Banach L-representations

Talk 3 - Local p-adic Langlands program

May 2020

Banach L-representations

Talk 3 - Local p-adic Langlands program

May 2020

Sample frame title

In this talk, we will be discussing L-Banach space representations of p-adic analytic groups when p is invertible.

L-Banach space representation

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}, and residue field k.

L-Banach space representation

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}, and residue field k.

Definition

1. An L-Banach space representation Π of G is an L-Banach space
Π with an action of G by continous linear automorphisms such that the action is continous.

L-Banach space representation

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}, and residue field k.

Definition

1. An L-Banach space representation Π of G is an L-Banach space
Π with an action of G by continous linear automorphisms such that the action is continous.
2. A Banach space is called unitary if there exists a G-invariant norm defining the topology on Π.

L-Banach space representation

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}, and residue field k.

Definition

1. An L-Banach space representation Π of G is an L-Banach space
Π with an action of G by continous linear automorphisms such that the action is continous.
2. A Banach space is called unitary if there exists a G-invariant norm defining the topology on Π.
The existence of such a norm is equivalent to the existence of an open bounded G-invariant \mathcal{O}-lattice Θ in Π.

L-Banach space representation

We assume for the rest of this talk that G be a p-adic analytic group, L a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}, and residue field k.

Definition

1. An L-Banach space representation Π of G is an L-Banach space
Π with an action of G by continous linear automorphisms such that the action is continous.
2. A Banach space is called unitary if there exists a G-invariant norm defining the topology on Π.
The existence of such a norm is equivalent to the existence of an open bounded G-invariant \mathcal{O}-lattice Θ in Π.

Admissible representations

Definition
A unitary L-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of G.

Admissible representations

Definition
A unitary L-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of G.
This is equivalent to saying that for every open subgroup H of G, $\left(\Theta \otimes_{\mathcal{O}} k\right)^{H}$ is finite dimensional.

Admissible representations

Definition

A unitary L-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of G.
This is equivalent to saying that for every open subgroup H of G, $(\Theta \otimes \mathcal{O} k)^{H}$ is finite dimensional.
Theorem
Suppose G has an open pro- p subgroup P. A representation $\pi \in \operatorname{Rep}_{G}$ is admissible if and only if π^{P} is finite dimensional.

Admissible representations

Definition

A unitary L-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of G.
This is equivalent to saying that for every open subgroup H of G, $(\Theta \otimes \mathcal{O} k)^{H}$ is finite dimensional.
Theorem
Suppose G has an open pro- p subgroup P. A representation $\pi \in R e p_{G}$ is admissible if and only if π^{P} is finite dimensional. Hence, it is enough to check the admissibility condition for a single pro-p subgroup of G.

Admissible representations

Definition

A unitary L-Banach space representation is admissible if $\Theta \otimes_{\mathcal{O}} k$ is an admissible smooth representation of G.
This is equivalent to saying that for every open subgroup H of G, $(\Theta \otimes \mathcal{O} k)^{H}$ is finite dimensional.
Theorem
Suppose G has an open pro- p subgroup P. A representation $\pi \in R e p_{G}$ is admissible if and only if π^{P} is finite dimensional. Hence, it is enough to check the admissibility condition for a single pro-p subgroup of G.

Irreducible representations

The definition of admissibility does not depend on Θ. By [], it is equivalent to showing that $\Theta^{d}:=\operatorname{Hom}_{\mathcal{O}}(\Theta, \mathcal{O})$ is a finitely generated module over $\mathcal{O}[[H]]$, for any pro- p subgroup H of G.

Irreducible representations

The definition of admissibility does not depend on Θ. By [], it is equivalent to showing that $\Theta^{d}:=\operatorname{Hom}_{\mathcal{O}}(\Theta, \mathcal{O})$ is a finitely generated module over $\mathcal{O}[[H]]$, for any pro- p subgroup H of G.
Definition

1. An L-Banach space representation Π is irreducible if it does not contain a proper closed G-invariant subspace.

Irreducible representations

The definition of admissibility does not depend on Θ. By [], it is equivalent to showing that $\Theta^{d}:=\operatorname{Hom}_{\mathcal{O}}(\Theta, \mathcal{O})$ is a finitely generated module over $\mathcal{O}[[H]]$, for any pro- p subgroup H of G.

Definition

1. An L-Banach space representation Π is irreducible if it does not contain a proper closed G-invariant subspace.
2. An L-Banach space representation Π is absolutely irreducible if
$\Pi \otimes_{L} L^{\prime}$ is irreducible for every finite extension L^{\prime} of L.

Irreducible representations

The definition of admissibility does not depend on Θ. By [], it is equivalent to showing that $\Theta^{d}:=\operatorname{Hom}_{\mathcal{O}}(\Theta, \mathcal{O})$ is a finitely generated module over $\mathcal{O}[[H]]$, for any pro- p subgroup H of G.

Definition

1. An L-Banach space representation Π is irreducible if it does not contain a proper closed G-invariant subspace.
2. An L-Banach space representation Π is absolutely irreducible if
$\Pi \otimes_{L} L^{\prime}$ is irreducible for every finite extension L^{\prime} of L.

Lemma 4.1
Let Π be an absolutely irreducible and admissible unitary L-Banach space representation of G, and let $\phi \in \operatorname{End}_{L[G]}^{c o n t}(\Pi)$. If the algebra $L[\phi]$ is finite dimensional over L, then $\phi \in L$.

Lemma 4.1
Let Π be an absolutely irreducible and admissible unitary L-Banach space representation of G, and let $\phi \in \operatorname{End}_{L[G]}^{c o n t}(\Pi)$. If the algebra $L[\phi]$ is finite dimensional over L, then $\phi \in L$.

Lemma 4.2
Let Π be an irreducible admissible unitary L-Banach space representation of G. If $E n d_{L[G]}^{\text {cont }}(\Pi)=L$, then Π is absolutely irreducible.

Lemma 4.1
Let Π be an absolutely irreducible and admissible unitary L-Banach space representation of G, and let $\phi \in \operatorname{End}_{L[G]}^{c o n t}(\Pi)$. If the algebra $L[\phi]$ is finite dimensional over L, then $\phi \in L$.

Lemma 4.2
Let Π be an irreducible admissible unitary L-Banach space representation of G. If $E n d_{L[G]}^{\text {cont }}(\Pi)=L$, then Π is absolutely irreducible.

Lemma 4.3
Let Π be a unitary L-Banach space representation of G, let Θ and三 be open bounded G-invariant lattices in Π, and let π be an irreducible smooth k-representation of G. Then π is a subquotient of $\Theta \otimes_{\mathcal{O}} k$ if and only if it is a subquotient of $\equiv \otimes_{\mathcal{O}} k$. Moreover, if $\Theta \otimes_{\mathcal{O}} k$ is a G-representation of finite length, then so is $\equiv \otimes_{\mathcal{O}} k$, and their semi simplifications are isomorphic.

Lemma 4.3

Let Π be a unitary L-Banach space representation of G, let Θ and三 be open bounded G-invariant lattices in Π, and let π be an irreducible smooth k-representation of G. Then π is a subquotient of $\Theta \otimes_{\mathcal{O}} k$ if and only if it is a subquotient of $\equiv \otimes_{\mathcal{O}} k$. Moreover, if $\Theta \otimes_{\mathcal{O}} k$ is a G-representation of finite length, then so is $\overline{Q_{\mathcal{O}} k}$, and their semi simplifications are isomorphic.
For a unitary L-Banach space representation Π of G, with Θ an open bounded G-invariant lattice in Π, its Schikhof dual is denoted by

$$
\Theta^{d}:=\operatorname{Hom}_{\mathcal{O}}(\Theta, \mathcal{O})
$$

equipped with the topology of pointwise convergence. If $\Theta \otimes_{\mathcal{O}} k$ is a G-representation of finite length, then we denote its semi-simplification (which is independent of Θ, by the above Lemma) by

$$
\bar{\Pi}:=\left(\Theta \otimes_{\mathcal{O}} k\right)^{s s}
$$

For a compact open subgroup H of G, let $\operatorname{Mod}_{G}^{\text {proaug }}(\mathcal{O})$ denote the category of profinite $\mathcal{O}[[H]]$-modules with an action of $\mathcal{O}[G]$ such that the two actions are the same when restricted to $\mathcal{O}[H]$.

For a compact open subgroup H of G, let $\operatorname{Mod}_{G}^{\text {proaug }}(\mathcal{O})$ denote the category of profinite $\mathcal{O}[[H]]$-modules with an action of $\mathcal{O}[G]$ such that the two actions are the same when restricted to $\mathcal{O}[H]$.

Lemma 4.4
Θ^{d} is an object of $\operatorname{Mod}_{G}^{\text {proaug }}(\mathcal{O})$.

For a compact open subgroup H of G, let $\operatorname{Mod}_{G}^{\text {proaug }}(\mathcal{O})$ denote the category of profinite $\mathcal{O}[[H]]$-modules with an action of $\mathcal{O}[G]$ such that the two actions are the same when restricted to $\mathcal{O}[H]$.
Lemma 4.4
Θ^{d} is an object of $\operatorname{Mod}_{G}^{\text {proaug }}(\mathcal{O})$.
Lemma 4.5
Suppose Π is irreducible and admissible. Let $\phi: M \rightarrow \Theta^{d}$ be a non-zero morphism in $\operatorname{Mod}_{G}^{\text {proaug }}(\mathcal{O})$. Then, there exists an open bounded G-invariant lattice \equiv in Π such that $\Xi^{d}=\phi(M)$.

Definitions

1. Let $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O}-torsion modules.

Definitions

1. Let $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O}-torsion modules.
2. Let $\operatorname{Mod}_{G}^{l f i n}(\mathcal{O})$ be the full subcategory of $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ consisting of locally finite representations.

Definitions

1. Let $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O}-torsion modules.
2. Let $\operatorname{Mod}_{G}^{l f i n}(\mathcal{O})$ be the full subcategory of $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ consisting of locally finite representations.
3. Let $\operatorname{Mod}_{G}^{?}(\mathcal{O})$ be a full subcategory of $\operatorname{Mod}_{G}^{1 f i n}(\mathcal{O})$ closed under subquotients and arbitrary direct sums in $\operatorname{Mod}_{G}^{\text {lfin }}(\mathcal{O})$.

Definitions

1. Let $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O}-torsion modules.
2. Let $\operatorname{Mod}_{G}^{1 f i n}(\mathcal{O})$ be the full subcategory of $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ consisting of locally finite representations.
3. Let $\operatorname{Mod}_{G}^{?}(\mathcal{O})$ be a full subcategory of $\operatorname{Mod}_{G}^{l f i n}(\mathcal{O})$ closed under subquotients and arbitrary direct sums in $\operatorname{Mod}_{G}^{l f i n}(\mathcal{O})$. 4. Let $\mathcal{C}(\mathcal{O})$ be a full subcategory of $\operatorname{Mod}_{G}^{\text {proaug }}(\mathcal{O})$ that is equivalent to the dual of $\operatorname{Mod}_{G}^{?}(\mathcal{O})$ via Pontryagin duality.

Definitions

1. Let $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ be the category of smooth representations of G on \mathcal{O}-torsion modules.
2. Let $\operatorname{Mod}_{G}^{l f i n}(\mathcal{O})$ be the full subcategory of $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ consisting of locally finite representations.
3. Let $\operatorname{Mod}_{G}^{?}(\mathcal{O})$ be a full subcategory of $\operatorname{Mod}_{G}^{1 f i n}(\mathcal{O})$ closed under subquotients and arbitrary direct sums in $\operatorname{Mod}_{G}^{\text {ffin }}(\mathcal{O})$. 4. Let $\mathcal{C}(\mathcal{O})$ be a full subcategory of $\operatorname{Mod}_{G}^{\text {proaug }}(\mathcal{O})$ that is equivalent to the dual of $\operatorname{Mod}_{G}^{?}(\mathcal{O})$ via Pontryagin duality. Note that there is an anti-equivalence of categories between $\operatorname{Mod}_{G}^{s m}(\mathcal{O})$ and $\operatorname{Mod}_{G}^{\text {proaug }}(\mathcal{O})$. Moreover, $\operatorname{Mod}_{G}^{?}(\mathcal{O})$ has injective envelopes, thus $\mathcal{C}(\mathcal{O})$ has projective envelopes.

Lemma 4.6
For an admissible unitary L-Banach space representation Π of G, the following are equivalent:
(i) There exists an open bounded G-invariant lattice Θ in Π such that Θ^{d} is an object of $\mathcal{C}(\mathcal{O})$;
(ii) For every open bounded G-invariant lattice Θ in Π, Θ^{d} is an object of $\mathcal{C}(\mathcal{O})$.

Category of L-Banach representations

Definition

Let $B a n_{G}^{\text {adm }}(L)$ denote the category of admissible L-Banach space representations of G, with morphisms continous G-equivariant L-linear homomorphisms. Let $B a n_{\mathcal{C}(\mathcal{O})}^{\text {adm }}$ denote the full subcategory of $B a n_{G}^{\text {adm }}(L)$ with admissible L-Banach space representations of G satisfying the conditions of Lemma 4.6.

Category of L-Banach representations

Definition

Let $B a n_{G}^{\text {adm }}(L)$ denote the category of admissible L-Banach space representations of G, with morphisms continous G-equivariant L-linear homomorphisms. Let $B a n_{\mathcal{C}(\mathcal{O})}^{\text {adm }}$ denote the full subcategory of $B a n_{G}^{\text {adm }}(L)$ with admissible L-Banach space representations of G satisfying the conditions of Lemma 4.6.

Lemma 4.8
The subcategory $B a n_{\mathcal{C}(\mathcal{O})}^{\text {adm }}$ is closed under subquotients in $B a n_{G}^{\text {adm }}(L)$. Further, it is abelian.

Lemma 4.9
Let \tilde{P} be a projective object in $\mathcal{C}(\mathcal{O})$, and let $\tilde{E}:=\operatorname{End}_{\mathcal{C}(\mathcal{O})} \tilde{P}$.

Lemma 4.9
Let \tilde{P} be a projective object in $\mathcal{C}(\mathcal{O})$, and let $\tilde{E}:=\operatorname{End}_{\mathcal{C}(\mathcal{O})} \tilde{P}$. There is an exact functor:

$$
\begin{aligned}
& \operatorname{Ban}_{\mathcal{C}(\mathcal{O})}^{\text {adm }} \rightarrow R \operatorname{Mod}(\tilde{E}[1 / p]) \\
& \Pi \mapsto m(\Pi):=\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}\left(\tilde{P}, \Theta^{d}\right) \otimes_{\mathcal{O}} L
\end{aligned}
$$

Lemma 4.9
Let \tilde{P} be a projective object in $\mathcal{C}(\mathcal{O})$, and let $\tilde{E}:=\operatorname{End}_{\mathcal{C}(\mathcal{O})} \tilde{P}$. There is an exact functor:

$$
\begin{aligned}
& \operatorname{Ban}_{\mathcal{C}(\mathcal{O})}^{\operatorname{adm}} \rightarrow R \operatorname{Mod}(\tilde{E}[1 / p]) \\
& \Pi \mapsto m(\Pi):=\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}\left(\tilde{P}, \Theta^{d}\right) \otimes_{\mathcal{O}} L
\end{aligned}
$$

Corollary 4.10

For a projective object \tilde{P} in $\mathcal{C}(\mathcal{O})$ and an object Π of $\operatorname{Ban}_{\mathcal{C}(\mathcal{O})}^{\text {adm }}$, there exists a smallest closed G-invariant subspace Π_{1} of Π such that $m\left(\Pi / \Pi_{1}\right)$ is zero.

The case $G L_{2}\left(\mathbb{Q}_{p}\right)$

Now, let us apply this to the particular case of $G L_{2}\left(\mathbb{Q}_{p}\right)$.

The case $G L_{2}\left(\mathbb{Q}_{p}\right)$

Now, let us apply this to the particular case of $G L_{2}\left(\mathbb{Q}_{p}\right)$.
Lemma 4.11
Let $G=G L_{2}\left(\mathbb{Q}_{p}\right)$, and $\zeta: Z \rightarrow \mathcal{O}^{\times}$be a continous character of Z, the center of G. Suppose Π is an admissible L-Banach space representation of G with central character ζ, and let Θ be an open bounded G-invariant lattice in Π. Let $\operatorname{Ban}_{G, \zeta}^{a d m}(L)$ denote the category of admissible L-Banach space representations of G on which Z acts by the character ζ. Then,

The case $G L_{2}\left(\mathbb{Q}_{p}\right)$

Now, let us apply this to the particular case of $G L_{2}\left(\mathbb{Q}_{p}\right)$.
Lemma 4.11
Let $G=G L_{2}\left(\mathbb{Q}_{p}\right)$, and $\zeta: Z \rightarrow \mathcal{O}^{\times}$be a continous character of Z, the center of G. Suppose Π is an admissible L-Banach space representation of G with central character ζ, and let Θ be an open bounded G-invariant lattice in Π. Let $\operatorname{Ban}_{G, \zeta}^{a d m}(L)$ denote the category of admissible L-Banach space representations of G on which Z acts by the character ζ. Then,
(i) Θ^{d} is an object of $\mathcal{C}(\mathcal{O})$;

The case $G L_{2}\left(\mathbb{Q}_{p}\right)$

Now, let us apply this to the particular case of $G L_{2}\left(\mathbb{Q}_{p}\right)$.
Lemma 4.11
Let $G=G L_{2}\left(\mathbb{Q}_{p}\right)$, and $\zeta: Z \rightarrow \mathcal{O}^{\times}$be a continous character of Z, the center of G. Suppose Π is an admissible L-Banach space representation of G with central character ζ, and let Θ be an open bounded G-invariant lattice in Π. Let $\operatorname{Ban}_{G, \zeta}^{\mathrm{adm}}(L)$ denote the category of admissible L-Banach space representations of G on which Z acts by the character ζ. Then,
(i) Θ^{d} is an object of $\mathcal{C}(\mathcal{O})$;
(ii) $\operatorname{Ban}_{\mathcal{C}(\mathcal{O})}^{\text {adm }}=\operatorname{Ban}_{G, \zeta}^{a d m}(L)$.

Projective envelopes

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $\mathcal{C}(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi:=S^{\vee}$ is a smooth irreducible k-representation of G, Π is an object of $B a n_{\mathcal{C}(\mathcal{O})}^{\text {adm }}$, and Θ is an open bounded G-invariant lattice in $П$. TFAE:

Projective envelopes

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $\mathcal{C}(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi:=S^{\vee}$ is a smooth irreducible k-representation of G, Π is an object of $\operatorname{Ban}_{\mathcal{C}(\mathcal{O})}^{a d m}$, and Θ is an open bounded G-invariant lattice in $П$. TFAE:
(i) π is a subquotient of $\Theta \otimes k$;

Projective envelopes

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $\mathcal{C}(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi:=S^{\vee}$ is a smooth irreducible k-representation of G, Π is an object of $\operatorname{Ban}_{\mathcal{C}(\mathcal{O})}^{a d m}$, and Θ is an open bounded G-invariant lattice in $П$. TFAE:
(i) π is a subquotient of $\Theta \otimes k$;
(ii) S is a subquotient of $\Theta^{d} \otimes k$;

Projective envelopes

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $\mathcal{C}(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi:=S^{\vee}$ is a smooth irreducible k-representation of G, Π is an object of $\operatorname{Ban}_{\mathcal{C}(\mathcal{O})}^{a d m}$, and Θ is an open bounded G-invariant lattice in $П$. TFAE:
(i) π is a subquotient of $\Theta \otimes k$;
(ii) S is a subquotient of $\Theta^{d} \otimes k$;
(iii) $\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}\left(\tilde{P}, \Theta^{d} \otimes k\right) \neq 0$;

Projective envelopes

Let us now try to understand the endomorphism rings \tilde{E} of the projective envelopes \tilde{P} in $\mathcal{C}(\mathcal{O})$.

Lemma 4.13

Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$. Suppose $\pi:=S^{\vee}$ is a smooth irreducible k-representation of G, Π is an object of $\operatorname{Ban}_{\mathcal{C}(\mathcal{O})}^{\text {adm }}$, and Θ is an open bounded G-invariant lattice in $П$. TFAE:
(i) π is a subquotient of $\Theta \otimes k$;
(ii) S is a subquotient of $\Theta^{d} \otimes k$;
(iii) $\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}\left(\tilde{P}, \Theta^{d} \otimes k\right) \neq 0$;
(iv) $\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}\left(\tilde{P}, \Theta^{d}\right) \neq 0$

Lemma 4.14

Suppose \tilde{P}, S, π and Θ are as in Lemma 4.13. Then, (i) If $\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}\left(\tilde{P}, \Theta^{d}\right) \neq 0$, then π is an admissible representation of G.

Lemma 4.14

Suppose \tilde{P}, S, π and Θ are as in Lemma 4.13. Then,
(i) If $\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}\left(\tilde{P}, \Theta^{d}\right) \neq 0$, then π is an admissible representation of G.
(ii) $\operatorname{End}_{\mathcal{C}(\mathcal{O})}(S) \cong \operatorname{End}_{G}(\pi)$ is a finite field extension of k.

Lemma 4.14
Suppose \tilde{P}, S, π and Θ are as in Lemma 4.13. Then,
(i) If $\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}\left(\tilde{P}, \Theta^{d}\right) \neq 0$, then π is an admissible representation of G.
(ii) $\operatorname{End}_{\mathcal{C}(\mathcal{O})}(S) \cong \operatorname{End}_{G}(\pi)$ is a finite field extension of k.

Lemma 4.15
Let \tilde{P} be a projective envelope of an irreducible object S in $\mathcal{C}(\mathcal{O})$ with $d:=\operatorname{dim}_{k}\left(\operatorname{End}_{\mathcal{C}(\mathcal{O})}(S)\right)$ finite. Let M be in $\mathcal{C}(\mathcal{O})$, such that $M_{k}:=M \otimes k$ is of finite length in $\mathcal{C}(\mathcal{O})$. Then, $\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}(\tilde{P}, M)$ is a free \mathcal{O}-module of rank equal to the multiplicity with which S occurs as a subquotient of M_{k} multiplied by d.

Let S_{1}, \ldots, S_{n} be irreducible pairwise non-isomorphic objects of $\mathcal{C}(\mathcal{O})$ such that $\operatorname{End}_{\mathcal{C}(\mathcal{O})}\left(S_{i}\right)$ is finite dimensional over k, for $1 \leq i \leq n$. Let \tilde{P} be a projective envelope of $S:=\bigoplus S_{i}$ and let $\tilde{E}:=\operatorname{End}_{\mathcal{C}(\mathcal{O})}(\tilde{P})$. The, $\tilde{E} / \operatorname{rad} \tilde{E} \cong \prod_{E n d}^{\mathcal{C}(\mathcal{O})}\left(S_{i}\right)$, where $\operatorname{rad}(E)$ denotes the Jacobson radical of E. For $1 \leq i \leq n$, let $\pi_{i}:=S_{i}^{\vee}$ be a smooth irreducible representation of G.

The End

Proposition 4.17
Let Π be an object in $B a n_{\mathcal{C}(\mathcal{O})}^{\text {adm }}$, and let Θ be an open bounded G-invariant lattice in Π. Then, $\operatorname{Hom}_{\mathcal{C}(\mathcal{O})}\left(\tilde{P}, \Theta^{d}\right)$ is a finitely generated module over \tilde{E}.

