, our intuition dictates that if Sk were indeed part of S, and if the infinite
places (embeddings) corresponded to actual points in SpecOK , then in principle we would
expect to have

π(Sk) = {∞k}.

6.1.5. Hermitian Metrics. As a general rule, Arakelov theory heavily incorporates the com-
plex geometry induced by the complex embeddings K ↪→ C. For example, we will need the
existence of a Hermitian metric hk on each Sk, with corresponding (real) (1,1)-form called
the “volume form” µk = i/2(hk − hk). Furthermore, we will stipulate that∫

Sk

µk = 1.

6.1.6. Divisors over a prime. Consider the set of places of OK . Given any prime p in OK ,
we can form a scheme Sp → Specκ(p) = OK/p, called the “reduction mod p” of S at p, by
taking the following pullback.

Sp Specκ(p)

S SpecOK

This gives us a family {Sp}Pf , where Pf is the set of finite places of OK . But by defining
the Riemann surfaces as we did above, we now have a family {Sp}Pf ∪ {Sk}1,...,n, which is
essentially indexed by P = Pf ∪ P∞ is the set of all places on OK .
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6.1.7. Arakelov Divisors. The group of Arakelov divisors is defined as

DivAr(S) = Div(S)⊕R[S1]⊕ · · · ⊕R[Sn],

where the [Sk] are formal symbols corresponding to the Riemann surfaces Sk. We sometimes
write

Div∞(S) = R[S1]⊕ · · · ⊕R[Sk].

Notice that valuations corresponding to the finite places have value group Z, while the
valuations corresponding to the finite places have value group dense in R. This is reflected
in the definition of the Arakelov divisor.

6.1.8. Principal Arakelov Divisors. Since we introduce infinite divisors, we have to redefine
the notion of a principal divisor to reflect the structure of the Arakelov divisor group.

To motivate our construction, we first consider the Arakelov divisor group of SpecOK itself.
Since SpecOK is 1-dimensional, its divisors are simply its closed points. We define

DivAr(K) := Div(SpecOK)⊕R[S1]⊕ · · · ⊕R[Sk]

as above. Since we were motivated by the product formula, it makes sense to define the
Arakelov degree DivAr(K)→ R by

degAr(
∑
p

npp +
n∑
i=1

rk[Sk]) =
∑
p

np log(#OK/p) +
k∑
i=1

rk

In this case, principal divisors are induced by elements of K itself. For a ∈ K,

divAr(a) =
∑
p

vp(a)[p] +
n∑
k=1

− log |ιk(a)|[Sk]

(note in this case Sk is just a point, the 0-dimensional complex manifold corresponding to
SpecC). Then the group of principal divisors is denoted PAr(K), and the Arakelov class
group is defined by

ClAr(K) = DivAr(K)/PAr(K).

By the product formula, degAr divAr(a) = 0.

Any rational function f ∈ K(S) induces a meromorphic function fk : Sk → C for each k,
using GAGA. This allows us to define the principal Arakelov divisor of f as follows:

divAr(f) = div(f) +
n∑
k=1

(∫
Sk

− log |fk|µk
)

[Sk].

Then the Arakelov class group is given by

ClAr(S) = DivAr(S)/PAr(S),

where PAr(S) is the subgroup of principal divisors.
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6.2. Intersection of Divisors. Following our treatment of surfaces over an algebraically
closed field, we wish to define a symmetric intersection pairing

iAr : ClAr(S)× ClAr(S)→ R

on arithmetic surfaces, which will now have to take the Sk (divisors at infinity) into account.
There are four cases we need consider:

(1) Finite divisors at finite places. This is relatively straightforward: if C,D are irre-
ducible finite divisors (i.e. have zero [Sk] components), and P is a closed point in S,
then there exists f, g ∈ OS,p that locally define C and D. Furthermore, the residue
field κ(P ) is a finite field, so we can define

iP (C,D) = `OS,P (OS,P/(f, g)) · [κ(P ) : κ(π(P ))],

which is well defined by 2.2.2.1. Then for a closed point [p] ∈ SpecOK , we define

ip(C,D) =
∑

P∈π−1([p])

iP (C,D)

(2) Finite divisors at infinite places. Assuming either of the divisors are vertical, it is
clear that we should have no intersection at an infinite place. On the other hand, if
both are horizontal, we should have some notion of intersection number. This involves
the theory of Green functions, which we will treat below.

(3) Infinite divisors It is conceptually clear that i(Sk, Sk′) should be 0 for two infinite
divisors. It is also clear that i(Sk, D) should be 0 for D a vertical divisor.

If D is a horizontal divisor, then D is the closure of a point ξD in the generic fiber C.
Note the residue field κ(ξD) is a finite field extension of K, so at any Sk, we define

i(Sk, D) = degK(D) := [κ(ξD) : K].

To motivate this definition, notice that ξD is defined by a map Specκ(ξD)→ X, and
there are m := [κ(ξD) : K] embeddings of κ(ξD) ↪→ C extending K ↪→ C, which gives
m conjugate points on Sk.

It remains to treat the case of finite divisors at infinite places. Given two irreducible horizontal
divisors D,E, we can again choose points P,Q in the generic fiber X whose closures give all
D,E respectively. These points have residue fields L,M which have degree l,m over K, and
thus there are l,m embeddings of L,M ↪→ C extending an embedding K ↪→ C, which give
us l,m points on Sk. Call these points

P1, . . . , Pl and Q1, . . . , Qm.

Then we define (for the kth embedding K ↪→ C)

ik(D,E) =
∑
i,j

iSk(Pi, Qj),

where i, j run over all 1, . . . , l and 1, . . . ,m, and iSk is an intersection product for any two
points on a Riemann surface, which we will define now, using the theory of Green func-
tions.
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6.2.1. Green Functions. Fix a Riemann surface X. By Serre’s GAGA, X corresponds to a
complex variety of dimension 1, whose divisor group Div(X) is generated by the points in
X. A Green family for X is a set of smooth functions {gD}D∈Div(X) subject to the following
conditions:

(G1) For D ∈ Div(X), gD is defined on X \ supp(D)→ R.

(G2) The association g : Div(X)→ {smooth functions} is a group homomorphism.

(G3) If D ∈ Div(X) is locally represented by Zariski open U ⊆ X and f meromorphic on
U , then

gD + log |f(·)|
extends to a smooth function on all of U . This says that gD has logarithmic singular-
ities along D.

(G4) (Harmonicity) The following differential equation is satisfied for all divisors D:

ddcgD = (degD)µ.

Note ddc is the complex version of the Laplacian operator, so this really does reflect
a notion of harmonicity.

(G5) (Normalization) For all divisors D,∫
X

gDµ = 0.

Furthermore, one can show that in (G3), if X = U then gD +log |f(·)| will be constant, equal
to ∫

X

− log |f |µ.

To a Green family is associated the corresponding Green function defined as

g : X ×X \∆(X)→ R, (P,Q) 7→ gP (Q).

We will show in a moment that in fact g(P,Q) = g(Q,P ).

6.2.2. Total Intersection. Then the intersection multiplicity of P,Q ∈ X for P 6= Q is defined
as

iSk(P,Q) = g(P,Q)

for every Riemann surface Sk. Then given two finite divisors D,E, we define the total
intersection number

i(D,E) =
∑
p

ip(D,E) +
∑
k

iSk(D,E).

We now have a complete description of intersection for Arakelov divisors, except for self-
intersection of finite divisors. To intersect a finite divisor D with itself, we simply replace
D with D + (f) for some rational function (f), such that supp(D + (f)) and supp(D) are
disjoint, then use the fact that the intersection product is invariant under linear equivalence,
which we will prove in a moment.
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6.2.3. More on Green Families. We briefly sketch the idea of the proof of existence for Néron
families, following [Ara74].

Fix a Riemann surface X. To define a Green family, one only needs to define gP for single
points P ∈ X. To do so, we consider the collection of nonnegative smooth functions φP :
X → R that take value 0 at P , and are locally expressible as

φP (z) = |tP (z)|u(z),

where u : X → R is a nonzero smooth function, and tP : X → C is a meromorphic function
with a simple pole at P . Furthermore, we require that φP is positive on X \ {p}. Then the
Green function is

gP (x) = − log φP (x) for all x ∈ X \ {P}.
Arakelov then uses (G4) and (G5) to uniquely specify such functions.

6.2.3.1. Proposition. The above described family of functions is a Green family.

Proof. We only need to prove (G3). If a divisor D is locally represented by (U, f), then
D =

∑
i niPi−

∑
jmjQj, where ni,mj > 0, where Pi are the zeros of f in U with multiplicity

ni, and Qj are the poles with multiplicity −mi. Thus

f(z) =

∏
i(z − Pi)ni∏
j(z −Qj)mj

h(z),

where h(z) is nonzero and holomorphic on U . Therefore,

λD(z) + log |f(z)| = c(z) log

[∏
j φQj(z)mj∏
i φPi(z)ni

∏
i |z − Pi|ni∏
j |z −Qj|mj

]
,

for some smooth c(z). But since the φPi and φQj have simple zeros at their respective points,
this logarithm will extend to all of U . �

As promised,

6.2.3.2. Proposition. A Green function is symmetric on X ×X \∆(X).

Proof. Fix two distinct points P,Q ∈ X, and pick two small disks UP , UQ around P,Q. Then
consider the integral ∫

X\(UP∪UQ)

(log φP∆ log φQ − log φQ∆ log φP )dxdy.

We want to look at the behavior as the radius of disks go to 0. So using Green’s second
identity, this integral becomes∫

∂UP∪∂UQ
log φP

∂ log φQ
∂n

− log φQ
∂ log φP
∂n

ds
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where ∂/∂n is the normal derivative. But this is equal to∫
∂UP

log φP
∂ log φQ
∂n

ds−
∫
∂UQ

log φQ
∂ log φP
∂n

ds−
∫
∂UP

log φQ
∂ log φP
∂n

ds+

∫
∂UQ

log φP
∂ log φQ
∂n

ds

Taking into account properties of the φ, we can assume without loss of generality that the
first two integrals are of the form∫

Cr

log |z| ∂
∂n

log |z − c|ds,

where Cr is a circle of radius r about 0 in C, and c ∈ C is arbitrary. But∫
Cr

log |z| ∂
∂n

log |z − c|ds ≤ log(r)M

∫
Cr

rdt→ 0 as r → 0,

where ∂/∂n(log |z − c|) is bounded by some constant M for small r. The last two integrals
are essentially of the form ∫

Cr

log |z − c| ∂
∂n

log |z|ds,

for some c ∈ C which becomes∫ 2π

0

log |reiθ − c|1
r
rdθ → 2π log |c| as r → 0.

Therefore, the whole integral approaches, as r → 0,

2π(log φP (Q)− log φQ(P )).

On the other hand, Arakelov’s two conditions show that∫
X\(UP∪UQ)

(log φP∆ log φQ − log φQ∆ log φP )dxdy = 2π

∫
X\(UP∪UQ)

(log φP − log φQ)dµ = 0.

(for this, we use the following equivalent formulation of the harmonicity condition:
1

2π
∆ log φPdxdy = −µ,

where ∆ is the usual Laplacian) �

6.3. Arithmetic Hodge Index Theorem. Following [Hri85], we now discuss the Hodge
index theorem for arithmetic surfaces. The classical Hodge index theorem is a statement
about the signature of the bilinear intersection form on the set of divisor classes of a surface.
The arithmetic version has the same flavor, but now there are more divisors.

To see this, consider an arithmetic surface π : S → SpecOK which is a model for C = SK .
Note we have

DivAr(S) = Divhor(S)⊕Divver(S)⊕Div∞(S),

which correspond to the horizontal, vertical, and infinite prime divisors. There is an isomor-
phism

Divhor(S) ∼= Div(C),
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which in the forward direction is given by taking the generic point (which is the same as
intersecting with the fiber of S over the generic point in SpecOK) and the reverse direction
is the topological closure. So we see that arithmetic surfaces contain the intersection theory
of the curves that they model, but also contain information coming from the vertical divisors
and infinite divisors, so we will need to discover how they interact with the intersection
pairing.

In particular, we will use Néron’s work on the intersection theory of a curve of the form
C → SpecK (with K a number field) without proof, and we will give a more detailed
treatment of the vertical and infinite divisors.

6.3.1. Degree. Consider the generic point isomorphism ξ : Divhor(S) → Div(C), and recall
from 6.2 that for a prime horizontal divisor D we have

degK(D) := [κ(ξD) : K].

Thus, we have a degree homomorphism degK : Divhor(S) ∼= Div(C) → Z. We will first
concern ourselves with the degree 0 divisors on C, which we will denote by Div0(C), or
Div0

hor(S) if we are considering them as vertical divisors.

6.3.1.1. Proposition. The intersection product iAr is invariant under linear equivalence of
divisors.

Proof. Fix a rational function f . Then

i(divAr(f), [Sk]) = i(div(f), [Sk]) +
n∑
k=1

(· · · )������
i([Sk], [Sk]) = i(div(f), [Sk]).

But no vertical divisor intersects [Sk], and by considering the intersection product in Div(C)
instead of Divhor(S), we see that

degK div(f) = 0.

Thus, div(f)Ar has 0 intersection with the infinite divisors. If E is a vertical divisor over a
prime p, then by definition it has 0 intersection with the infinite divisors, then the intersection
number is just ip(div(f), E). But we can look at this locally as a curve over κ(p), whence
the intersection product is 0 by classical intersection theory over a finite field.

So the remaining case is when E is a prime horizontal divisor. In this case,

i(divAr(f), E) = i(div(f), E) + i(div∞(f), E) = i(div(f), E) +
n∑
k=1

(

∫
Sk

− log |fk|µk) degK(E).

Note we have

i(div(f), E) =
∑
p

ip(div(f), E) +
n∑
k=1

ik(div(f), E)

Now E splits into degK(E) points {Qk
j} after using the kth embedding K ↪→ C. Therefore,

ik(div(f), E) =
∑
j

gdiv(f)(Qj) =
∑
j

(

∫
Sk

− log |fk|µk) degK(Qj)− log |fk(Qj)|.
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which is equal to ∫
Sk

− log |fk|µk) degK(E)−
∑
j

log |fk(Qj)|

Combining, we get

i(divAr(f), E) =
∑
p

ip(div(f), E) +
n∑
k=1

∑
j

− log |fk(Qj)|

which is 0 by the product formula. �

Our question for the moment, concerns the intersection pairing on

Div0
Ar(S) = Div0

hor(S)⊕Divver(S)⊕Div∞(S).

6.3.2. Infinite Divisors. Note that (Sk, Sk′) = 0, so

i(Div∞(S),Div∞(S)) = 0.

Furthermore, if D is a vertical divisor, then i(Sk, D) = 0, so

i(Div∞(S),Divver(S)) = 0.

Lastly, if D is a prime horizontal divisor, then i(Sk, D) = degK(D), so if degK(E) = 0 for
some E =

∑
iDi ∈ Divhor(S), then

i(Sk, E) = i(Sk,
∑
i

Di) =
∑
i

i(Sk, Di) =
∑
i

degK(Di) = degK(E) = 0.

Combining, we get
i(Div∞(S),Div0

Ar(S)) = 0.

Thus, as long as we restrict our attention to divisors with degree 0 finite component, we can
safely ignore the infinite divisors.

6.3.3. Divisor Decomposition. Note PAr(S) ⊆ Div0
Ar(S) because C is smooth and projective,

so we can look at

Cl0Ar(S) = [Div0
hor(S)⊕Divver(S)⊕Div∞(S)]/PAr(S).

One sees easily that Div∞(S)∩PAr(S) = (O∗K)∞, where (O∗K)∞ is the image of the unit group
in OK under the map

OK → Div∞(S), a 7→ −
∑

(log |a|k)[Sk],

Recall that the intersection pairing i is trivial on PAr(S), so

Cl0Ar(S) = [Div0
hor(S)⊕Divver(S)]/PAr(S)⊕Div∞(S)/(O∗K)∞.

Write Cl0fin(S) = [Div0
hor(S)⊕Divver(S)]/PAr(S) and Cl∞(S) = Div∞(S)/(O∗K)∞. Then, after

tensoring with Q, we get an orthogonal splitting

QCl0Ar(S) = QCl0fin(S) ⊥ QCl∞(S).

Thus, for the moment we will only consider the intersection pairing on QCl0fin(S).
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6.3.4. Vertical Divisors. Next we will treat the case of vertical divisors. Observe that

Divver(S) =
⊕

(0)6=p⊆OK

Divp(S)

where Divp(S) is the free abelian group on the vertical divisors over a closed point [p] ∈
SpecOK . Each Divp(S) is finitely generated, since our schemes are Noetherian. Furthermore,
the inclusion Sp ↪→ S induces a map φ : Div(S) → Div(Sp) ∼= Divp(S), so we define Sp =
φ(π−1([p])), and define Fibp(S) to be the subgroup of Divp(S) generated by Sp.

6.3.5. Proposition. The intersection pairing descends to QDivp(S)/QFibp(S), and is neg-
ative definite there.

Proof. We follow [Lan88] for this proof. If D ∈ Divp(S), then by definition of the intersection
pairing,

i(D,Sp) =
∑
q

iq(D,Sp) +
∑
k

������
iSk(D,Sp) = ip(C,D).

Thus, we can treat D and Sp as divisors in π−1([p]), the reduction at p, and compute the
intersection number locally. But in π−1([p]), Sp is the principal divisor corresponding to the
image of the uniformizer t ∈ OK under the map

OK → Γ(Oπ−1([p]), π
−1([p])),

so ip(D,Sp) = 0.

For negative definiteness, we let Sp =
∑

i niDi, where Di are vertical divisors over p and
ni > 0. Then we define a matrix (aij) by

aij = i(niDi, njDj) = ninjip(Di, Dj).

(1) This matrix is clearly symmetric.

(2) If i 6= j, then Di and Dj don’t share common components, so by definition we have
aij ≥ 0.

(3)
∑

j aij = 0 since i(D,Sp) = 0.

Using these properties, one can show that for a vector xi ∈ Q,∑
i,j

aijxixj = −
∑
i<j

aij(xi − xj)2 ≤ 0.

This shows negativity. Furthermore, one can show that there exists at least one nonzero xi
term since π−1([p]) is connected. Thus, the form is nondegenerate. �

6.3.6. Finer Decomposition. Next, Hriljac shows that there exists an exact sequence

0→ QCl0(C)→ QCl0fin(S)→
⊕

(0)6=p⊆OK

QDivp(S)/QFibp(S)→ 0
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given by a map I + Φ : QCl0(C)→ QCl0fin(S) whose image is orthogonal to the last term in
the sequence. Thus, there is an orthogonal splitting

QCl0fin(S) = im(I + Φ)
⊕

(0)6=p⊆OK

QDivp(S)/QFibp(S).

We will omit the definition of the Φ operator. Details can be found in [Hri85].

By Proposition 10.1.21 in [Liu06], there are only finitely many primes p such thatQDivp(S) 6=
QFibp(S), so the sum on the right is finite, in which each summand is finitely generated as
well. By the Mordell-Weil theorem, im(I + Φ) is finitely generated as well.

This orthogonally splits the horizontal divisors and the vertical divisors. We have already
treated the intersection pairing on each QDivp(S)/QFibp(S), so now we need to look at the
intersection pairing on the horizontal part.

6.3.7. Néron ’s Work. We will use the following result due to Néron :

6.3.7.1. Theorem. The intersection pairing on the image im(I + Φ) is negative definite.

6.3.8. Hodge Index Theorem. Now we can give the full proof of the Hodge Index Theorem.
In this version we will also need to disregard the divisors numerically equivalent to 0, so we
define

NAr(S) = {D ∈ ClAr(S) : i(D,E) = 0 for all E ∈ ClAr(S)}

6.3.8.1. Theorem. The intersection pairing on RClAr(S)/RNAr(S) is nondegenerate with
signature (+,−, . . . ,−).

Proof. We already showed the intersection pairing on QCl0fin(S) is negative definite, so the
same holds after replacing Q with R. It remains to consider Arakelov divisors with nonzero
degrees.

We can pick a class c ∈ Clhor(S) which generates the nonzero degree horizontal divisor classes,
and an element e ∈ Cl∞(S) which generates the nonzero degree infinite divisors. Then

RClAr(S)/RNAr(S) = Rc⊕Re⊕RCl0fin(S).

Note intersection with c defines a linear map RCl0fin(S) → R, but by nondegeneracy of the
intersection form, there exists some u ∈ RCl0fin(S) such that intersection with c is the same
as intersection with u, so we replace c with c− u to assure that

Rc ⊥ RClfin(S).

We already know that e is orthogonal to RClfin(S), so it remains to orthogonalize c and e.

Note i(c, e) 6= 0, because degK(c) > 0, and e is an infinite divisor. By scaling, we can assume
i(c, e) = 1. We already know that i(e, e) = 0. Thus, we define

e1 = c+
1− i(c, c)

2
e e2 = c− 1 + i(c, c)

2
e.
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Then
i(e1, e1) = i(c, c) + (1− i(c, c))i(c, e) + (. . . )��

��i(e, e) = 1,

and
i(e2, e2) = i(c, c)− (1 + i(c, c))i(c, e) + (. . . )��

��i(e, e) = −1,

This completes the proof. �

7. Arithmetic Intersection Theory

The generalization of Arakelov’s work to higher dimensions was not immediately clear when
he first defined the notion of intersection on an arithmetic surface. Given a higher dimensional
X → SpecOK (more precise details to follow), we can still form the pullbacks over the infinite
places, but now we get complex manifolds of higher dimension. In the case of arithmetic
surfaces, all of the intersection theory was contained in the Arakelov divisor group, and we
just intersected curves to get intersection numbers. Furthermore, since the surfaces S →
SpecOK had relative dimension 1, the resulting complex manifolds were actually compact
Riemann surfaces, and we associated a Green function to each point (divisor) on the Riemann
surface.

However, in higher dimensions, we need to instead consider Chow groups and their inter-
section theory, and instead of Green functions, we will need the theory of Green currents,
which are a higher dimensional generalization of the Green functions. This will allow us to
define arithmetic Chow groups, which are the main objects of study in arithmetic intersec-
tion theory. This theory was developed by Gillet and Soulé in [GS90] and [GS94], as well as
numerous other auxiliary papers.

For simplicity, we restrict attention to K = Q and study schemes over SpecZ.

7.1. Green Currents. Here we perform the required complex analysis, and either give or
cite the main proofs of the results we need.

Fix a smooth connected complex manifold X and denote n := dimCX. We will assume X
is oriented such that dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n is positively oriented.

7.1.1. Complex Differential Forms. Let Ap,q(X) denote the space of complex (p, q)-forms on
X. Any such ω ∈ Ap,q(X) can be written∑

|I|=p,|J |=q

fI,J(z, z̄)dzI ∧ dz̄J ,

where each fI,J is a C∞-function on X. Let

An(X) =
⊕
p+q=n

Ap,q(X).

As usual, ∂, ∂̄ and d = ∂ + ∂̄ will denote the differentials. In addition, we define an operator
dc = 1

4πi
(∂ − ∂̄) so that

ddc = − 1

2πi
∂∂̄.
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7.1.2. Currents. Let Dp,q(X) denote the space of (p, q)-currents on X. This means that if
T ∈ Dp,q(X), then T is a map

T : An−p,n−q(X)→ C

such that for any sequence {ωk}k∈N of differential forms in An−p,n−q(X) such that the support
of each ωk is contained in a fixed compact set K, then T (ωk)→k 0 if ωk →k 0, meaning that
the coefficients of the ωk and all their derivatives tend uniformly to 0 as k → ∞. Again,
let

Dn(X) =
⊕
p+q=n

Dp,q(X).

There are differential maps ∂, ∂̄, d defined on the currents as well. The definition for ∂ is

(∂T )(α) = T ((−1)p+q+1∂α),

where T is a (p, q)-current. The definition is similar for ∂̄ and d.

7.1.3. Current Induced by a Form. There is a map [·] : Ap,q(X) → Dp,q(X) defined in the
following way. If ω ∈ Ap,q(X) and α ∈ An−p,n−q(X),

[ω](α) =

∫
X

ω ∧ α.

This is clearly a linear functional, and one can show that it in fact defines a current.

We will need the fact that the differentials for forms and currents are compatible with one
another. For this, we use Stokes’ theorem, and the definition of the differential map. We do
the case for the differential d. If ω ∈ Ap,q(X) with p+ q = r, then

[dω](α) =

∫
X

dω ∧ α

=

∫
X

d(ω ∧ α) + (−1)r+1

∫
X

ω ∧ dα

=

∫
∂X=∅

ω ∧ α + [ω]((−1)r+1dα)

= (d[ω])(α).

This is true for ∂ and ∂̄ as well: just pay attention to the invocation of Stokes’ theorem.

7.1.4. Currents and Submanifolds. If i : Y ↪→ X is a closed analytic submanifold of codimen-
sion p, then we define an associated current in Dp,p(X) such that for α ∈ An−p,n−p(X),

δY (α) =

∫
Y ns

i∗α.

One can show that this is a current.

7.1.5. Green Currents. Fix a codimension p analytic subspace i : Y ↪→ X. Then a Green
current for Y in X is a current gY ∈ Dp−1,p−1(X) satisfying the equation

ddcgY + δY = [ω]

where ω ∈ Ap,p(X).
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7.1.6. Remark. On a Riemann surface X at a point P , we defined a Green function

gP : X \ {P} → R,

which was C∞. Let µ be the volume form on X. Then δP : C∞(X) → R is defined by
δP (f) = f(P ), which matches the definition given in 7.1.4.

7.1.7. Lemma. With the notation above,

ddc[gP ] + δP = [µ].

Proof. For f ∈ C∞(X), the statement translates to

f(P ) +

∫
X

gP ∧ dcdf =

∫
X

f ∧ µ.

Using (G4) and ddc + dcd = 0, we see that

gP ∧ dcdf − f ∧ µ = −gP ∧ ddcf − f ∧ ddcgP .

But

−d(gP ∧ dcf − f ∧ dcgP ) = −(������
dgP ∧ dcf + gP ∧ ddcf +�����

df ∧ dcgP + f ∧ ddcgP )

= −gP ∧ ddcf − f ∧ ddcgP .

Stokes’ theorem shows that the integral on X is 0 away from a small disk around P , so we are
taking this integral on a small disk around P . But since ddc is the Laplacian operator, this
essentially reduces to the proof of Proposition 6.2.3.2, so the value of the integral becomes
f(P ). �

This highlights the generalization we are making. Notice that in our formulation, µ is an
arbitrary form, so in some sense we have slightly more flexibility in the theory as to the choice
of a Green current.

7.1.8. First Chern Form. But there is one differential form that is important for intersection
theory, and can help us define forms of logarithmic type for divisors. This is the first Chern
form of a Hermitian line bundles. Although we haven’t talked about putting Hermitian
metrics on line bundles, they play a crucial role in a lot of modern Arakelov theory. For
example, in [Ara74], Arakelov shows that Arakelov divisors are the same as Hermitian line
bundles subject to hxarmonicity and normalization conditions.

7.1.8.1. Proposition. If (L, ‖·‖) is a Hermitian line bundle on X, then there exists a smooth
form

c1(L, ‖ · ‖) ∈ A1,1(X)

such that if U ⊆ X is open and s ∈ L (U) is nonvanishing on U , then we have

c1(L, ‖ · ‖) = −ddc log ‖s‖2,
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Proof. We can actually use this expression to define c1(L, ‖ · ‖): it suffices to show that this
definition does not depend on the choice of s, and agrees on the overlaps of two open sets.

Since L is one dimensional, if we choose another s′ ∈ L (U) nonvanishing on U , then there
exists a nonzero holomorphic function f on U such that s′ = fs. But then

−ddc log ‖s′‖2 = −ddc log ‖fs‖2 = −ddc log ‖f‖2 − ddc log ‖s‖2,

and by holomorphicity and the Leibniz rule we have

∂∂̄ log ‖f‖2 = 2∂∂̄ log(ff̄) = 2∂

[
∂̄(ff̄)

ff̄

]
= 2∂

[
f���∂̄(f̄)

ff̄
+
∂̄(f)f̄

f f̄

]
=
−2∂̄∂(f)

f
= 0.

This also proves that this definition agrees on the overlaps: if s, s′ are nonzero on L (U) and
L (U ′), then their restrictions to U ∩ U ′ differ by a nonzero holomorphic function. �

7.2. Uniqueness.

7.2.1. Proposition. If X is a Kähler manifold, and Y ⊆ X is an analytic submanifold with
Green currents g1, g2, then

g1 − g2 = [η] + ∂S1 + ∂̄S2,

where η ∈ Ap−1,p−1(X), S1 ∈ Dp−2,p−1(X), and S2 ∈ Dp−1,p−2(X).

Proof. [Sou95] This is an application of the Hodge decomposition for a Kähler manifold. �

7.3. Logarithmic Forms. When we defined Green functions for a divisor D in 6.2.1, we
stated in axiom 3 that we wanted the currents to have logarithmic asymptotic behavior at the
support of the divisor D. It turns out that besides wanting to have a close generalization of
Arakelov’s original theory, Green currents with similar logarithmic properties will also allow
us to consistently define intersections in our arithmetic Chow rings. Thus, we will define a
notion of logarithmic asymptotic behavior for currents.

7.3.1. Forms of Logarithmic Type. If X is a smooth connected complex manifold and i : Y ↪→
X is a codimension p analytic subvariety with p > 0, then we say a smooth differential form
α on X \ Y is of logarithmic type along Y if there exists a projective morphism π : X̃ → X

such that π−1(Y ) is a normal crossings divisor (n.c.d), π : X̃ \ E → X \ Y is smooth, and
π∗(β) = α, where β is a C∞ form on X̃ \ E satisfying the following property. For every
x ∈ X̃, let z1 . . . zk be a local equation cutting out E, since it is an n.c.d. Then there exist
(locally) smooth forms α1, . . . , αk, γ on X̃ \ E such that

β =
k∑
i=1

αi log |zi|2 + γ.
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7.3.2. Resolution of Singularities. In order to prove existence of forms of logarithmic type, we
will need to use Hironaka’s theorem on the resolution of singularities. Our complex geometry
works with smooth manifolds, so we will occasionally need to invoke this theorem. We state
it now.

7.3.3. Theorem ([Hir64]). Let X be a scheme of finite type of dimension n over C, and
Y ⊆ X proper closed X such that X \ Y is smooth. Then there exists a proper map

π : X̃ → X

such that

(1) X̃ is smooth,

(2) X \ π−1(Y )→ X \ Z is an isomorphism,

(3) E = π−1(Y ) is a divisor with normal crossings, i.e. is expressible in any local chart
U ∼= Cn as the divisor of the equation z1 · · · zn.

7.3.4. Theorem. If i : Y ↪→ X is an irreducible analytic submanifold, then there exists a
smooth form gY of logarithmic type on X \ Y such that [gY ] is a Green current for Y .

Proof. We will prove the theorem in the case that Y has codimension p = 1. The rest of the
proof is fairly technical, and can be found in [Sou95] Section II.2.2.

For the case of a divisor (p = 1), this is an instance of the Poincaré-Lelong formula, which
we prove now. Given a divisor Y , there exists a line bundle L on X, a Hermitian metric ‖ · ‖
on L, and a section s such that | div s| = Y , where div s is the divisor cut out by the section
s. Then we show that gY = − log ‖s(·)‖2 is the desired form.

We will show that − log ‖s‖2, which is defined on X \ div(s) is a Green current for Y as
follows:

ddc[− log ‖s‖2] + δY = [c1(L, ‖ · ‖)],
Using 7.3.3, we can take a resolution π : X̃ → X such that X̃ is smooth, π−1(Y ) is a
normal crossings divisor. Actually, we can prove the lemma here for π−1(Y ) and then use
the pushforward (integration along the fibers) of forms to prove the original theorem.

So suppose Y is a n.c.d. Using a partition of unity, we will prove the identity above in a local
chart Cn, on which Y is defined by z1 · · · zn. One shows that the desired identity is additive
in this expression, so we reduce to the case where Y is cut out by z1. Then by rearranging
the expression, and noting that the leftmost term and the rightmost term differ by a sign, it
suffices to show that for any ω compactly supported in Cn, we have

−
∫
Cn

log |z1|2ddc(ω) =

∫
z1=0

ω.

The integrand in the right ahnd side is undefined on z1 = 0, but is fully defined if we write∫
Cn

log |z1|2ddc(ω) = lim
ε→0

∫
|z1|≥ε

log |z1|2ddc(ω).
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Using the Leibniz rule and Stokes’ theorem, this becomes

lim
ε→0

∫
|z1|=ε

log |z1|2dc(ω) + lim
ε→0

∫
|z1|≥ε

d log |z1|2dc(ω).

But since ω is compactly supported, we can convert dc(ω) it to polar coordinates and bound
its coefficients by some large constant, so the first integral reduces to the form

lim
ε→0

2 log ε

∫ 2

0

πεdθ = 0.

Using the Lebniz rule and Stokes’ theorem again on the second integral, we get

lim
ε→0

∫
|z1|≥ε

dc log |z1|2d(ω) = lim
ε→0

∫
|z1|≥ε

dc log |z1|2ω − lim
ε→0

∫
|z1|≥ε

ddc log |z1|2(ω).

The second integral vanishes because ddc log |z1|2 = 0 on |z1| ≥ ε. After switching to polar
coordinates, one can show that the first integral is in fact

∫
z1=0

ω. �

7.3.5. Star Product. We briefly mention, without giving any detail (see [Sou95] Section II.3
for proofs), how to define a notion of intersection for Green forms.

Fix Y, Z ⊆ X closed and irreducible that intersect properly. If gY is a smooth form of
logarithmic type such that [gY ] is a Green current for Y , and gZ is any Green current for Z,
then we can define a star product [gY ] ? gZ which is a Green current for the divisor induced
by Y ∩ Z. Let ωY , ωZ be the forms corresponding to [gY ] and gZ . If we pretend for a
moment that these currents are actually forms, then the star product can be thought of as
the following operation:

gY ? gZ = gY ∧ δZ + ωY ∧ gZ ,
although the real definition is a bit more technically involved. One can show that the star
product is associative and commutative.

Suppose we have Y ⊆ X and a Green current gY for Y . By 7.3.4 we can always find a smooth
form g̃Y of logarithmic type, whose corresponding current differs from gY by a current of the
form

gY − [g̃Y ] = [η] + ∂S1 + ∂̄S2

by 7.2.1. But then notice that ddc[η] = 0, so addition by [η] preserves Green currents. Thus,
if we work mod ∂ and ∂̄, all Green currents can be assumed to be of logarithmic type, so we
can always define a star product of Green currents.

7.4. Arithmetic Chow Groups. We can now define the arithmetic Chow groups for an
arithmetic variety over SpecZ.

7.4.1. Arithmetic Variety. For this section, we will consider regular projective flat schemes
X → SpecZ. This will be the higher dimensional analogue of an arithmetic surface that we
will treat. We form the pullback
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XC SpecC

X SpecZ,

and using GAGA we get a smooth projective complex manifold, which by abuse of notation we
will also call XC, which is Kähler by projectivity. The complex conjugation map ι : C→ C
induces the isomorphism F∞ : XC → XC:

XC SpecC

XC SpecC

X SpecZ,

F∞

Spec ι

We make some slight restrictions on the complex analysis of XC as follows. We define

Ap,p(X) = {ω ∈ Ap,p(XC) :ω is real and F ∗∞ω = (−1)pω}

and
Dp,p(X) = {T ∈ Dp,p(XC) :T is real and F ∗∞T = (−1)pT}

for p = 1, . . . , n = dimX. There is an inclusion [·] : Ap,p(X) ↪→ Dp,p(X) as defined in
7.1.3.

7.4.2. Arithmetic Cycles. Most of the theory of Chow groups that we developed earlier can
be developed over SpecZ, even though our treatment was over an algebraically closed field.
This treatment involves advanced algebraic K-theory and we will not treat it here, but we
will use Chow groups for X in our formulation of the arithmetic Chow groups.

Let Zp(X) denote the set of codimension p cycles on X. If Z =
∑

i Zi is a sum of irreducible
cycles, then we can define the associated current

δZ =
∑
i

δZi .

Then a Green current for a cycle is an element gZ ∈ Dp−1,p−1(X) for which there is a form
ωZ ∈ Ap,p(X) satisfying

ddcgZ + δZ = [ωZ ].

Note Green currents are additive: if gZ , gZ′ are green currents for Z,Z ′, then gZ + g′Z is a
Green current for Z + Z ′.

We define the group of arithmetic p-cycles to be

Ẑp(X) = {(Z, gZ) :Z ∈ Zp(X) and gZ a Green current for Z}.
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7.4.3. Rational Cycles. If Y ⊆ X is a closed integral subscheme, then for any nonzero f ∈
K(Y ), we get a cycle div f , which we mod out by in the case of classical Chow groups. But
in the arithmetic case, we give it a Green current as follows.

If f ∈ K(Y ), then f induces a rational function f∞ on YC ⊆ XC. However, we developed the
complex analysis on smooth manifolds, so we take a resolution of singularities Ỹ → YC, and
note that f∞ restricts to a rational function f̃∞ on Ỹ . Note log |f̃∞|2 is an integrable function
on Ỹ , so it defines a current [log |f̃∞|2] on D0,0(Ỹ ). Letting ĩ denote the map Y → XC, we get
a current in Dp−1,p−1(XC) by pushing forward (using integration along the fibers) [log |f̃∞|2]

under ĩ. The resulting current is denoted [log |f |2], and is defined by

[log |f |2](ω) =

∫
Ỹ

log |f̃∞|2 · ĩ∗(ω)

One can show that −[log |f |2] is a Green current for div f . This motivates the following
definition: the group of rational arithmetic p-cycles R̂p(X) is the subgroup of Ẑp(X) gener-
ated by the divisors of the form (div f,−[log |f |2]) for all f ∈ K(Y ) for all closed integral
subvarieties Y ⊆ X, and by elements of the form (0, ∂(u) + ∂̄(v)) whee u ∈ Dp−2,p−1(X) and
v ∈ Dp−1,p−2. The latter such element is ignored because logarithmic forms will be defined
up to addition of elements of that form. Then the pth arithmetic Chow group is defined to
be

ĈH
p
(X) = Ẑp(X)/R̂p(X).

7.5. Intersection Pairing. One can show, using algebraic K-theory, that there is an inter-
section pairing

RCHp(X)→ RCHq(X)→ RCHp+q(X),

where the R indicates that we tensor with R. But in fact, there is a pairing

RĈH
p
(X)→ RĈH

q
(X)→ RĈH

p+q
(X).

In the case of proper intersection, this will be exactly

i([(Y, gY )], [(Z, gZ)]) = [(i(Y, Z), gY ? gZ)].

With this, we can state the standard conjectures.

7.6. Arithmetic Standard Conjectures. The first conjecture concerns degeneracy of the
intersection pairing. If X is an arithmetic variety of relative dimension n over SpecZ, then
there is a natural notion of arithmetic degree, which turns out to be a map

d̂eg : ĈH
n+1

(X)R → R, (Z, g) 7→ log(#OZ(Z)) +
1

2

∫
XC

g.

Using the intersection pairing, we get an intersection product

ĈH
p
(X)× ĈH

d+1−p
(X)→ ĈH

d+1
(X)→ R

7.6.1. Conjecture. The intersection product is nondegenerate.
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The second conjecture is a version of the Lefschetz conjecture. Given a line bundle H on X
with a smooth Hermitian metric, we can define an arithmetic cycle ĉ1(H) ∈ ĈH

1
(X)R by

taking a nonzero rational section s of H and defining
ĉ1(H) = [(div s,− log ‖s‖2)].

Then denote by L intersection with ĉ1(H). Then the second conjecture is as follows.

7.6.2. Conjecture. If H is ample on X, one can choose the smooth Hermitian metric so
that

(1) The map
Ld+1−2p : ĈH

p
(X)R → ĈH

d+1−p

is an isomorphism.

(2) If x ∈ ĈH(X)R is nonzero and Ld+2−2p(x) = 0, then

(−1)pd̂eg(x · Ld+1−2p(x)) > 0.
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