Mod *p* and integral *p*-adic representations of $GL_n(\mathbb{Q}_p)$

Abigail Burton

Most of this talk is taken directly from *Ordinary Parts of Admissible Representations of p-adic Reductive Groups I: Definition and First Properties* by Matthew Emerton as well as Ashwin Iyengar's notes and James Newton's LTCC course on Representations of *p*-adic groups.

1 Pro-*p* **groups**

(1.1) **Definition** (Profinite groups). For us a *profinite group* (resp. a pro-p group) is a compact Hausdorff topological group with a fundamental system of neighbourhoods consisting of normal subgroups of finite index (resp. index p) (the *profinite topology*).

A *locally profinite group* is a Hausdorff topological group such that every neighbourhood of the identity is contained in an open compact subgroup, in particular, there is a fundamental system of neighbourhoods of compact open subgroups. A locally profinite group is profinite iff it is compact.

(1.2) Definition (Profinite topology). The *profinite topology* on a group is a topology on the underlying set of the group defined in the following equivalent ways:

- It has as a basis of open subsets all left (equiv. right) cosets of subgroups of finite index.
- It has as a basis of opens subsets all cosets of normal subgroups of finite index.

Under this, any group becomes a topological group.

(1.3) Examples. We have the following examples of pro-*p* groups:

- $\mathbb{Z}_p = \lim_{n \to \infty} \mathbb{Z}/p^n \mathbb{Z}.$
- $\operatorname{GL}_n(\mathbb{Z}_p)$ has an open subgroup $U = I + pM_n(\mathbb{Z}_p)$ which is a pro-*p* group. Further, each $K_r = 1 + p^r M_n(\mathbb{Z}_p)$ is pro-p $(K(r)/K(r+1) \cong M_n(\mathbb{F}_p)$ under $1 + p^s A \mapsto \overline{A}$).
- A pro-*p* group *G* is a *p*-adic analytic group (group with the structure of an analytic manifold over \mathbb{Q}_p such that group multiplication and inversion are analytic functions) iff it is of finite rank (r > 0 such that any closed subgroup has a topological generating set with no more than *r* elements). This also implies that a pro-*p* group is *p*-adic analytic iff it is isomorphic to a closed subgroup of $\operatorname{GL}_n(\mathbb{Z}_p)$ for some *n*.

(1.4) Example. $GL_n(\mathbb{Q}_p)$ is a topological group with a unique maximal compact $K = GL_n(\mathbb{Z}_p)$ (up to conjugation). Inside K, we have a filtration $K(r) = 1 + p^r \mathcal{M}_n(\mathbb{Z}_p) \supset K(r+1) \supset \cdots$ which form a fundamental system of neighbourhoods of $1 \in GL_n(\mathbb{Q}_p)$ so $GL_n(\mathbb{Q}_p)$ is locally profinite. In particular, it is Hausdorff, locally compact and totally disconnected.

2 Basic structure of $GL_2(\mathbb{Q}_p)$

In this section let $G = GL_n(\mathbb{Q}_p)$.

(2.1) Definition (Important subgroups).

- The *Borel* $B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ upper triangular matrices in *G*.
- The *torus* $T = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$ diagonal matrices in *B*.
- The *unipotent radical* $U = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$ upper triangular matrices with 1's on the diagonal in *B*.
- If $G = \operatorname{GL}_n$, $n = \sum_{i=1}^r n_i$, then $P \cong \begin{pmatrix} \operatorname{GL}_{n_1} & * \\ & \ddots & \\ 0 & \operatorname{GL}_{n_r} \end{pmatrix}$ denotes the *standard parabolic* subgroup of *G* with *r* blocks of size n_1, \ldots, n_r (so the Borel is $B = P_{1,\ldots,1}$).

subgroup of G with r blocks of size n_1, \ldots, n_r (so the borer is D =

- Note $B \cong T \ltimes U$ (a case of Levi decomposition).
- Let \overline{P} denote the opposite parabolic (just the transpose for GL_n) and let \overline{N} be its unipotent radical.
- Let $\Lambda = \operatorname{diag}(p^{\mathbb{Z}}, \dots, p^{\mathbb{Z}})$ and let $\Lambda^+ = \{\operatorname{diag}(p^{a_1}, \dots, p^{a_n}) | a_1 \ge \dots \ge a_n\}$. Then Λ runs over cocharacters of T (homomorphisms $\mathbb{G}_m \to T$).

(2.2) Proposition (Levi Decomposition). If $P \cong \begin{pmatrix} GL_{n_1} & * \\ & \ddots & \\ 0 & & GL_{n_r} \end{pmatrix}$ is the standard parabolic,

then we can define the *standard Levi* as the corresponding Levi $M \cong$

$$\begin{array}{ccc} \operatorname{SL}_{n_1} & 0 \\ & \ddots & \\ 0 & \operatorname{GL}_{n_r} \end{array} \end{array} \cong$$

$$\begin{array}{ccc} 0 & \operatorname{GL}_{n_r} \end{array} \end{array}$$

 $\prod_i \operatorname{GL}_{n_i}$ (block diagonal) and let *U* denote the unipotent radical $N \cong \begin{pmatrix} \operatorname{id}_n \\ & & \\ & & \end{pmatrix}$

Then $P = MN = M \ltimes N$ ($N \triangleleft P$, $M \cong P/N$).

(2.3) **Proposition** (Iwasawa Decomposition). For any *P* standard parabolic, G = PK.

(2.4) **Proposition** (Cartan Decomposition). $G = K\Lambda^+K = \coprod_{\lambda \in \Lambda^+} K\lambda K$. This is essentially stating that each element has a Smith normal form.

(2.5) **Remark.** This also implies that $GL_n(\mathbb{Q}_p)/K$ is countable as $K\lambda K = \coprod_g g\lambda K$ where g are finitely many coset representatives for $K/K \cap \lambda K\lambda^{-1}$ (noting that $K \cap \lambda K\lambda^{-1}$ is compact open in K so $K/K \cap \lambda K\lambda^{-1}$ is finite) and a countable union of finite sets is countable.

(2.6) Proposition (Bruhat Decomposition). $GL_n(\mathbb{Q}_p) = BWB$ where $W = N_{GL_n}(T)/T \cong S_n =$ permutation matrices $\subset GL_n(\mathbb{Q}_p)$ is the Weyl group.

In the n = 2 case this gives $GL_n(\mathbb{Q}_p) = B \amalg B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} B$.

3 Augmented *G*-representations

From here on let *G* be a *p*-adic analytic group and let *A* be a complete local Noetherian \mathbb{Z}_{p} -algebra with finite residue field and maximal ideal m. Let $Mod_G(A)$ denote the category of A[G]-modules.

We wish to define various categories of *G*-representations and their relationships to eachother.

(3.1) Definition (Completed group ring). Let *H* be a compact open subgroup of *G*. We can define the *completed group ring* of *H* over *A*

$$A[[H]] := \lim_{H' \le H \text{ open}} A[H/H'].$$

We can endow the rings A[H/H'] with the m-adic topology (that is, we have a fundamental system of open neighbourhoods of 0 given by the submodules $\mathfrak{m}^n(A[H/H'])$). Then we equip

A[[H]] with the projective limit topology (the coarsest topology such that each $A[[H]] \xrightarrow{f_{H'}} A[H/H']$ is continuous (generated by $f_{H'}^{-1}(U)$ for U open)).

 $\begin{array}{l} A[H/H'] \text{ is continuous (generated by } f_{H'}^{-1}(U) \text{ for } U \text{ open})). \\ \text{Explicitly, } A[[H]] = \{\mathbf{a} = (a_{H'})_{H'} \in \prod_{H' \leq H \text{ open}} A[H/H'] \mid a_{H''} = a_{H'} \text{ in } A[H/H'] \text{ for all } H'' \leq H'\} \\ \text{so in particular } A[H] \xrightarrow{a \mapsto (a \mod H')_{H'}} A[[H]]. \end{array}$

(3.2) **Remark.** The rings A[H/H'] are profinite as each H/H' is finite (by compactness of H) and hence A[[H]] is profinite (the inverse limit of an inverse system of profinite groups with continuous transition maps is profinite). In particular, A[[H]] is a compact, topological ring.

(3.3) Fact. A[[H]] is Noetherian.

(3.4) **Proposition.** Any finitely generated A[[H]]-module admits a unique profinite topology with respect to which the A[[H]]-action becomes continuous.

Further, any A[[H]]-linear morphism of finitely generated A[[H]]-modules is continuous with respect to the profinite topologies defined above.

(induction on number of generators shows that any submodule of a finitely generated module is finite, so ker(π) is finitely generated).

As A[[H]] is profinite, $A[[H]]^s \rightarrow A[[H]]^r$ has closed image N and hence $M = A[[H]]^r/N$ is the quotient of the profinite module $A[[H]]^r$ by a closed A[[H]]-submodule and if we equip M with the induced quotient topology then it becomes a profinite module with the desired properties.

(3.5) **Definition** (Canonial topology). If M is a finitely generated A[[H]]-module, we refer to the topology given before as the *canonical topology* on M.

(3.6) Definition (Augmented representation). An *augmented representation of G over A* is $M \in Mod_G(A)$ equipped with an A[[H]]-module structure for some (equiv. any) compact open $H \leq G$ such that the two induced A[H]-actions induced by the inclusions $A[H] \subset A[[H]]$ and $A[H] \subset A[G]$ coincide.

We denote by $\operatorname{Mod}_{G}^{\operatorname{aug}}(A)$ the abelian *category of augmented G*-representations over *A* with morphism maps that are simultaneously *G*-equivariant and A[[H]]-linear for some (equiv. any *H*) compact $H \leq G$.

(3.7) **Definition** (Profinite augmented representation). If $M \in \text{Mod}_{G}^{\text{aug}}(A)$ is equipped with a profinite topology such that the A[[H]]-action on M is jointly continuous for some (equiv. any) compact open $H \leq G$ over A, then we say that M is a *profinite augmented representation of* G *over* A.

(Equivalently, the profinite topology on M admits a neighbourhood basis at the origin consisting of A[[H]]-submodules.)

We denote by $Mod_G^{pro aug}(A)$ the abelian *category of profinite augmented G-representations over* A with morphisms the continuous A-linear G-equivariant maps (A[H] is dense in A[[H]] so any such map is automatically A[[H]]-linear for any compact open $H \leq G$).

(3.8) **Remark.** The equivalence of the "some" and "any"'s come from the fact that if $H_1, H_2 \leq G$ are open, compact, then $H_1 \cap H_2$ has finite index in each of H_1 and H_2 .

(3.9) Remark. Forgetting the topology gives a functor

$$\operatorname{Mod}_{C}^{\operatorname{pro}\operatorname{aug}}(A) \xrightarrow{\operatorname{forget topology}} \operatorname{Mod}_{C}^{\operatorname{aug}}(A)$$

(3.10) **Definition** (Finitely generated augmented representations). We let $Mod_G^{fgaug}(A)$ denote the full subcategory of $Mod_G^{aug}(A)$ consisting of augmented *G*-modules that are finitely generated over A[[H]] for some (equiv. any) compact open $H \leq G$.

(3.11) **Remark.** (3.4) shows that equipping each object of $\operatorname{Mod}_{G}^{\operatorname{fg}\operatorname{aug}}(A)$ with its canonical topology means that we can lift $\operatorname{Mod}_{G}^{\operatorname{fg}\operatorname{aug}}(A) \hookrightarrow \operatorname{Mod}_{G}^{\operatorname{aug}}(A)$ to an inclusion

$$\operatorname{Mod}_{G}^{\operatorname{fg aug}}(A) \xrightarrow{\operatorname{canonical topology}} \operatorname{Mod}_{G}^{\operatorname{pro aug}}(A).$$

(3.12) **Definition** (Serre subcategory). A full subcategory D of an abelian category C is a *Serre subcategory* if for any SES in C

$$\begin{array}{l} 0 \to M \to M' \to M'' \to 0, \\ M' \in \mathcal{D} \quad \Leftrightarrow \quad M, M'' \in \mathcal{D}. \end{array}$$

In our case this just means that it is closed under taking subobjects, quotients and extensions.

(3.13) **Proposition.** The category $\operatorname{Mod}_{G}^{\operatorname{fg}\operatorname{aug}}(A)$ forms a Serre subcategory of the abelian category $\operatorname{Mod}_{G}^{\operatorname{aug}}(A)$. In particular, it itself forms an abelian category.

Proof. Closure under the formation of quotients and extensions is clear, and closure under the formation of subobjects follows from the fact that A[[H]] is Noetherian.

(3.14) Notation. Let $A_{\mathbb{Q}_p} = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} A$ and $A[[H]]_{\mathbb{Q}_p} = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} A[[H]]$.

(3.15) **Remark.** The fact that A[[H]] is Noetherian implies that $A[[H]]_{Q_n}$ is Noetherian as well.

(3.16) Definition. An *augmented representation of* G *over* A_{Q_p} is an $A_{Q_p}[G]$ -module M equipped with an $A[[H]]_{Q_p}$ -module structure for some (equiv. any) compact open $H \leq G$ such that the two $A_{Q_p}[H]$ actions induced by $A_{Q_p}[H] \subset A[[H]]_{Q_p}$ and $A_{Q_p}[H] \subset A_{Q_p}[G]$.

(3.17) Definition. We let $\operatorname{Mod}_{G}^{\operatorname{fg}\operatorname{aug}}(A_{\mathbb{Q}_{p}})$ denote the *category of augmented G*-modules over $A_{\mathbb{Q}_{p}}$ that are finitely generated over $A[[H]]_{\mathbb{Q}_{p}}$ for some (equiv. any) compact open $H \leq G$ and whose morphisms are $A_{\mathbb{Q}_{p}}[G]$ and $A[[H]]_{\mathbb{Q}_{p}}$ -linear.

(3.18) Lemma. The functor $M \mapsto \mathbb{Q}_p \otimes_{\mathbb{Z}_p} M$ induces an equivalence of categories

 $\operatorname{Mod}_{G}^{\operatorname{fg}\operatorname{aug}}(A)_{\mathbb{Q}_{p}} \xrightarrow{\sim} \operatorname{Mod}_{G}^{\operatorname{fg}\operatorname{aug}}(A_{\mathbb{Q}_{p}})$

4 Smooth *G*-representations

(4.1) **Definition** (Smooth representation). Let $V \in Mod_G(A)$. We say that a vector $v \in V$ is *smooth* if

1. v is fixed by some open subgroup of G,

2. v is annihilated by some power \mathfrak{m}^i of the maximal ideal of A.

Equivalently, $v \in V$ is smooth iff v is annihilated by an open ideal in A[[H]] for some (equiv. any) open $H \leq G$.

We let $V_{sm} = \{v \in V \mid v \text{ is smooth}\}$ and we say that $V \in Mod_G(A)$ is a *smooth representation* if $V = V_{sm}$.

We denote by $\operatorname{Mod}_{G}^{\operatorname{sm}}(A)$ the full subcategory of $\operatorname{Mod}_{G}(A)$ consisting of smooth *G*-representations. (We can equivalently let $\operatorname{Mod}_{G}^{\operatorname{sm}}(A)$ denote the full subcategory of $\operatorname{Mod}_{G}(A)$ with objects $V = \bigcup_{H \text{ open}, i > 1} V^{H}[\mathfrak{m}^{i}]$.)

(4.2) Remark. If A is Artinian, then $\mathfrak{m}^i = 0$ for sufficiently large *i*, so automatically $\mathfrak{m}^i v = 0$ for any $v \in V$ for any V an A-module. Then we can omit condition (2) and have the usual definition.

(4.3) Example. Take a character $\chi : \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$. Then the representation $\operatorname{GL}_n(\mathbb{Q}_p) \xrightarrow{\operatorname{det}} \mathbb{Q}_p^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}$ is smooth iff χ is locally constant (trivial on some open subgroup of \mathbb{Q}_p^{\times} (i.e. $\chi|_{1+p^r\mathbb{Z}_p}$ is trivial for some r)).

(4.4) Lemma. V_{sm} is an A[G]-submodule of V.

Proof. If $v_j \in V_{sm}$ are fixed by open $H_j \leq G$ and annihilated by \mathfrak{m}^{i_j} for j = 1, 2, then any *A*-linear combination of v_1 and v_2 is fixed by $H_1 \cap H_2$ and annihilated by $\mathfrak{m}^{\max(i_1,i_2)}$ and hence also lies in V_{sm} so V_{sm} is an *A*-submodule.

Further, gv_1 is fixed by $gH_1g^{-1} \leq G$ for any $g \in G$ and is annihilated by \mathfrak{m}^{i_1} , so V_{sm} is closed under the action of G.

(4.5) **Remark.** $Mod_G^{sm}(A)$ is a Serre subcategory of $Mod_G(A)$ and so in particular is an abelian category.

(4.6) Remark. There is a left-exact functor

$$\operatorname{Mod}_{G}(A) \xrightarrow{V \mapsto V_{\operatorname{sm}}} \operatorname{Mod}_{G}^{\operatorname{sm}}(A)$$

which is right adjoint to the inclusion

$$\operatorname{Mod}_G^{\operatorname{sm}}(A) \hookrightarrow \operatorname{Mod}_G(A)$$

 $i \dashv (-)_{sm}$ (Hom_{*G*}(*V*, *W*) \cong Hom_{*G*}(*V*, *W*_{sm}) for all *V*, *W* with *W* smooth).

The following is easy to prove and useful.

(4.7) Lemma. Let $V \in Mod_G(A)$ by torsion as an \mathbb{Z}_p -module (holds if A is Artinian) and let $V^* = Hom_{\mathbb{Z}_p}^{cont}(V, \mathbb{Q}_p/\mathbb{Z}_p)$ (where $\mathbb{Q}_p/\mathbb{Z}_p$ has the discrete topology and V^* has the compact open topology). The following are equivalent

- 1. V is smooth.
- 2. The *A*-action and the *G*-action on *V* are both jointly continuous (i.e. $A \times V \rightarrow V$ and $G \times V \rightarrow V$ are both continuous where $A \times V$ and $G \times V$ have the product topology and *A* as the m-adic topology) when *V* is given the discrete topology.
- 3. The *A*-action and the *G*-action on V^* are both jointly continuous when V^* is given its natural profinite topology and *A* is given the m-adic topology.
- 4. For some (equiv. any) compact open $H \le G$, the A[H]-action on V extends to an A[[H]]-action continuous when V has the discrete topology.
- 5. For some (equiv. any) compact open *H* ≤ *G*, the *H*-action on *V*^{*} extends to a continuous action of *A*[[*H*]] on *V*^{*}.
- (4.8) Remark. (4.7) implies that passing to Pontrjagin duals gives an anti-equivalence

$$\operatorname{Mod}_{G}^{\operatorname{sm}}(A) \xrightarrow{\operatorname{antr}} \operatorname{Mod}_{G}^{\operatorname{pro aug}}(A) \tag{1}$$
$$V \mapsto V^{*}.$$

(Note $V^{**} = V$.)

5 Induced representations

(5.1) Definition (Induced representation). Let $H \leq G$ be closed and let $V \in Mod_H^{sm}(A)$. Then we can define the *induced representation*

$$\operatorname{Ind}_{H}^{G}(V) := \left\{ f: G \to V \mid \begin{array}{c} f(hg) = hf(g) \ \forall h \in H, g \in G \text{ and} \\ \exists U \text{ compact open with } f(gu) = f(g) \ \forall g \end{array} \right\}$$
$$= \left\{ f: G \to V \mid f(hg) = hf(g) \ \forall h \in H, g \in G \right\}_{\operatorname{sm}}$$

with *G*-action $(\gamma \cdot f)(g) = f(g\gamma)$.

We can also define the *compact induction*

$$c-Ind_{H}^{G}(V) = \left\{ f \in Ind_{H}^{G}(V) \mid supp(f) \text{ compact} \right\},$$

a subrepresentation of $\operatorname{Ind}_{H}^{G}(V)$.

In the case that *H* is a parabolic subgroup of GL_n , and more generally if $H \setminus G$ is compact, $c - Ind_H^G = Ind_H^G$.

(5.2) **Remark** (Frobenius reciprocity). Say $V \in Mod_G^{sm}(A)$, $W \in Mod_H^{sm}(A)$. Then

- 1. $\operatorname{Hom}_{G}(V, \operatorname{Ind}_{H}^{G} V) \cong \operatorname{Hom}_{H}(V|_{H}, W)$ naturally.
- 2. If $U \leq G$ is open, then $\text{Hom}_G(c \text{Ind}_U^G W, V) \cong \text{Hom}_U(W, V|_U)$. Moreover, $c \text{Ind}_U^G$ is an exact functor.
- 3. If $G = \operatorname{GL}_n(\mathbb{Q}_p)$ and *P* is a standard parabolic, Ind_P^G is an exact functor.

(5.3) Remark. If $K \subset H \subset G$, then $\operatorname{Ind}_{H}^{G} \operatorname{Ind}_{K}^{H} \cong \operatorname{Ind}_{K}^{G}$, and similarly for c – Ind.

(5.4) Definition (Parabolic Induction). If *P* is a parabolic subgroup, we can define *parabolic induction* Ind_{*P*}:

$$\begin{array}{ccc} \operatorname{Mod}_{M}^{\operatorname{sm}}(A) & \xrightarrow{\operatorname{Ind}_{P}} & \operatorname{Mod}_{G}^{\operatorname{sm}}(A) \\ & & & \\ \operatorname{inflate} & & & \\ & & & \\ & & & \\ \operatorname{Mod}_{P}^{\operatorname{sm}}(A) \end{array}$$

where the inflation is given by taking the action as the identity on N and noting $M \cong P/N$.

(5.5) Example. Take $G = GL_2(\mathbb{Q}_p)$. Let $\chi_1, \chi_2 : \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$ be smooth so we get $\chi_1 \otimes \chi_2 : T \xrightarrow{\text{diag}(a,b) \mapsto \chi_1(a)\chi_2(b)} \mathbb{C}^{\times}$. Take $B \twoheadrightarrow T$ with kernel N. Then we can extend $\chi_1 \otimes \chi_2$ to B in the obvious way and take $\text{Ind}_B^G(\chi_1 \otimes \chi_2)$, the *principal series representation*.

6 Admissible representations

(6.1) Definition (Admissible representations). We say that $V \in Mod_G^{sm}(A)$ is *admissible* if $V^H[\mathfrak{m}^i]$ (the elements of the subspace of fixed vectors V^H of V killed off by \mathfrak{m}^i) is finitely generated over A for every open $H \leq G$ and every $i \geq 0$.

We let $\operatorname{Mod}_{G}^{\operatorname{adm}}(A)$ denote the full subcategory of $\operatorname{Mod}_{G}^{\operatorname{sm}}(A)$ consisting of admissible representations.

(6.2) **Remark.** If *A* is Artinian, then $\mathfrak{m}^i = 0$ for large *i* so $V^H[\mathfrak{m}^i] = V^H$ so this agrees with the usual definition (that V^H is finite dimensional for all $H \leq G$ open compact).

(6.3) Fact. $V \in Mod_G^{sm}(A)$ is admissible iff V^* is finitely generated as an A[[H]]-module for some (equiv. any) compact open $H \leq G$.

(6.4) Remark. (6.3) shows that the anti-equivalence (1) restricts to an anti-equivalence

$$\operatorname{Mod}_{G}^{\operatorname{adm}}(A) \xrightarrow{\operatorname{anti}} \operatorname{Mod}_{G}^{\operatorname{fg}\operatorname{aug}}(A)$$

$$V \mapsto V^{*}.$$
(2)

(6.5) **Proposition.** $Mod_G^{adm}(A)$ forms a Serre subcategory of the abelian category $Mod_G(A)$ and in particular is itself an abelian category.

Proof. This follows from the anti-equivalence (2) and (3.13).

(6.6) **Remark.** Let $V \in Mod_G(A)$ and $i \ge 0$. Then $V[\mathfrak{m}^i]$ is a successive extension of finitely many copies of $V[\mathfrak{m}]$. Therefore by (6.5), if $V \in Mod_G^{sm}(A)$ is such that $V[\mathfrak{m}] \in Mod_G^{adm}(A/\mathfrak{m})$ (equivalently if the definition for admissibility is assumed just in the case i = 1), then $V \in Mod_G^{adm}(A)$.

(6.7) Fact. If $H \setminus G$ is compact, then $\operatorname{Ind}_{H}^{G}$ preserves admissibility.

(6.8) Definition (Locally admissible representations). Let $V \in Mod_G(A)$. We say that $v \in V$ is *locally admissible* if v is smooth and if the smooth *G*-subrepresentation of *V* generated by v is admissible.

Let $V_{1.adm} = \{ v \in V \mid v \text{ locally admissible} \}.$

We say that $V \in Mod_G(A)$ is *locally admissible* if $V = V_{l.adm}$ and we let $Mod_G^{l.adm}(A)$ denote the full subcategory of $Mod_G^{sm}(A)$ consisting of locally admissible representations.

(6.9) Lemma. $V_{l.adm}$ is an A[G]-submodule of V.

(6.10) **Proposition.** $\operatorname{Mod}_{G}^{\operatorname{l.adm}}(A)$ is closed under passing to subrepresentations, quotients, and inductive limits in $\operatorname{Mod}_{G}^{\operatorname{sm}}(A)$. In particular, it is an abelian category.

Proof. $\operatorname{Mod}_{G}^{\operatorname{adm}}(A)$ is closed in $\operatorname{Mod}_{G}^{\operatorname{sm}}(A)$ under passing to subrepresentations and quotients so the same is true for $\operatorname{Mod}_{G}^{\operatorname{Ladm}}(A)$. Closure under inductive limits is also clear since local admissibility is checked elementwise.

(6.11) Remark. Any finitely generated locally admissible representation is admissible smooth. Since any representation is the inductive limit of finitely generated ones, a representation is locally admissible iff it is an inductive limit of admissible representations.

(6.12) Remark. There is a left-exact functor

$$\operatorname{Mod}_{G}(A) \xrightarrow{V \mapsto V_{\operatorname{l.adm}}} \operatorname{Mod}_{G}^{\operatorname{l.adm}}(A)$$

which is right adjoint to the inclusion

$$\operatorname{Mod}_{G}^{\operatorname{l.adm}}(A) \hookrightarrow \operatorname{Mod}_{G}(A)$$

 $i \dashv (-)_{1.adm}$.

7 Relations

Now we can summarise the relations in the following diagram:

8 Some finiteness conditions

Let Z denote the centre of G.

(8.1) **Definition** (*Z*-finite representations). Let $V \in Mod_G(A)$.

- 1. We say that *V* is *Z*-*finite* if $A[Z] / \operatorname{Ann}_{A[Z]} V$ is a finite *A*-algebra.
- 2. We say that $v \in V$ is *locally Z*-*finite* if the A[Z]-submodule of *V* generated by *v* is *Z*-finite (equivalently it is finitely generated as an *A*-module). Let $V_{Z-\text{fin}}$ denote the subset of locally *Z*-finite elements of *V*.
- 3. We say that *V* is locally *Z*-finite over *Z* if $V = V_{Z-fin}$.

(8.2) Remark. $V_{Z-\text{fin}}$ is an A[G]-submodule of V and if V_1, V_2 are (locally) Z-finite then $V_1 \oplus V_2$ is (locally) Z-finite. Further, any A[G]-invariant submodule or quotient of a (locally) Z-finite representation is again (locally) Z-finite.

(8.3) Remark. If $V \in Mod_G(A)$ is finitely generated over A[G], then V is Z-finite iff V is locally Z-finite.

(If *V* is generated by finitely many locally *Z*-finite vectors, then it is a quotient of a direct sum of finitely many *Z*-finite representations so is *Z*-finite.)

(8.4) Lemma. If $V \in Mod_G(A)$, then any locally admissible vector in V is locally Z-finite $(V_{\text{Ladm}} \subset V_{Z-\text{fin}})$.

Proof. This is just working through the definitions.

Let $v \in V$ be smooth locally admissible. Then, by smoothness, there is $H \leq G$ compact open fixing v and there is $i \geq 0$ with $\mathfrak{m}^i v = 0$.

Let *W* be the *A*[*G*]-submodule generated by *v*. Then *W* is admissible smooth and $\mathfrak{m}^i = 0$ so $W^H = W^H[\mathfrak{m}^i]$ is finitely generated over *A*. Also, W^H is *Z*-invariant $(h \cdot z \cdot w = z \cdot h \cdot w = z \cdot w)$ so $W^H / \operatorname{Ann}_{A[Z]} W^H$ is finitely generated over *A* and we are done. \Box

(8.5) Remark. The previous remark and lemma imply that if $V \in Mod_G^{adm}(A)$ is finitely generated over A[G], then it is Z-finite.

(8.6) Lemma. Let $V \in Mod_G^{sm}(A)$. Consider the following conditions:

- 1. *V* is of finite length (as an object of $Mod_G^{sm}(A)$, or equivalently of $Mod_G(A)$) (has finite composition series) and is admissible.
- 2. *V* is finitely generated as an A[G]-module and is admissible.
- 3. *V* is of finite length (as an object of $Mod_G^{sm}(A)$) and is *Z*-finite.

Then $(1) \Rightarrow (2)$ (immediate) and $(1) \Rightarrow (3)$ (previous remark).

(8.7) Conjecture. If *G* is a reductive *p*-adic group, then the three conditions in (8.6) are equivalent.

(8.8) Theorem. The previous conjecture holds in the following two cases:

- *G* is a torus.
- $G = \operatorname{GL}_2(\mathbb{Q}_p).$

(8.9) Definition. Let *Z* be the centre of *G* and $\zeta : Z \to A^{\times}$ be a continuous character. We denote by $Mod^*_{G,\zeta}(A)$ the full subcategory of $Mod^*_G(A)$ consisting of objects on which *Z* acts by ζ , that is, $zv = \zeta(z)v$ for all $z \in Z$.

(8.10) Fact. If $G = GL_2(\mathbb{Q}_p)$ or G is a torus, then

 $\operatorname{Mod}_{G,\zeta}^{\operatorname{l.fin}}(A) = \operatorname{Mod}_{G,\zeta}^{\operatorname{l.adm}}(A).$