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Sample frame title

In this talk, we will be discussing L-Banach space representations
of p-adic analytic groups when p is invertible.
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Let N be a unitary L-Banach space representation of G, let © and
= be open bounded G-invariant lattices in I1, and let 7 be an
irreducible smooth k-representation of G. Then 7 is a subquotient
of © ®p k if and only if it is a subquotient of = ®» k. Moreover, if
© ®p k is a G-representation of finite length, then so is = ®¢ k,
and their semi simplifications are isomorphic.

For a unitary L-Banach space representation I1 of G, with © an
open bounded G-invariant lattice in 1, its Schikhof dual is denoted
by

07 := Homy(©, 0)

equipped with the topology of pointwise convergence. If © ®p k is
a G-representation of finite length, then we denote its
semi-simplification (which is independent of ©, by the above

Lemma) by _
M:= (0 ®e k)*
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the category of profinite O[[H]]-modules with an action of O[G]
such that the two actions are the same when restricted to O[H].

Lemma 4.4
©9 is an object of Mod?**“*€(O).

Lemma 4.5

Suppose [ is irreducible and admissible. Let ¢ : M — ©9 be a
non-zero morphism in Mod2 °**¢(O). Then, there exists an open
bounded G-invariant lattice = in 1 such that =9 = ¢(M).
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1. Let Modg"(O) be the category of smooth representations of G
on O-torsion modules.

2. Let Mod/"(O) be the full subcategory of Modi™(O) consisting
of locally finite representations.

3. Let Mod}(O) be a full subcategory of Mod/i"(©) closed under
subquotients and arbitrary direct sums in Mod/f"(0).

4. Let C(O) be a full subcategory of ModZ°°*4(Q) that is
equivalent to the dual of Mod}(O) via Pontryagin duality.

Note that there is an anti-equivalence of categories between
ModZ™(O) and Mod2°**€(0O). Moreover, Mod}(O) has injective
envelopes, thus C(Q) has projective envelopes.



Lemma 4.6
For an admissible unitary L-Banach space representation I1 of G,

the following are equivalent:

(i) There exists an open bounded G-invariant lattice © in I such
that ©7 is an object of C(O);

(i) For every open bounded G-invariant lattice © in I, ©¢ is an

object of C(O).
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Category of L-Banach representations

Definition

Let Banacdm(L) denote the category of admissible L-Banach space
representations of G, with morphisms continous G-equivariant
L-linear homomorphisms. Let Ban‘c"(’(’g) denote the full subcategory
of Ban2¥™(L) with admissible L-Banach space representations of G
satisfying the conditions of Lemma 4.6.

Lemma 4.8
The subcategory Bang‘zg) is closed under subquotients in

Ban39™(L). Further, it is abelian.
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There is an exact functor:

Bang‘(jg) — RMod(E[1/p])

M — m(MN) := Home(o)(P,©%) @0 L

Corollary 4.10

For a projective object P in C(©) and an object I of Bang‘gg),
there exists a smallest closed G-invariant subspace Iy of I1 such
that m(MN/My) is zero.
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Lemma 4.11

Let G = GL2(Qp), and ¢ : Z — O be a continous character of Z,
the center of G. Suppose I1 is an admissible L-Banach space
representation of G with central character {, and let © be an open
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category of admissible L-Banach space representations of G on
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(ii) Bang{py = BanZT(L).
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Lemma 4.14

Suppose P, S, m and © are as in Lemma 4.13. Then,

(i) If Home(o)(P,©9) # 0, then  is an admissible representation
of G.

(ii) Ende(0)(S) = Endg () is a finite field extension of k.

Lemma 4.15
Let P be a projective envelope of an irreducible object S in C(O)

with d := dimy(Endg(0)(S)) finite. Let M be in C(O), such that
My := M & k is of finite length in C(O). Then, HomC(O)(IS, M) is
a free O-module of rank equal to the multiplicity with which S
occurs as a subquotient of M, multiplied by d.



Let S1,..., S, be irreducible pairwise non-isomorphic objects of
C(O) such that End()(S;) is finite dimensional over k, for

1< i< n. Let P be a projective envelope of S := P S; and let
E := Endcoy(P). The, E/radE =[] Ende(0)(S:), where rad(E)
denotes the Jacobson radical of E. For 1 < i < n, let 7; ;= 5,-v be
a smooth irreducible representation of G.



The End

Proposition 4.17
Let I1 be an object in Bang‘(fg), and let © be an open bounded

G-invariant lattice in 1. Then, Homc(@)(f’, 09) is a finitely

generated module over E.



