Banach L-representations

Talk 3 - Local p-adic Langlands program

May 2020

(ロ)、(型)、(E)、(E)、 E) の(()

Banach L-representations

Talk 3 - Local p-adic Langlands program

May 2020

(ロ)、(型)、(E)、(E)、 E) の(()

In this talk, we will be discussing L-Banach space representations of p-adic analytic groups when p is invertible.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} , and residue field k.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} , and residue field k.

Definition

1. An *L*-Banach space representation Π of *G* is an *L*-Banach space Π with an action of *G* by continous linear automorphisms such that the action is continous.

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} , and residue field k.

Definition

1. An *L*-Banach space representation Π of *G* is an *L*-Banach space Π with an action of *G* by continous linear automorphisms such that the action is continous.

2. A Banach space is called unitary if there exists a G-invariant norm defining the topology on Π .

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} , and residue field k.

Definition

1. An *L*-Banach space representation Π of *G* is an *L*-Banach space Π with an action of *G* by continous linear automorphisms such that the action is continous.

2. A Banach space is called unitary if there exists a G-invariant norm defining the topology on Π .

The existence of such a norm is equivalent to the existence of an open bounded *G*-invariant O-lattice Θ in Π .

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} , and residue field k.

Definition

1. An *L*-Banach space representation Π of *G* is an *L*-Banach space Π with an action of *G* by continous linear automorphisms such that the action is continous.

2. A Banach space is called unitary if there exists a G-invariant norm defining the topology on Π .

The existence of such a norm is equivalent to the existence of an open bounded *G*-invariant O-lattice Θ in Π .

Definition

A unitary *L*-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of *G*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition

A unitary *L*-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of *G*.

This is equivalent to saying that for every open subgroup H of G, $(\Theta \otimes_{\mathcal{O}} k)^H$ is finite dimensional.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

A unitary *L*-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of *G*.

This is equivalent to saying that for every open subgroup H of G, $(\Theta \otimes_{\mathcal{O}} k)^H$ is finite dimensional.

Theorem

Suppose G has an open pro-p subgroup P. A representation $\pi \in \operatorname{Rep}_G$ is admissible if and only if π^P is finite dimensional.

Definition

A unitary *L*-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of *G*.

This is equivalent to saying that for every open subgroup H of G, $(\Theta \otimes_{\mathcal{O}} k)^H$ is finite dimensional.

Theorem

Suppose G has an open pro-p subgroup P. A representation $\pi \in Rep_G$ is admissible if and only if π^P is finite dimensional. Hence, it is enough to check the admissibility condition for a single pro-p subgroup of G.

Definition

A unitary *L*-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of *G*.

This is equivalent to saying that for every open subgroup H of G, $(\Theta \otimes_{\mathcal{O}} k)^H$ is finite dimensional.

Theorem

Suppose G has an open pro-p subgroup P. A representation $\pi \in Rep_G$ is admissible if and only if π^P is finite dimensional. Hence, it is enough to check the admissibility condition for a single pro-p subgroup of G.

Definition

1. An *L*-Banach space representation Π is irreducible if it does not contain a proper closed *G*-invariant subspace.

Definition

1. An *L*-Banach space representation Π is irreducible if it does not contain a proper closed *G*-invariant subspace.

2. An *L*-Banach space representation Π is absolutely irreducible if $\Pi \otimes_L L'$ is irreducible for every finite extension L' of *L*.

Definition

1. An *L*-Banach space representation Π is irreducible if it does not contain a proper closed *G*-invariant subspace.

2. An *L*-Banach space representation Π is absolutely irreducible if $\Pi \otimes_L L'$ is irreducible for every finite extension L' of *L*.

Let Π be an absolutely irreducible and admissible unitary *L*-Banach space representation of *G*, and let $\phi \in End_{L[G]}^{cont}(\Pi)$. If the algebra $L[\phi]$ is finite dimensional over *L*, then $\phi \in L$.

Let Π be an absolutely irreducible and admissible unitary *L*-Banach space representation of *G*, and let $\phi \in End_{L[G]}^{cont}(\Pi)$. If the algebra $L[\phi]$ is finite dimensional over *L*, then $\phi \in L$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma 4.2

Let Π be an irreducible admissible unitary *L*-Banach space representation of *G*. If $End_{L[G]}^{cont}(\Pi) = L$, then Π is absolutely irreducible.

Let Π be an absolutely irreducible and admissible unitary *L*-Banach space representation of *G*, and let $\phi \in End_{L[G]}^{cont}(\Pi)$. If the algebra $L[\phi]$ is finite dimensional over *L*, then $\phi \in L$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma 4.2

Let Π be an irreducible admissible unitary *L*-Banach space representation of *G*. If $End_{L[G]}^{cont}(\Pi) = L$, then Π is absolutely irreducible.

Let Π be a unitary *L*-Banach space representation of *G*, let Θ and Ξ be open bounded *G*-invariant lattices in Π , and let π be an irreducible smooth *k*-representation of *G*. Then π is a subquotient of $\Theta \otimes_{\mathcal{O}} k$ if and only if it is a subquotient of $\Xi \otimes_{\mathcal{O}} k$. Moreover, if $\Theta \otimes_{\mathcal{O}} k$ is a *G*-representation of finite length, then so is $\Xi \otimes_{\mathcal{O}} k$, and their semi simplifications are isomorphic.

Let Π be a unitary *L*-Banach space representation of *G*, let Θ and Ξ be open bounded *G*-invariant lattices in Π , and let π be an irreducible smooth *k*-representation of *G*. Then π is a subquotient of $\Theta \otimes_{\mathcal{O}} k$ if and only if it is a subquotient of $\Xi \otimes_{\mathcal{O}} k$. Moreover, if $\Theta \otimes_{\mathcal{O}} k$ is a *G*-representation of finite length, then so is $\Xi \otimes_{\mathcal{O}} k$, and their semi simplifications are isomorphic.

For a unitary *L*-Banach space representation Π of *G*, with Θ an open bounded *G*-invariant lattice in Π , its Schikhof dual is denoted by

$$\Theta^d := Hom_{\mathcal{O}}(\Theta, \mathcal{O})$$

equipped with the topology of pointwise convergence. If $\Theta \otimes_{\mathcal{O}} k$ is a *G*-representation of finite length, then we denote its semi-simplification (which is independent of Θ , by the above Lemma) by

$$\bar{\mathsf{\Pi}} := (\Theta \otimes_{\mathcal{O}} k)^{ss}$$

For a compact open subgroup H of G, let $Mod_G^{proaug}(\mathcal{O})$ denote the category of profinite $\mathcal{O}[[H]]$ -modules with an action of $\mathcal{O}[G]$ such that the two actions are the same when restricted to $\mathcal{O}[H]$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For a compact open subgroup H of G, let $Mod_G^{proaug}(\mathcal{O})$ denote the category of profinite $\mathcal{O}[[H]]$ -modules with an action of $\mathcal{O}[G]$ such that the two actions are the same when restricted to $\mathcal{O}[H]$.

Lemma 4.4 Θ^d is an object of $Mod_G^{proaug}(\mathcal{O})$.

For a compact open subgroup H of G, let $Mod_G^{proaug}(\mathcal{O})$ denote the category of profinite $\mathcal{O}[[H]]$ -modules with an action of $\mathcal{O}[G]$ such that the two actions are the same when restricted to $\mathcal{O}[H]$.

Lemma 4.4 Θ^d is an object of $Mod_G^{proaug}(\mathcal{O})$.

Lemma 4.5

Suppose Π is irreducible and admissible. Let $\phi: M \to \Theta^d$ be a non-zero morphism in $Mod_G^{proaug}(\mathcal{O})$. Then, there exists an open bounded *G*-invariant lattice Ξ in Π such that $\Xi^d = \phi(M)$.

1. Let $Mod_G^{sm}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O} -torsion modules.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. Let $Mod_{G}^{sm}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O} -torsion modules.

2. Let $Mod_{G}^{lfin}(\mathcal{O})$ be the full subcategory of $Mod_{G}^{sm}(\mathcal{O})$ consisting of locally finite representations.

1. Let $Mod_G^{sm}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O} -torsion modules.

2. Let $Mod_{G}^{lfin}(\mathcal{O})$ be the full subcategory of $Mod_{G}^{sm}(\mathcal{O})$ consisting of locally finite representations.

3. Let $Mod_{G}^{?}(\mathcal{O})$ be a full subcategory of $Mod_{G}^{Hin}(\mathcal{O})$ closed under subquotients and arbitrary direct sums in $Mod_{G}^{Hin}(\mathcal{O})$.

1. Let $Mod_G^{sm}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O} -torsion modules.

2. Let $Mod_{G}^{lfin}(\mathcal{O})$ be the full subcategory of $Mod_{G}^{sm}(\mathcal{O})$ consisting of locally finite representations.

3. Let $Mod_{G}^{?}(\mathcal{O})$ be a full subcategory of $Mod_{G}^{lfin}(\mathcal{O})$ closed under subquotients and arbitrary direct sums in $Mod_{G}^{lfin}(\mathcal{O})$. 4. Let $\mathcal{C}(\mathcal{O})$ be a full subcategory of $Mod_{G}^{proaug}(\mathcal{O})$ that is

(日)((1))

4. Let $\mathcal{C}(\mathcal{O})$ be a full subcategory of $Mod_G^{\circ} = \mathcal{O}(\mathcal{O})$ that is equivalent to the dual of $Mod_G^{\circ}(\mathcal{O})$ via Pontryagin duality.

1. Let $Mod_G^{sm}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O} -torsion modules.

2. Let $Mod_{G}^{lfin}(\mathcal{O})$ be the full subcategory of $Mod_{G}^{sm}(\mathcal{O})$ consisting of locally finite representations.

3. Let $Mod_G^?(\mathcal{O})$ be a full subcategory of $Mod_G^{lfin}(\mathcal{O})$ closed under subquotients and arbitrary direct sums in $Mod_G^{lfin}(\mathcal{O})$. 4. Let $\mathcal{C}(\mathcal{O})$ be a full subcategory of $Mod_G^{proaug}(\mathcal{O})$ that is equivalent to the dual of $Mod_G^?(\mathcal{O})$ via Pontryagin duality. Note that there is an anti-equivalence of categories between $Mod_G^{sm}(\mathcal{O})$ and $Mod_G^{proaug}(\mathcal{O})$. Moreover, $Mod_G^?(\mathcal{O})$ has injective envelopes, thus $\mathcal{C}(\mathcal{O})$ has projective envelopes.

For an admissible unitary *L*-Banach space representation Π of *G*, the following are equivalent:

(i) There exists an open bounded *G*-invariant lattice Θ in Π such that Θ^d is an object of $\mathcal{C}(\mathcal{O})$;

(ii) For every open bounded *G*-invariant lattice Θ in Π , Θ^d is an object of $\mathcal{C}(\mathcal{O})$.

Category of L-Banach representations

Definition

Let $Ban_G^{adm}(L)$ denote the category of admissible *L*-Banach space representations of *G*, with morphisms continous *G*-equivariant *L*-linear homomorphisms. Let $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$ denote the full subcategory of $Ban_G^{adm}(L)$ with admissible *L*-Banach space representations of *G* satisfying the conditions of Lemma 4.6.

Category of L-Banach representations

Definition

Let $Ban_G^{adm}(L)$ denote the category of admissible *L*-Banach space representations of *G*, with morphisms continous *G*-equivariant *L*-linear homomorphisms. Let $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$ denote the full subcategory of $Ban_G^{adm}(L)$ with admissible *L*-Banach space representations of *G* satisfying the conditions of Lemma 4.6.

Lemma 4.8

The subcategory $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$ is closed under subquotients in $Ban_{G}^{adm}(L)$. Further, it is abelian.

Lemma 4.9 Let \tilde{P} be a projective object in $\mathcal{C}(\mathcal{O})$, and let $\tilde{E} := End_{\mathcal{C}(\mathcal{O})}\tilde{P}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Lemma 4.9 Let \tilde{P} be a projective object in $\mathcal{C}(\mathcal{O})$, and let $\tilde{E} := End_{\mathcal{C}(\mathcal{O})}\tilde{P}$. There is an exact functor:

$$egin{array}{l} {Ban}^{adm}_{\mathcal{C}(\mathcal{O})} o RMod(ilde{E}[1/
ho]) \ \Pi \mapsto m(\Pi) := Hom_{\mathcal{C}(\mathcal{O})}(ilde{P}, \Theta^d) \otimes_{\mathcal{O}} L \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Lemma 4.9 Let \tilde{P} be a projective object in $\mathcal{C}(\mathcal{O})$, and let $\tilde{E} := End_{\mathcal{C}(\mathcal{O})}\tilde{P}$. There is an exact functor:

$${\mathcal Ban}^{adm}_{{\mathcal C}({\mathcal O})} o {\mathcal RMod}(ilde{E}[1/
ho])$$

 $\Pi\mapsto m(\Pi):= {\mathcal Hom}_{{\mathcal C}({\mathcal O})}(ilde{P}, \Theta^d)\otimes_{{\mathcal O}} L$

Corollary 4.10

For a projective object \tilde{P} in $\mathcal{C}(\mathcal{O})$ and an object Π of $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$, there exists a smallest closed *G*-invariant subspace Π_1 of Π such that $m(\Pi/\Pi_1)$ is zero.
Now, let us apply this to the particular case of $GL_2(\mathbb{Q}_p)$.

(ロ)、(型)、(E)、(E)、 E) の(()

Now, let us apply this to the particular case of $GL_2(\mathbb{Q}_p)$.

Lemma 4.11

Let $G = GL_2(\mathbb{Q}_p)$, and $\zeta : Z \to \mathcal{O}^{\times}$ be a continous character of Z, the center of G. Suppose Π is an admissible L-Banach space representation of G with central character ζ , and let Θ be an open bounded G-invariant lattice in Π . Let $Ban_{G,\zeta}^{adm}(L)$ denote the category of admissible L-Banach space representations of G on which Z acts by the character ζ . Then,

Now, let us apply this to the particular case of $GL_2(\mathbb{Q}_p)$.

Lemma 4.11

Let $G = GL_2(\mathbb{Q}_p)$, and $\zeta : Z \to \mathcal{O}^{\times}$ be a continous character of Z, the center of G. Suppose Π is an admissible L-Banach space representation of G with central character ζ , and let Θ be an open bounded G-invariant lattice in Π . Let $Ban_{G,\zeta}^{adm}(L)$ denote the category of admissible L-Banach space representations of G on which Z acts by the character ζ . Then, (i) Θ^d is an object of $\mathcal{C}(\mathcal{O})$;

Now, let us apply this to the particular case of $GL_2(\mathbb{Q}_p)$.

Lemma 4.11

Let $G = GL_2(\mathbb{Q}_p)$, and $\zeta : Z \to \mathcal{O}^{\times}$ be a continous character of Z, the center of G. Suppose Π is an admissible L-Banach space representation of G with central character ζ , and let Θ be an open bounded G-invariant lattice in Π . Let $Ban_{G,\zeta}^{adm}(L)$ denote the category of admissible L-Banach space representations of G on which Z acts by the character ζ . Then, (i) Θ^d is an object of $\mathcal{C}(\mathcal{O})$; (ii) $Ban_{\mathcal{C}(\mathcal{O})}^{adm} = Ban_{G,\zeta}^{adm}(L)$.

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $\mathcal{C}(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi := S^{\vee}$ is a smooth irreducible k-representation of G, Π is an object of $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$, and Θ is an open bounded G-invariant lattice in Π . TFAE:

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $C(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi := S^{\vee}$ is a smooth irreducible k-representation of G, Π is an object of $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$, and Θ is an open bounded G-invariant lattice in Π . TFAE:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(i) π is a subquotient of $\Theta \otimes k$;

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $C(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi := S^{\vee}$ is a smooth irreducible *k*-representation of G, Π is an object of $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$, and Θ is an open bounded *G*-invariant lattice in Π . TFAE:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(i)
$$\pi$$
 is a subquotient of $\Theta \otimes k$;

(ii) S is a subquotient of $\Theta^d \otimes k$;

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $C(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi := S^{\vee}$ is a smooth irreducible *k*-representation of G, Π is an object of $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$, and Θ is an open bounded *G*-invariant lattice in Π . TFAE:

(i)
$$\pi$$
 is a subquotient of $\Theta \otimes k$;
(ii) S is a subquotient of $\Theta^d \otimes k$;
(iii) $Hom_{\mathcal{C}(\mathcal{O})}(\tilde{P}, \Theta^d \otimes k) \neq 0$;

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $\mathcal{C}(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi := S^{\vee}$ is a smooth irreducible *k*-representation of G, Π is an object of $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$, and Θ is an open bounded *G*-invariant lattice in Π . TFAE:

(i)
$$\pi$$
 is a subquotient of $\Theta \otimes k$;
(ii) S is a subquotient of $\Theta^d \otimes k$;
(iii) $Hom_{\mathcal{C}(\mathcal{O})}(\tilde{P}, \Theta^d \otimes k) \neq 0$;
(iv) $Hom_{\mathcal{C}(\mathcal{O})}(\tilde{P}, \Theta^d) \neq 0$

Lemma 4.14 Suppose \tilde{P} , S, π and Θ are as in Lemma 4.13. Then, (i) If $Hom_{\mathcal{C}(\mathcal{O})}(\tilde{P}, \Theta^d) \neq 0$, then π is an admissible representation of G.

Lemma 4.14 Suppose \tilde{P} , S, π and Θ are as in Lemma 4.13. Then, (i) If $Hom_{\mathcal{C}(\mathcal{O})}(\tilde{P}, \Theta^d) \neq 0$, then π is an admissible representation of G.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(ii) $End_{\mathcal{C}(\mathcal{O})}(S) \cong End_G(\pi)$ is a finite field extension of k.

Lemma 4.14

Suppose \tilde{P} , S, π and Θ are as in Lemma 4.13. Then,

(i) If $Hom_{\mathcal{C}(\mathcal{O})}(\tilde{P}, \Theta^d) \neq 0$, then π is an admissible representation of G.

(ii) $End_{\mathcal{C}(\mathcal{O})}(S) \cong End_G(\pi)$ is a finite field extension of k.

Lemma 4.15

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$ with $d := \dim_k(End_{\mathcal{C}(\mathcal{O})}(S))$ finite. Let M be in $\mathcal{C}(\mathcal{O})$, such that $M_k := M \otimes k$ is of finite length in $\mathcal{C}(\mathcal{O})$. Then, $Hom_{\mathcal{C}(\mathcal{O})}(\tilde{P}, M)$ is a free \mathcal{O} -module of rank equal to the multiplicity with which Soccurs as a subquotient of M_k multiplied by d.

Let $S_1, ..., S_n$ be irreducible pairwise non-isomorphic objects of $\mathcal{C}(\mathcal{O})$ such that $End_{\mathcal{C}(\mathcal{O})}(S_i)$ is finite dimensional over k, for $1 \leq i \leq n$. Let \tilde{P} be a projective envelope of $S := \bigoplus S_i$ and let $\tilde{E} := End_{\mathcal{C}(\mathcal{O})}(\tilde{P})$. The, $\tilde{E}/rad\tilde{E} \cong \prod End_{\mathcal{C}(\mathcal{O})}(S_i)$, where rad(E) denotes the Jacobson radical of E. For $1 \leq i \leq n$, let $\pi_i := S_i^{\vee}$ be a smooth irreducible representation of G.

The End

Proposition 4.17

Let Π be an object in $Ban_{\mathcal{C}(\mathcal{O})}^{adm}$, and let Θ be an open bounded *G*-invariant lattice in Π . Then, $Hom_{\mathcal{C}(\mathcal{O})}(\tilde{P}, \Theta^d)$ is a finitely generated module over \tilde{E} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ