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A CLASSIFICATION OF IRREDUCIBLE ADMISSIBLE

MOD p REPRESENTATIONS OF

p-ADIC REDUCTIVE GROUPS

N. ABE, G. HENNIART, F. HERZIG, AND M.-F. VIGNÉRAS

Abstract. Let F be a locally compact non-archimedean field, p its residue charac-
teristic, and G a connected reductive group over F . Let C an algebraically closed
field of characteristic p. We give a complete classification of irreducible admissi-
ble C-representations of G = G(F ), in terms of supercuspidal C-representations of
the Levi subgroups of G, and parabolic induction. Thus we push to their natural
conclusion the ideas of the third-named author, who treated the case G = GLm,
as further expanded by the first-named author, who treated split groups G. As in
the split case, we first get a classification in terms of supersingular representations
of Levi subgroups, and as a consequence show that supersingularity is the same as
supercuspidality.
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I. Introduction

I.1. The study of congruences between classical modular forms has met considerable
success in the past decades. When interpreted in the natural framework of automor-
phic forms and representations, such congruences naturally lead to representations
over fields of positive characteristic, rather than complex representations. In our local

The first-named author was supported by JSPS KAKENHI Grant Number 26707001.
The third-named author was partially supported by a Sloan Fellowship and an NSERC grant.
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setting, where the base field is a locally compact non-archimedean field F , this means
studying representations of G = G(F ), where G is a connected reductive group over
F , on vector spaces over a field C of positive characteristic p, which we assume alge-
braically closed. As C is fixed throughout, we usually say representation instead of
representation on a C-vector space or C-representation.

Our representations satisfy natural requirements: they are smooth, in that every
vector has open stabilizer in G (smoothness is always understood for representations
of G or its subgroups), and most of the time they are admissible: a representation of
G on a C-vector space W is admissible if it is smooth and for every open subgroup J
in G, the space W J of vectors fixed under J has finite dimension. The overall goal is
to understand irreducible admissible representations of G.

If ℓ is the residue characteristic of F , the situation depends very much on whether
ℓ is equal to p or not. Indeed, G has an open subgroup which is a pro-ℓ group, and
when ℓ 6= p such a group acts semisimply on smooth representations, whereas if ℓ = p
it acts semisimply only if it acts trivially! Here we consider only the case ℓ = p (see
e.g. [Vig1] for the case ℓ 6= p).

I.2. Thus we assume from now on that F has residue characteristic p. In this paper
we classify irreducible admissible representations of G in terms of parabolic induction
and supercuspidal representations of Levi subgroups of G. Such a classification was
obtained for G = GL2 in the pioneering work of L. Barthel and R. Livné [BL1, BL2]
– see also some recent work [Abd, Che, Ko, KX, Ly2] on situations where, mostly, G
has relative semisimple rank 1.

New ideas towards the general case were set forth by the third-named author [He1,
He2], who gave the classification for G = GLn over a p-adic field F ; his ideas were
further expanded by the first-named author [Abe] to treat the case of a split group
G, still over a p-adic field F . T. Ly extended the arguments of [He1, He2] to treat
G = GL3/D where D is a division algebra over F , allowing F to have characteristic p.
Here, using the first steps accomplished in [HV1, HV2], we treat general G and F .

I.3. To express our classification, we recall parabolic induction. If P is a parabolic
subgroup of G and τ a representation of P on a C-vector spaceW , we write IndGP τ for
the natural representation of G, by right translation, on the space IndGP W of smooth

functions f : G→W such that f(pg) = τ(p)f(g) for p in P , g in G. The functor IndGP
is exact. In fact we use IndGP τ only when τ comes via inflation from a representation

σ of the Levi quotient of P , and we write IndGP σ instead of IndGP τ . A representation
of G is said to be supercuspidal if it is irreducible, admissible, and does not appear
as a subquotient of a parabolically induced representation IndGP σ, where P is a proper
parabolic subgroup of G and σ an irreducible admissible representation of the Levi
quotient of P .1

First we construct irreducible admissible representations of G. The construction uses
the “generalized Steinberg” representations investigated by E. Große-Klönne [GK] and
the third-named author [He2] when G is split, and by T. Ly [Ly1] in general: for any
pair of parabolic subgroups Q ⊂ P in G, StPQ is the natural representation of P in

the quotient of IndPQ 1 by the sum of the subspaces IndPQ′ 1, for parabolic subgroups Q′

with Q ( Q′ ⊂ P ; the representation StPQ factors through the unipotent radical UP of

P and gives the representation St
P/UP

Q/UP
of its reductive quotient studied in [GK, Ly1],

so StPQ is irreducible and admissible (loc. cit.).

1See Section VI.1 for why we cannot drop the requirement that σ be irreducible admissible.
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Start with a parabolic subgroup P of G, with Levi quotientM , and a representation
σ of M . Then there is a largest parabolic subgroup P (σ) of G, containing P , such
that σ inflated to P extends to P (σ) (see II.7). That extension is unique, we write
it eσ; it is trivial on the unipotent radical of P (σ). It is irreducible and admissible
if σ is. We consider triples (P, σ,Q): a triple consists of a parabolic subgroup P
of G, a representation σ of the Levi quotient M of P , and a parabolic subgroup
Q of G with P ⊂ Q ⊂ P (σ); we say that the triple is supercuspidal if σ is a
supercuspidal representation ofM . To a triple (P, σ,Q) we associate the representation

I(P, σ,Q) = IndGP (σ)(
eσ ⊗ St

P (σ)
Q ).

Theorem 1. For a supercuspidal triple (P, σ,Q), I(P, σ,Q) is irreducible and admis-
sible.

Theorem 2. Let (P, σ,Q) and (P ′, σ′, Q′) be supercuspidal triples. Then I(P, σ,Q)
and I(P ′, σ′, Q′) are isomorphic if and only if there is an element g of G such that
P ′ = gPg−1, Q′ = g Qg−1 and σ′ is equivalent to p′ 7→ σ(g−1p′g).

Theorem 3. Any irreducible admissible representation of G is isomorphic to I(P, σ,Q)
for some supercuspidal triple (P, σ,Q).

Hopefully the classification expressed by these theorems will be useful in extending
the mod p local Langlands correspondence beyond GL2(Qp).

I.4. Using the classification results above, it is possible to describe the irreducible
components of IndGP σ where P is a parabolic subgroup of G and σ an irreducible
admissible representation of the Levi quotient M of P ; in particular we show that
IndGP σ has finite length and that all its irreducible subquotients are admissible and
occur with multiplicity one.

Also we have a notion of supercuspidal support: if (P, σ,Q) is a supercuspidal
triple, then π = I(P, σ,Q) occurs as a subquotient of IndGP σ and if π occurs as a

subquotient of IndGP ′ σ′ for a supercuspidal representation σ′ of (the Levi quotient of)
a parabolic subgroup P ′ of G then (P ′, σ′) is conjugate to (P, σ) in G as in Theorem
2. It is the conjugacy class of (P, σ) that we call the supercuspidal support of π.

Remark The classification and its consequences are rather simpler than for complex
representations: intertwining operators do not exist in our context; this “explains” the
multiplicity one result above, which does not hold for complex representations [Ze].
By contrast, supercuspidal mod p representations remain a complete mystery, apart
the case of GL2(Qp) [Br] and groups closely related to it [Abd, Che, Ko, KX].

The existence of a supercuspidal support for complex irreducible representations is
a classical result; for mod ℓ representations with ℓ 6= p it is unknown (even for finite
reductive groups of characteristic p outside the case of general linear groups), except for
inner forms of GLn(F ) where, as above, it is not proved directly but is a consequence
of the classification of irreducible representations.

I.5. As in [He2, Abe] our classification is not established directly using supercuspi-
dality. Rather we get a classification in terms of supersingular representations of Levi
subgroups of G – the term was first used by Barthel and Livné for G = GL2(F ) – and
deduce Theorems 1 to 3 from it. To define supersingularity, we need to make some
choices, and a priori the notion depends on these choices.

So we fix a maximal F -split torus S in G and a special point x0 in the apartment
corresponding to S in the semisimple Bruhat-Tits building of G; we let K be the
special parahoric subgroup of G corresponding to x0. We also fix a minimal parabolic
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subgroup B of G with Levi subgroup Z, the F -points of the centralizer of S, and we
write U for the unipotent radical of B.

Let V be an irreducible representation of K – it has finite dimension. If (π,W ) is an
admissible representation of G, then HomK(V,W ) is a finite-dimensional C-vector
space; by Frobenius reciprocity HomK(V,W ) is identified with HomG(ind

G
K V,W ),

where indGK denotes compact induction, so that HomK(V,W ) is a right-module over
the intertwining algebra HG(V ) = EndG(ind

G
K V ) of V in G. If HomK(V,W ) is not

zero we say that V is a weight of π; in that case the centre2 ZG(V ) of HG(V ) has
eigenvectors in HomK(V,W ), and we focus on the corresponding characters of ZG(V ),
which we call the (Hecke) eigenvalues of ZG(V ) in π.

For any parabolic subgroup P of G containing B, with Levi componentM containing
Z and unipotent radical N , the space of coinvariants VN∩K of N ∩K in V provides an
irreducible representation ofM ∩K and by [He1, He2, HV2] there is a natural injective
algebra homomorphism

SGM : HG(V ) → HM (VN∩K).

It induces a homomorphism between centres ZG(V ) → ZM (VN∩K). Both homomor-
phisms are localizations at a central element. A character χ : ZG(V ) → C is said
to be supersingular if, in the above situation, it can be extended to a character of
ZM (VN∩K) only when P = G. A supersingular representation of G is an irreducible
admissible representation (π,W ) such that for all weights V of π, all eigenvalues of
ZG(V ) in π are supersingular3.

A triple (P, σ,Q) as in I.3 is a B-triple if P contains B; it is said to be supersin-

gular if it is a B-triple and σ is a supersingular representation of the Levi quotient
of P .

Theorems 1 to 3 are consequences of the following results.

Theorem 4. For each supersingular triple (P, σ,Q), the representation I(P, σ,Q) is
irreducible and admissible. If π is an irreducible admissible representation of G, there
is a supersingular triple (P, σ,Q) such that π is isomorphic to I(P, σ,Q); moreover P
and Q are unique and σ is unique up to isomorphism.

Theorem 5. Let π be an irreducible admissible representation of G. Then π is super-
cuspidal if and only if it is supersingular.

(For G = GL2 this was discovered by Barthel and Livné.)

Note that Theorem 5 implies, in particular, that the notion of supersingularity does
not depend on the choices of S, K, B necessary for the definition – beware that in
general two choices of K will not even be conjugate under the adjoint group of G.

Remarks 1) We also show that, if π is an irreducible admissible representation of G,
and for some weight V of π there is an eigenvalue of ZG(V ) in π which is supersingular,
then π is supersingular/supercuspidal.

2) Let (P, σ,Q) be a supersingular (or supercuspidal) B-triple. Then I(P, σ,Q) is
finite dimensional if and only if P = B and Q = G.

I.6. As in [He2] and [Abe], a lot of our arguments bear on the relation between
parabolic induction in G and compact induction from K to G.

2Note that HG(V ) is commutative in many cases, for example when G is split, but not in general
[HV1].

3That is consistent with the definition in [He2, Abe]; but the reader should be aware that the
definition in [HV2] is slightly different, maybe not equivalent.



A CLASSIFICATION OF IRREDUCIBLE MOD p REPRESENTATIONS OF p-ADIC GROUPS 5

Let V be an irreducible representation of K, and let P be a parabolic subgroup of
G containing B, with Levi component M containing Z, and unipotent radical N . In
[HV2], inspired by [He1], [He2], a canonical intertwiner

I : indGK V −→ IndGP (ind
M
M∩K VN∩K)

was investigated. In fact the morphism SGM of I.5 is such that for f in indGK V and Φ
in HG(V ) we have

I(Φ(f)) = SGM (Φ)(I(f)),

where the action of SGM (Φ) on I(f) is via its natural action on indMM∩K VN∩K . Under
a suitable regularity condition of V with respect to P [HV2], cf. III.14 Theorem, I
induces an isomorphism

χ⊗ indGK V
∼

−→ IndGP (χ⊗ indMM∩K VN∩K)

for any character χ of ZG(V ) which extends to ZM (VN∩K): such an extension is
unique, we still denote it by χ; the first tensor product is over ZG(V ), the second one
over ZM (VN∩K). Here we obtain a generalization of that result, which we now proceed
to explain.

We consider an irreducible representation V of K, and a character χ : ZG(V ) → C.
There is a smallest parabolic subgroup P containing B – we write P =MN as above
– such that χ extends to a character, still written χ, of ZM (VN∩K); there is a natural
parabolic subgroup Pe, containing P , such that the representation χ⊗(indMM∩K VN∩K)

of M , inflated to P , extends to a representation of Pe – write e(χ⊗ indMM∩K VN∩K) for
that extension. Using similar notation as in I.3, we write Ie(P, χ⊗ indMM∩K VN∩K , Q)

for IndGPe
(e(χ⊗ indMM∩K VN∩K)⊗StPe

Q ) when Q is a parabolic subgroup between P and
Pe.

Theorem 6. With the previous notation, τ = χ ⊗ indGK V has a natural filtration by
subrepresentations τQ, where Q runs through parabolic subgroups of G with P ⊂ Q ⊂
Pe and τQ′ ⊂ τQ if Q′ ⊂ Q. The quotient τQ/

∑

Q′(Q
τQ′ is isomorphic to Ie(P, χ ⊗

indMM∩K VN∩K , Q).

This last theorem should be compared to the following (the proof, in Chapter V,
explains that comparison). Let π = IndGP (χ ⊗ indMM∩K VN∩K). It also has a natural
filtration by subrepresentations πQ for Q as above, but this time πQ′ ⊂ πQ if Q′ ⊃ Q,

and the quotient πQ/
∑

Q′)Q
πQ′ is isomorphic to Ie(Pe, χ⊗ indMM∩K VN∩K , Q). In partic-

ular the filtrations on τ and π give rise to the same subquotients, but in reserve order,
so to say. (We note that the representation πQ above corresponds to the representation
IQ in Chapter V.)

A striking example is when V is trivial character ofK and χ is the “trivial” character
of ZG(V ) = HG(V ): in that case P = B = ZU , Pe = G, and χ ⊗ indZZ∩K VU∩K is

the trivial character of Z. In π = IndGB 1, the trivial character of G occurs as a
subrepresentation and the Steinberg representation StGB as a quotient, whereas the

reverse is true in χ⊗ indGK 1.
Theorem 6 is new even for GLn (n > 2). A weaker version of this theorem is proved

in [Abe, Proposition 4.7] when G is split with simply connected derived subgroup and
P = B (and in [BL2] in the further special case when G = GL2). On the way, following
the ideas of [Abe], we prove the freeness of RM ⊗ZG(V ) ind

G
K V as RM -module, where

RM denotes the “supersingular quotient” of ZM (VN∩K). This may be of independent
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interest. Again this result was established for G = GL2 in [BL1], but see also the
recent paper [GK2].

I.7. To prove Theorem 4 we follow the same strategy as in [He2, Abe]. If (P, σ,Q)
is a supersingular triple, we need to prove that π = I(P, σ,Q) is irreducible; that
is done by showing that for any weight V of π and any eigenvector ϕ for ZG(V ) in
HomK(V, π) with corresponding eigenvalue χ, π is generated as a representation of
G by the image of ϕ. When V is suitably regular, that is seen as a consequence of
the isomorphism χ ⊗ indGK V ≃ IndGP (χ ⊗ indMM∩K VN∩K) recalled in I.6 above (see
III.14). We reduce to that suitably regular case by using a change of weight theorem,
which gives explicit sufficient conditions on V , V ′, and χ for having an isomorphism
χ ⊗ indGK V ≃ χ ⊗ indGK V

′. (Here V ′ is an irreducible representation of K that is
“slightly less regular” than V and such that (V ′)U∩K ≃ VU∩K .) We refer the reader to
Sections IV.2, III.23 for the precise statement and its use in the proof of Theorem 4.

The main novelty in our methods is our proof of the change of weight theorem. It is
also the hardest and most subtle part of our arguments. Previously, for split groups,
a version of this theorem was established in [He2, §6] and [Abe, §4] by computing
the composition of two intertwining operators and applying the Lusztig–Kato formula.
We do not know if this approach can be generalized. Our new proof does not involve
Kazhdan–Lusztig polynomials, but rather proceeds by embedding indGK V , indGK V

′ into

the parabolically induced representation X = IndGB(ind
Z
Z∩K ψV ) using the intertwiner

I of I.6, where ψV : Z ∩K → C× describes the action of Z ∩K on VU∩K ≃ (V ′)U∩K .
The representation indGK V contains a canonical (up to scalar) fixed vector under a

pro-p Iwahori subgroup I ⊂ K which generates indGK V as a representation of G,
and similarly for indGK V

′. Our proof then studies the action of the pro-p-Iwahori

Hecke algebra EndG(ind
G
I 1) on X I to relate the two compact inductions inside X . We

crucially rely on the description of the pro-p-Iwahori Hecke algebra recently given for
general G by the fourth-named author in [Vig4], in particular the Bernstein relations
in this algebra.

We arrive at a dichotomy in IV.1 Theorem and IV.2 Corollary, namely our change
of weight results depend on whether or not ψV is trivial on a certain subgroup of
Z ∩K. When G is split, the triviality is always guaranteed, but that is not always so
for inner forms of GLn [Ly3, Lemme 3.10.1] and even for unramified unitary groups in
3 variables. This dichotomy may explain why we did not find an easy generalization
of the previous proofs for split G.

I.8. Let π be an irreducible admissible representation of G, P = MN a parabolic
subgroup of G, and τ an irreducible admissible representation of M inflated to P . In a
sequel to this article we will apply our classification to tackle natural questions as the
computation of the N -coinvariants or the P -ordinary part of π, the description of the
lattice of subrepresentations of IndGP τ , the generic irreducibility of the representations

IndGP τχ where χ runs over the unramified characters of M (this question was raised
by J.-F. Dat).

I.9. We end this introduction with some comments on the organization of the paper.
In Chapter II we fix notation and we examine when a representation of a parabolic
subgroup of G, trivial on its unipotent radical, can be extended to a larger parabolic
subgroup. For a triple (P, σ,Q) as in I.3, we construct I(P, σ,Q) and show that it
is admissible if σ is. In Chapter III we give most of the proof of Theorem 4. The
irreducibility proof was outlined in I.7. The proof that π = I(P, σ,Q) determines P ,
Q, and σ up to isomorphism comes from examining the possible weights and Hecke
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eigenvalues for π (III.24). Finally to prove that every irreducible admissible represen-
tation π of G has the form I(P, σ,Q) we use the filtration theorem (Theorem 6). The
proof of the change of weight theorem is given in Chapters IV; this is the technical
heart of our paper. In Chapter V we deduce the filtration theorem from the change
of weight theorem. We trust that the reader will see easily that there is no loop in
our arguments. Finally Chapter VI gives the proof of Theorems 1, 2, 3, 5 and other
consequences of the classification, already stated in I.4. That section can essentially
be read independently, taking Theorem 4 for granted.

Acknowledgments We thank the following institutions, where part of our work was
carried out: IHES, IMJ Paris 7, IMS Singapore, MSRI, Paris 11.

II. Extension to a larger parabolic subgroup

II.1. Let us first fix notation, valid throughout the paper. As stated in the introduc-
tion, our base field F is locally compact and non-archimedean, of residue characteristic
p; its ring of integers is O, its residue field k, and q is the cardinality of k; we write | |
for the normalized absolute value of F .

A linear algebraic group over F will be written with a boldface letter like H, and its
group of F -points will be denoted by the corresponding ordinary letter H = H(F )4.

We fix our connected reductive F -group G5, and a maximal F -split torus S in G;
we write Z for the centralizer of S in G, N for its normalizer, and W0 = W (G,S)
for the Weyl group N /Z; we recall that W0 = N/Z [Bo, 21.2 Theorem]. We also fix
a minimal F -parabolic subgroup B of G with Levi subgroup Z, and write U for its
unipotent radical. As is customary, we say that P is a parabolic subgroup of G to
mean that P = P(F ), where P is an F -parabolic subgroup of G. If P contains B, we
usually write P =MN to mean that M is the Levi component of P containing Z, and
N the unipotent radical of P ; we then write Pop = MNop for the parabolic subgroup
opposite to P with respect to M ; in particular Bop = ZUop.

We let Φ be the set of roots of S in G, so Φ is a subset of the group X∗(S) of
characters of S; we let Φ+ be the subset of roots of S in U, called positive roots, and
∆ for the set of simple roots of S in U. If X∗(S) is the group of cocharacters of S we
write 〈 , 〉 for the natural pairing X∗(S) ×X∗(S) → Z; for α in Φ, the corresponding
coroot [SGA3, exposé XXVI, §7] is written α∨ and for I ⊂ Φ we put I∨ = {α∨ | α ∈ I}.
We choose a positive definite symmetric bilinear form on X∗(S)⊗Z R, invariant under
W0, which induces a notion of orthogonality between roots; for roots α, β we have
α ⊥ β if and only if 〈α, β∨〉 = 0.

For α in Φ we write Uα = Uα(F ), for the corresponding root subgroup (Uα is written
U(α) in [Bo, §21]), and sα ∈W0 for the corresponding reflection. For I ⊂ ∆ we let WI

be the subgroup generated by {sα | α ∈ I}, NI for the inverse image ofWI in N , PI for
the parabolic subgroup UNIU (it contains B), PI =MINI for its Levi decomposition,
MI containing Z; if I is a singleton {α} we rather write Pα =MαNα. We set ∆P = I
if P = PI . We note that for I, J ⊂ ∆, PI∩J = PI ∩ PJ , MI∩J =MI ∩MJ .

II.2. As announced in the introduction, we tackle here a preliminary question: if P
is a parabolic subgroup of G and σ a representation of P trivial on its unipotent radical
N , when can σ be extended to a larger parabolic subgroup Q of G? Dividing by the
unipotent radical of Q, which is contained in N , we loose no generality in assuming

4We shall use a similar convention for groups over k.
5
G is fixed, but otherwise arbitrary, so the results we establish for G can be applied to other

reductive groups over F .
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that Q = G. If σ extends to G, then any extension has to be trivial on the normal
subgroup 〈GN〉 of G generated by N , so that σ has to be trivial on P ∩ 〈GN〉. So we
need to understand what 〈GN〉 is. That question, which involves no representation
theory, with be dealt with presently.

II.3. Of particular importance in our setting will be the subgroup G′ of G generated
by U and Uop. Beware that the notation, which will be applied to other reductive
groups (like the Levi subgroups ofG), is unusual, and that G′ is not generally the group
of points over F of a reductive subgroup of G: this occurs already for G = PGL2.
Since G is generated by U , Uop and Z, see e.g. [BoT, Proposition 6.25], G′ is normal
in G so is also the subgroup of G generated by the unipotent radicals of the parabolic
subgroups of G, and we have G = ZG′. Sometimes we have G′ = G, though.

Proposition Assume that G is semisimple, simply connected, F -simple and isotropic.
Then G′ = G, and G has no non-central proper normal subgroup. Besides, Z is
generated by the Z ∩M ′

α, α running through ∆.

Proof The first assertion is due to Platonov [PlR, Theorem 7.6] and the second one
then follows from work of Tits [PlR, Theorem 7.1]. The final assertion is due to Prasad
and Raghunathan [PrR] – actually their result is valid over any field. �

Remark Let G be as in the proposition, let α ∈ ∆ and Gα the subgroup of G

generated by Uα and U−α; since Gα satisfies the hypotheses of the proposition, we
have M ′

α = G′
α = Gα.

II.4. To understand G′ in general we need the simply connected covering Gsc of
the derived group Gder of G. Recall that Gsc is the direct product of its F -simple
components. We let B be an indexing set for the isotropic F -simple components of
Gsc and for b ∈ B we write G̃b for the corresponding component. We putGis =

∏

b∈B
G̃b,

and denote by ι the natural homomorphism Gis → G, factoring through Gis → Gsc →
Gder → G.

We need to understand the relation between parabolic subgroups of G and para-
bolic subgroups of Gis. The following comes from [Bo, §21, §22], going through the
factorization of ι.

The connected component of ι−1(S) is a maximal F -split torus S̃ of Gis, and S

is the product of ι(S̃) and the maximal F -split torus in the centre of G. The cen-

tralizer of S̃ in Gis is Z̃ = ι−1(Z), its normalizer Ñ = ι−1(N ), and ι induces an

isomorphism W (Gis, S̃) = W (G,S) (see in particular [Bo, 22.6 Theorem]); in partic-

ular W0 has representatives in ι(Gis). As Gis is a direct product
∏

G̃b (over b ∈ B)
we have corresponding natural decompositions S̃ =

∏

S̃b, Z̃ =
∏

Z̃b, Ñ =
∏

Ñ b and

W (Gis,S) =
∏

W (G̃b, S̃b). Note that ι(G̃b) is normal in G for each b ∈ B.
The map P 7→ P̃ = ι−1(P) is a bijection between F -parabolic subgroups of G

and F -parabolic subgroups of Gis, and ι induces an isomorphism (cf. loc. cit.) of the

unipotent radical Ñ of P̃ onto the unipotent radical N of P. Also, M̃ = ι−1(M) is the

Levi component of P̃ containing Z̃. In particular B̃ = ι−1(B) is a minimal F -parabolic

subgroup of Gis; it is the direct product of minimal parabolic subgroups B̃b of G̃b,
and its unipotent radical Ũ is the direct product of the Ũb, with Ũb the unipotent
radical of B̃b. Via ι we get an identification6 of the roots of S in U with the roots of
S̃ in Ũ, so that ∆, in particular, also appears as the set of simple roots of S̃ in Ũ; as

6More precisely the natural map S̃ → S induces a group homomorphism X∗(S) → X∗(S̃) through

which the roots of S in U are identified with the roots of S̃ in Ũ. By [SGA3, Exp. XXVI, 7.4] if α



A CLASSIFICATION OF IRREDUCIBLE MOD p REPRESENTATIONS OF p-ADIC GROUPS 9

such ∆ is a disjoint union of the sets ∆b, b ∈ B, where ∆b is the set of roots of S̃ (or

S̃b) in Ũb; that partition of ∆ is the finest partition into mutually orthogonal subsets.
Those subsets are the connected components of the Dynkin diagram of G (with set of
vertices ∆) so we can view B as the set of such components.

Proposition G′ = ι(Gis).

Indeed by II.3 Proposition we have G̃′
b = G̃b for each b ∈ B so (Gis)′ = Gis; since ι

induces an isomorphism of Ũ onto U and Ũop onto Uop, we get G′ = ι(Gis). �

Note that the proposition implies that Z ∩G′ = ι(Z̃).

II.5. Notation For I ⊂ ∆, set B(I) = {b ∈ B | I ∩∆b 6= ∆b}.

Proposition Let I ⊂ ∆. Then the normal subgroup 〈GNI〉 of G generated by NI is

ι(
∏

b∈B(I)

G̃b).

Proof We have ÑI =
∏

b∈B
(ÑI ∩ G̃b) and ÑI ∩ G̃b is the unipotent subgroup of G̃b

corresponding to I ∩ ∆b ⊂ ∆b. For b ∈ B − B(I), ÑI ∩ G̃b is trivial; for b in B(I),
ÑI∩G̃b is non-trivial, and provides a non-central subgroup of G̃b so by II.3 Proposition
the normal subgroup of Gis generated by ÑI ∩ G̃b is G̃b; the proposition follows. �

Corollary

(i) PI ∩ 〈GNI〉 = ι
(

∏

b∈B(I)

(P̃I ∩ G̃b)
)

,

(ii) MI ∩ 〈GNI〉 = ι
(

∏

b∈B(I)

(M̃I ∩ G̃b)
)

,

(iii) MI〈
GNI〉 = G,

(iv) 〈GNI〉 contains NI,op.

Proof Parts (i) and (ii) are immediate consequences of the previous considerations.

Let us prove (iii). From the proposition 〈GNI〉 contains ι(G̃b) for b ∈ B(I), but for

b ∈ B − B(I), MI contains ι(G̃b), so finally MI〈
GNI〉 contains ι(G

is) = G′. Since MI

contains Z and G = ZG′, we get (iii). Part (iv) follows from the proposition because

NI,op is ι(
∏

b∈B(I)

(ÑI,op ∩ G̃b)). �

Remark For b ∈ B, M̃I ∩ G̃b can be also described as the product
∏

c
M̃∆c over the

connected components c of the Dynkin diagram obtained from that of G̃b by deleting
vertices outside I. (We note that the product is not direct.)

II.6. There is another useful characterization of MI ∩ 〈GNI〉.

Proposition Let I ⊂ ∆. Then MI ∩ 〈GNI〉 is the normal subgroup of MI generated
by Z ∩M ′

α, for α running through ∆− I.

Proof Let α ∈ ∆ − I and let b ∈ B be such that α ∈ ∆b, so that M ′
α ⊂ ι(G̃b).

As α /∈ I, b belongs to B(I) so ι(G̃b) is included in 〈GNI〉 by II.5 Proposition, and
consequently Z∩M ′

α ⊂MI∩〈
GNI〉. To prove thatMI∩〈

GNI〉 is the normal subgroup
of MI generated by the Z ∩M ′

α, α ∈ ∆ − I, it is enough, by loc. cit., to work within

is a root of S in U and α̃ the corresponding root of S̃ in Ũ, then α̃∨ goes to α∨ via the transposed
morphism X∗(S̃) → X∗(S). In the sequel we make no distinction between α and α̃, α∨ and α̃∨.
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G̃b. So we now assume that G = Gis and G is F -simple. If I = ∆, NI is trivial
so there is nothing to prove. So let us assume I 6= ∆, so that 〈GNI〉 = G by II.3
since NI is not trivial. We can apply to MI all the considerations applied to G in
the current chapter, so we see that MI = Z

∏

HJ where J runs through connected
components of the Dynkin diagram with set of vertices I associated to MI , and HJ is
the corresponding semisimple simply connected F -simple subgroup of MI . Let J be
such a connected component. As the Dynkin diagram attached to G is by assumption
connected, there is α in ∆− I with 〈J, α∨〉 6= 0. Choose α′ in J with 〈α′, α∨〉 6= 0 and
x ∈ F× with α′(α∨(x))2 6= 1. We have α∨(x) ∈ Z ∩M ′

α, Uα′ ⊂ HJ ⊂MI , and the map
from Uα′ to itself given by u 7→ α∨(x)uα∨(x)−1u−1 is onto7. The normal subgroup of
MI generated by Z ∩M ′

α contains α∨(x)8 and uα∨(x)−1u−1 for u ∈ Uα′ , so it contains
Uα′ . By II.3 Proposition it contains HJ and in particular Z ∩M ′

α′′ for all α′′ ∈ J .
We conclude that the normal subgroup of MI generated by the Z ∩M ′

α, α ∈ ∆ − I,
contains Z ∩M ′

α for all α ∈ ∆. By II.3 Proposition it contains Z; since we have seen
that it contains each HJ , it is equal to MI = Z

∏

HJ . �

II.7. Keeping the same notation, we can now derive consequences for representations.

Proposition Let I ⊂ ∆, and let σ be a representation of MI . Then the following
conditions are equivalent:

(i) σ extends to a representation of G trivial on NI ,

(ii) for each b ∈ B(I), σ is trivial on ι(M̃I ∩ G̃b),
(iii) for each α ∈ ∆− I, σ is trivial on Z ∩M ′

α.
When these conditions are satisfied, there exists a unique extension eσ of σ to G

which is trivial on NI , and it is smooth, admissible or irreducible if and only if σ is.

Proof As already said in II.2, if σ extends to a representation of G trivial on NI , the
extension is trivial on 〈GNI〉 so σ is certainly trivial on MI ∩ 〈GNI〉. Consequently
(i) implies (ii) and (iii) by II.5, II.6. Conversely, under assumptions (ii) or (iii), σ
is trivial on MI ∩ 〈GNI〉 hence extends, trivially on 〈GNI〉, to a representation of
MI〈

GNI〉, which is G by II.5 Corollary (iii). Besides the extension eσ is necessarily
unique. Assume that σ extends to a representation eσ of G trivial on NI . Since σ and
eσ have the same image, σ is irreducible if and only if eσ is. As PI is a topological
subgroup of G, σ is smooth if eσ is. Conversely, assume that σ is smooth and let x
be a vector in the space of σ, J its stabilizer in PI ; by II.5 Corollary (iv), NI,op acts
trivially on eσ and the stabilizer of x in G, which contains NI,opJ , is open in G, so eσ
is smooth.

As PI is a topological subgroup of G, eσ is admissible if σ is. Conversely assume eσ
is admissible; for each open subgroup J of MI , a vector in σ fixed by J is also fixed by
the subgroup generated by J , NI and NI,op which is open in G, so σ is admissible. �

Remark 1 By II.5 Remark, condition (ii) illustrates that σ can extend to G (trivially
on NI) only for very strong reasons: for any connected component ∆b of the Dynkin
diagram of G meeting ∆− I, σ has to be trivial on M ′

∆c
for any connected component

∆c of the Dynkin diagram of MI included in ∆b. By II.3 Proposition applied to M is
∆c

that last condition is also equivalent to σ being trivial on Uβ for some, or any, β ∈ ∆c.

7If 2α′ is not a root, then α∨(x) acts on Uα′ (a vector group) via multiplication by α′(α∨(x)). If
2α′ is a root, then α∨(x) acts on U2α′ via α′(α∨(x))2 and on Uα′/U2α′ via α′(α∨(x)).

8It follows from II.4, footnote 5, that α∨(x) belongs to M ′
α; on the other hand it belongs to S ⊂ MI .
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Notation Let P = MN be a parabolic subgroup of G containing B, and let σ be a
representation of M . We let ∆(σ) be the set of α ∈ ∆ −∆P such that σ is trivial on
Z ∩M ′

α. We let P (σ) be the parabolic subgroup corresponding to ∆(σ) ⊔∆P .

Corollary 1 Let P = MN be a parabolic subgroup of G containing B, and let σ be
a representation of M . Then the parabolic subgroups of G containing P to which σ
extends, trivially on N , are those contained in P (σ). In that case the extension is
unique and is smooth, admissible or irreducible if σ is.

The corollary is immediate from the proposition applied to Levi components of
parabolic subgroups of G containing P .

Remark 2 Since any parabolic subgroup P of G is conjugate to one containing B, it
follows, as stated in the introduction, that if σ is a representation of P trivial on its
unipotent radical, there is a maximal parabolic subgroup P (σ) of G to which σ can be
extended, and the extension is smooth, admissible or irreducible if (and only if) σ is.

Corollary 2 Keep the assumptions and notation of Corollary 1, and assume further
that ∆(σ) is not orthogonal to ∆M . Then there is a proper parabolic subgroup Q of
M , containing M ∩ B, such that σ is trivial on the unipotent radical of Q; moreover
σ is a subrepresentation of IndMQ (σ|Q), and σ|Q is irreducible or admissible if σ is. In
particular, σ cannot be supercuspidal.

Proof We may assume that G = P (σ). Let α ∈ ∆(σ) not orthogonal to ∆M , and

let b ∈ B such that α ∈ ∆b. Then ∆b ∩ ∆M 6= ∆b, so σ is trivial on ι(M̃ ∩ G̃b)
by the proposition. As α is not orthogonal to ∆M , ∆b ∩ ∆M is not empty. If Q is
the (proper) parabolic subgroup of M corresponding to ∆M − ∆b, then ι(M̃ ∩ G̃b)
contains the unipotent radical NQ of Q and σ is trivial on NQ. Then, obviously, σ is

a subrepresentation of IndMQ (σ|Q) and by the proposition, applied to M instead of G,
if σ is irreducible or admissible, so is its restriction to the Levi component of Q. By
the definition of supercuspidality, σ cannot be supercuspidal. �

Remark 3 The last assertion of Corollary 2 explains why the case of interest to us is
when ∆M and ∆(σ) are orthogonal – an analogous result will be obtained when σ is
assumed supersingular instead of supercuspidal (III.17 Corollary). As a special case,
assume that the (relative) Dynkin diagram of G is connected, and σ is a supercuspidal
representation of M extending to G. Then either M = G or M = Z; in the latter case,
σ is trivial on Z ∩G′ and finite dimensional.

Remark 4 For the record, let us state a few useful facts when ∆ is the disjoint union of
two subsets I and J , orthogonal to each other. ThenM ′

I andM
′
J are normal subgroups

of G, commuting with each other. We have G′ = M ′
IM

′
J , MI = ZM ′

I , MJ = ZM ′
J ,

MI ∩MJ = Z and in particular MI ∩M
′
α = Z ∩M ′

α for α ∈ J . Also, M ′
I ∩M

′
J is

finite and central in G: indeed, decomposing G̃ as G̃I × G̃J , M
′
I ∩M

′
J is simply the

image under (g1, g2) 7→ ι(g1) of Ker ι ⊂ G̃I × G̃J . The inclusion of MI in G induces an
isomorphism MI/(MI ∩M

′
J) ≃ G/M ′

J (and similarly for MJ).

Remark 5 Let α ∈ ∆ belong to the component ∆b. The normal subgroup of G gener-
ated by Z ∩M ′

α is ι(G̃b) because Z ∩M ′
α is not central in M ′

α. If σ is a representation

of G which is trivial on Z ∩ M ′
α, it is then trivial on ι(G̃b) and the conclusions of

Corollary 2 hold (with M = G).

II.8. To go further we need the generalized Steinberg representations already recalled
in the introduction.
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Lemma Let Q be a parabolic subgroup of G. Then lifting functions on G to functions

on Gis via ι gives an isomorphism of IndGQ 1 with IndG
is

Q̃
1. The representation StGQ ◦ι

of Gis is isomorphic to StG
is

Q̃
; the restriction of StGQ to G′ is irreducible and admissible.

Proof We have ZG′ = G and Q contains Z, so G = QG′. Besides Q ∩ G′ = ι(Q̃).

It follows that ι induces a bijection of Q̃\Gis onto Q\G; that bijection is continuous
hence is a homeomorphism by Arens’ theorem [MZ, p. 65]. The first assertion follows
and the others are immediate consequences. �

Now let P = MN be a parabolic subgroup of G, let σ be a representation of M ,
inflated to P . Then by II.7 Corollary 1, σ extends (uniquely) to a representation
eσ of P (σ). For each parabolic subgroup Q with P ⊂ Q ⊂ P (σ) we can form the

representation eσ ⊗ St
P (σ)
Q of P (σ).

Proposition σ is irreducible (resp. admissible) if and only if eσ⊗St
P (σ)
Q is irreducible

(resp. admissible).

From this, we get (see for instance [Vig3, Lemma 4.7]):

Corollary σ is admissible if and only if IndGP (σ)(
eσ ⊗ St

P (σ)
Q ) is admissible.

Proof of the proposition The unipotent radical of P (σ) acts trivially on both eσ

and St
P (σ)
Q . Therefore we may assume P (σ) = G.

By the lemma above StGQ ◦ι is the generalized Steinberg representation StG
is

Q̃
. For b

in B−B(∆Q), ∆Q∩∆b = ∆b so that by construction StG
is

Q̃
is trivial on G̃b; consequently

its restriction to H =
∏

b∈B(∆Q)

G̃b is irreducible. On the other hand by II.5, eσ is trivial

on the normal subgroup ι(H). If σ is irreducible, the irreducibility of eσ ⊗ StGQ comes

then from Clifford theory as in [Abe, Lemma 5.3]9.
Assume that σ is admissible, so eσ is admissible too. As above ι(H) acts trivially

on eσ and the restriction of StGQ to ι(H) is admissible. If L is an open subgroup of

G, the vectors in StGQ fixed under L ∩ ι(H) form a finite dimensional vector space X.

The vectors fixed by L in eσ ⊗ StGQ are in eσ ⊗X. There is an open subgroup L′ of L

acting trivially on X and (eσ ⊗X)L
′

= eσL
′

⊗X is finite dimensional. Consequently
eσ ⊗ StGQ is admissible.

Conversely, if eσ ⊗ StGQ is irreducible, obviously σ is irreducible. If eσ ⊗ StGQ is

admissible so is σ. Indeed if J is an open subgroup of G then (eσ)J ⊗ (StGQ)
J is

contained in (eσ⊗ StGQ)
J , so if J is small enough for (StGQ)

J to be non-zero, we deduce

that (eσ)J is finite-dimensional; thus eσ is admissible and so is σ by II.7 Proposition.
�

Remark Assume that ∆M is orthogonal to ∆−∆M . Let σ be a representation of M
which extends to G trivially on N , and let Q be a parabolic subgroup of G containing
P .

1) The representation eσ ⊗ StGQ of G determines σ and Q.

2) Any subquotient π of eσ ⊗ StGQ is of the form eσπ ⊗ StGQ for some representation
σπ of M which extends to G trivially on N .

9To apply that lemma, note that Schur’s lemma is valid for the restriction of StGQ to ι(H).
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Proof 1) We put J = ∆ − ∆M . As Q contains M , StGQ is trivial on the normal

subgroup M ′, and restricting to MJ functions on G gives an isomorphism of StGQ onto

StMJ

Q∩MJ
. The restriction of eσ⊗StGQ toM ′

J is a direct sum of irreducible representations

StGQ |M ′
J
, and that representation determines Q (II.8 Lemma). Seen as a representation

of G, HomM ′
J
(StGQ,

eσ⊗ StGQ) is isomorphic to eσ (use for example [Abe, Lemma 5.3]),
and eσ determines σ.

2) The restriction of π to M ′
J is a sum of copies of the irreducible representation

StGQ |M ′
J
. By Clifford’s theory (loc. cit.), π is isomorphic to HomM ′

J
(StGQ, π) ⊗ StGQ.

Moreover, HomM ′
J
(StGQ, π) is a representation of G trivial on M ′

J hence determines a

representation σπ of M via the map M ։ G/M ′
J and eσπ ≃ HomM ′

J
(StGQ, π) as a

representation of G. �

III. Supersingularity and classification

III.1. This chapter is devoted to the proof of I.5 Theorem 4, and is rather long. It is
divided into parts A) to H). In part A) we give some more detail on supersingularity,
and in part B) we describe a parametrization for the irreducible representations of
K. The next step in part C) is to determine the weights and eigenvalues of paraboli-
cally induced representations. We then proceed to the analysis of the representations
I(P, σ,Q): we first determine P (σ) in part D), and after that we compute the weights
and eigenvalues of I(P, σ,Q) for a supersingular triple (P, σ,Q) in part E). The sub-
sequent proof of the irreducibility of I(P, σ,Q) in part F) uses a change of weight
theorem proved in Chapter IV. From the knowledge of weights and eigenvalues, we
easily deduce in part G) when I(P1, σ1, Q1) is isomorphic to I(P2, σ2, Q2) for super-
singular triples (P1, σ1, Q1) and (P2, σ2, Q2). In part H) we finally prove exhaustion,
i.e. that every irreducible admissible representation of G has the form I(P, σ,Q) for
some supersingular triple (P, σ,Q): that uses a result established only in Chapter V
as a further consequence of the change of weight theorem.

Notation As K is fixed throughout, it is convenient to write H0 for H ∩K, when H
is a subgroup of G. We also write H for (H ∩K)/(H ∩K(1)), where K(1) is the pro-p
radical of K. We put Z(1) = Z ∩K(1); it is the pro-p radical of Z0.

A) Supersingularity

III.2. Consider an irreducible representation (ρ, V ) of K; it is finite-dimensional and
trivial on K(1). The classification of such objects will be recalled in part B).

We view the intertwining algebra HG(V ) as a Hecke algebra, the convolution algebra
of compactly supported functions Φ : G→ EndC(V ) satisfying

Φ(kgk′) = ρ(k)Φ(g)ρ(k′) for g in G, k and k′ in K.

The convolution operation is given by

(III.2.1) (Φ ∗Ψ)(g) =
∑

h∈G/K

Φ(h)Ψ(h−1g) for Φ,Ψ in HG(V ).

The action on indGK V is also given by convolution:

(III.2.2) (Φ ∗ f)(g) =
∑

h∈G/K

Φ(h)f(h−1g) for f ∈ indGK V, Φ ∈ HG(V ).
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III.3. We need to recall the structure of HG(V ) and its centre ZG(V ), as elucidated
in [HV1], building on [He1, He2]; note that HG(V ) is commutative in the context of
[He1, He2, Abe].

Let P = MN be a parabolic subgroup of G containing B. Then the space of
coinvariants VN0 of N0 in V affords an irreducible representation of M0 (which is the
special parahoric subgroup of M corresponding to the special point x0). For each
representation σ of M on a vector space W , Frobenius reciprocity and the equalities
G = KP = PK, P 0 =M0N0, give a canonical isomorphism:

(III.3.1) HomG(ind
G
K V, Ind

G
P W )

∼
−→ HomM (indMM0 VN0 ,W )

The natural algebra homomorphism SGM : HG(V ) −→ HM (VN0) of I.5 is given con-
cretely by

(III.3.2) [SGM (Ψ)(m)]v̄ =
∑

n∈N0\N

Ψ(nm)(v) for m in M, v in V,

where a bar indicates the image in VN0 of a vector in V [HV2, Proposition 2.2]. Recall
that (III.3.1) is HG(V )-linear if we let HG(V ) act on the right-hand side via SGM . Recall

also that SGM is injective [HV2, Proposition 4.1].
For varying P = MN , the homomorphisms SGM satisfy obvious transitivity proper-

ties, and SGZ identifies HG(V ) with a subalgebra of HZ(VU0) which we now describe.

For a root α in Φ = Φ(G,S), the group homomorphism |α| : x 7→ |α(x)| from S to R×
+

extends uniquely to a group homomorphism Z → R×
+ trivial on Z0, and we still write

|α| for that extension. We write Z+ for the set of z in Z such that |α|(z) ≤ 1 for all
α ∈ ∆. Then by [HV2, Proposition 4.2] HG(V ) is identified via SGZ with the subalgebra
of HZ(VU0) consisting of elements supported on Z+. By [HV1, 1.8 Theorem], ZG(V )
is the subalgebra HG(V ) ∩ ZZ(VU0) of ZZ(VU0) consisting of elements supported on
Z+.

III.4. The group Z normalizes Z0 and its pro-p radical Z(1) and the quotient Z/Z0

is a finitely generated abelian group. The coinvariant space VU0 is in fact a line, and Z0

acts on it via a character ψV : Z0 → C× trivial on Z(1): see part B), for the difference
between the notation ψV here and in [HV2]. For z ∈ Z, the coset Z0z supports a
non-zero function in HZ(VU0) if and only if z normalizes ψV , and such a function is in
ZZ(VU0) if and only if ψV (zz

′z−1z′−1) = 1 for all z′ ∈ Z normalizing ψV .

Notation We let ZψV
be the subgroup of Z defined by this last condition. It contains

S and Z0.

For z ∈ Z normalizing ψV we write τz ∈ HZ(VU0) for the function with support Z0z
and value idV

U0
at z; we have

τz ∗ τz′ = τzz′ for z, z
′ in Z normalizing ψV .

Identifying HG(V ) and HM (VN0) with subalgebras of HZ(VU0) via SGZ and SMZ , we can
now describe HM (VN0) as the localization of HG(V ) at some central element [HV2,
Proposition 4.5] (so that ZM (VN0) is the localization of ZG(V ) at the same element).

Proposition Let M = MI for some I ⊂ ∆, and let s ∈ S satisfy |α|(s) < 1 for
α ∈ ∆ − I, |α|(s) = 1 for α ∈ I. Then HM (VN0) is the localization of HG(V ) at τs,
and ZM(VN0) the localization of ZG(V ) at τs.

Notation For each α ∈ ∆, we choose zα in S such that |α|(zα) < 1 and |α′|(zα) = 1
for α′ ∈ ∆− {α}. For a character χ of ZG(V ), we let ∆0(χ) = {α ∈ ∆ | χ(τzα) = 0}.
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In the above proposition, we can take s =
∏

α∈∆−I
zα; then τs is the product τs =

∏

α∈∆−I
τzα in any order.

Lemma Let χ be a character of ZG(V ). Then I = ∆0(χ) is the smallest subset of ∆
such that χ extends to a character of ZMI

(VN0
I
). For z in Z+∩ZψV

we have χ(τz) 6= 0

if and only if |α|(z) = 1 for all α ∈ ∆0(χ). In particular, ∆0(χ) does not depend on
{zα}.

Proof As ZMI
(VN0

I
) is the localization of ZG(V ) at

∏

α∈∆−I
τzα , χ extends to a character

of ZMI
(VN0

I
) if and only if χ(τzα) 6= 0 for α ∈ ∆ − I. The first assertion follows. Let

z ∈ Z+∩Zψv
; if for some α ∈ ∆0(χ) we have |α|(z) < 1, then for some positive integer

r, zr = zαt with t ∈ Z+∩ZψV
, and χ(τz)

r = χ(τzα)χ(t) = 0, so χ(τz) = 0; if |α|(z) = 1
for all α ∈ ∆0(χ) then with s =

∏

α∈∆−∆0(χ)

zα there is a positive integer x such that

sr = zt for some t ∈ Z+ ∩ ZψV
and similarly χ(τz) 6= 0 since χ(τs) 6= 0. �

We write Z⊥
∆ for the set of z ∈ Z with |α|(z) = 1 for all α ∈ ∆. Using the lemma,

we can restate the definition of supersingularity (I.5) for a character of ZG(V ).

Corollary For a character χ of ZG(V ), the following conditions are equivalent:
(i) χ is supersingular,
(ii) ∆0(χ) = ∆,
(iii) χ(τz) = 0 for all z in Z+ ∩ ZψV

not in Z⊥
∆.

B) Irreducible representations of K

III.5. As recalled above, irreducible representations ofK factor throughK = K/K(1).
We first examine K.

Information aboutK comes from [BT1, BT2], see also [Ti]. The groupK is naturally
the group of points (over the residue field k of F ), of a connected reductive group, which
we write Gk, so that K = Gk(k)

10. We also have S = Sk(k), where Sk is a maximal
split torus in Gk, with a natural identification of X∗(Sk) and X∗(S); if Zk is the
centralizer of Sk in Gk then Z = Zk(k), and similarly for the normalizer N k of Sk in
Gk. As K is a special parahoric subgroup, every element of W0 has a representative in
K so that W0 = N 0/Z0, and reduction mod K(1) yields an identification of W0 with
W (Gk,Sk) = N/Z.

Similarly B = Bk(k) for a minimal parabolic subgroup Bk of Gk with Levi com-
ponent Zk (which is a torus since k is finite) and unipotent radical Uk such that
U = Uk(k).

III.6. The root system of Sk in Gk is a sub-root system of the root system of S in
G, using the above-mentioned identification of X∗(Sk) and X∗(S). We write Φk for
the set of roots of Sk in Gk; we have Φk ⊂ Φ. A reduced root α ∈ Φ belongs to Φk if
2α is not a root in Φ; if α and 2α are roots in Φ, then α or 2α or both are in Φk – all
three cases can occur.

So we get a natural bijection α 7→ α from reduced roots in Φ to reduced roots in
Φk, which sends positive roots to positive roots, and the set ∆ of simple roots in Φ

10We warn the reader that when G is semisimple, Gk is not necessarily semisimple. If Hk is an
algebraic group over k, we put Hk = Hk(k), so that for many algebraic subgroups H of G in the

current chapter, we can use indifferently the notations H or Hk for (H ∩K)/(H ∩K(1)) – we mostly

use H.
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to the set ∆k of simple roots in Φk. When α ∈ Φ is reduced, we have Uα = Uk,α(k).
Henceforward we identify the reduced roots of Φk with those of Φ, hence Φk with Φ,
∆k with ∆, via α 7→ α. Then for I ⊂ ∆ the parabolic subgroup PI = MINI is such
that PI = PI,k(k), MI = MI,k(k), NI = NI,k(k).

III.7. Let Bop be the parabolic subgroup of G opposite to B11 (with respect to

Z) and Uop its unipotent radical; then Bop = Bk,op(k) where Bk,op is the parabolic

subgroup of Gk opposite to Bk. Similarly we have Uop = Uk,op(k) for their unipotent
radicals.

From [BoT, Proposition 6.25] we get that G is generated by the union of Z, U ,

Uop. The subgroup G
′
of G generated by the union of U and Uop is normal in G;

it is the image in G of Gk,sc(k) where Gk,sc is the simply connected covering of the

derived group of Gk. Note12 that G′0 certainly contains U0 and (Uop)
0 so that its

image in G contains G
′
. But it can be larger, so we need to distinguish G

′
and G′13;

the discrepancy is actually quite important in Chapter IV.

Lemma (i) The map (U ∩K(1))×Z(1)× (Uop ∩K(1)) → K(1) given by the product
law is bijective, and similarly for any order of the factors.
(ii) K is generated by the union of U0, Z0 and (Uop)

0.

Proof Assertion (i) is due to Bruhat and Tits [BT2, 4.6.8 Corollaire]. Since G is
generated by the union of Z, U and Uop, K is generated by the union of Z0, U0,
(Uop)

0 and the normal subgroup K(1); then (ii) follows from (i). �

The lemma has a consequence which will be useful later. As in III.4 we write Z⊥
∆

for the set of z ∈ Z such that |α|(z) = 1 for all α ∈ ∆. Equivalently, Z⊥
∆ = Ker vZ in

the notation of [HV1, 3.2]. (We have in fact that |α|(z) = q−〈α,vZ (z)〉 for α ∈ ∆ and
z ∈ Z.)

Corollary Z⊥
∆ is the normalizer of K in Z.

Proof If z ∈ Z normalizes K it also normalizes U0
α for all α ∈ Φ. Given the action of

z on the filtration of Uα [Ti], that is equivalent to |α|(z) = 1 for α ∈ Φ. Conversely
if |α|(z) = 1 for α in ∆ then |α|(z) = 1 for all α in Φ and z normalizes U0

α for all
α ∈ Φ; it then normalizes U0 and (Uop)

0, so it normalizes K. That proves that Z⊥
∆ is

the normalizer of K in Z. �

Remark By the Cartan decomposition the normalizer of K in G is Z⊥
∆K.

III.8. We can now recall (see [HV1, HV2] and the references therein) the parametriza-
tion of the irreducible representations of G, up to isomorphism.

If (ρ, V ) is an irreducible representation of G, then V U is a line, on which Z acts
via a character, say η : Z → C×. Let ∆(η) be the set of simple roots α ∈ ∆ such that
η is trivial on Z ∩M ′

α,k (where Mα,k is the Levi subgroup of G corresponding to {α}),

and as in III.7M ′
α,k is the subgroup of Mα,k generated by (the union of) Uα and U−α.

The stabilizer of the line V U in G is a parabolic subgroup containing B corresponding
to a subset ∆V of ∆(η), and V is characterized up to isomorphism by the pair (η,∆V );
all such pairs do occur. In [HV2], (η,∆V ) is called the standard parameter of V .

11When convenient, we put the index op on top.
12Recall G′ is the subgroup of G generated by U and Uop.
13To avoid confusion, we sometimes write G′

k rather than G
′
.
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III.9. In this paper, we are interested in coinvariants rather than invariants, so we
use different parameters. Let V be an irreducible representation of G with standard
parameter (η,∆V ).

Lemma The group Z acts on the line VU via the character η ◦ w0 where w0 is the
longest element in W0. Moreover the stabilizer of the kernel of V → VU is the parabolic

subgroup of G corresponding to the subset −w0∆V of ∆.

Proof By [HV2, Proposition 3.14] the projection V → VU induces a Z-equivariant

isomorphism of V Uop onto VU ; the first assertion comes from [loc. cit. 3.11]. The

stabilizer we look at is also the stabilizer of the line (V ∗)U in the contragredient
representation V ∗ of V ; the second assertion follows from by [loc. cit. 3.12]. �

Definition The parameter of V is the pair (ψV ,∆(V )) where Z acts on VU via ψV
and the stabilizer in G of the kernel of V → VU is P∆(V ).

Remarks 1) We have ψV = η ◦ w0 and ∆(V ) = −w0∆V .
2) The antistandard parameter of V [HV2, 3.11] is (ψV ,−∆(V )).
3) V is determined up to isomorphism by its parameter. One has ∆(V ) ⊂ ∆(ψV ), and
all pairs (ψ, I) with I ⊂ ∆(ψ) occur as parameters.

III.10. Lemma Let V be an irreducible representation of K, and let P =MN be a
parabolic subgroup of G containing B.

(i) VN is an irreducible representation of M with parameter (ψV ,∆M ∩∆(V )).

(ii) V is P op-regular in the sense of [HV2, Def. 3.6] if and only if ∆(V ) ⊂ ∆M .

Here P op =M Nop is the parabolic subgroup of G opposite to P (relative to M).

Proof By [loc. cit. 3.11] V Nop is an irreducible representation of M and its antistan-
dard parameters are (ψV ,−(∆M ∩∆(V ))). On the other hand, the projection V → VN
induces an M -equivariant isomorphism of V Nop onto VN , so (i) comes from Remark

2) above. By [loc. cit., Def. 3.6] V is P op-regular if and only if −∆(V ) ⊂ −∆M i.e.
∆(V ) ⊂ ∆M , whence (ii). �

Remark Since P∆(V ) is the stabilizer of the kernel of the projection V → VU , V is
one-dimensional if and only if ∆(V ) = ∆. It follows from part (i) of the lemma that VN
is one-dimensional if and only if ∆M ⊂ ∆(V ). That provides a useful characterization
of ∆(V ).

Examples 1) Consider the case where V is the trivial representation of G. Then
ψV = 1 and ∆(V ) = ∆. Representations V with parameter (1, I) for I ⊂ ∆ are
particularly important to us (cf. III.18 below).

2) Let η be a character of Z; then η extends to a character of M∆(η): indeed that

extension is the irreducible representation of M∆(η) with parameter (η,∆(η)).

III.11. Consider the simply connected covering Gk,sc of the derived group Gk,der of
Gk and write j : Gk,sc → Gk for the natural morphism. Put Gk,sc = Gk,sc(k). We
can repeat exactly the same considerations as in II.4 in this context of finite reductive
groups, and we use the analogous notation – note however that since k is finite, every
k-simple component of Gk,sc is isotropic. In particular j induces an isomorphism

between Ũk and Uk, and ∆k also appears as the set of simple roots of S̃k in Ũk.
From III.7, recall that

G′
k = j(Gk,sc).
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Proposition Let (ρ, V ) be an irreducible representation of Gk with parameter (ψV ,∆(V )).
Then (ρ◦j, V ) is an irreducible representation of Gk,sc with parameter (ψV ◦j|Z̃k

,∆(V )).

Here Z̃k = Z̃k(k) where Z̃k is the centralizer of S̃k in Gk,sc; we use similarly abbre-

viated notation below. By the fact above and the inclusion G′
k = G

′
⊂ G′ (III.7), we

get:

Corollary The restriction of ρ to G′
k, and a fortiori to G′, is irreducible.

Proof of the proposition Since VŨk
, equal to VU , is one-dimensional, the cosocle of

ρ ◦ j is irreducible. Similarly V Ũk,op equal to V Uop is one dimensional, so the socle of

ρ ◦ j is irreducible too. As the projection of V Uop to VU is non-zero, the map from

the socle of ρ ◦ j to its cosocle is non-zero, and ρ ◦ j is indeed irreducible. Clearly Z̃k
acts on VŨk

= VU by z 7→ ψV ◦ j(z), and P̃∆(V ),k = j−1(P∆(V )) stabilizes the kernel

of V → VŨk
. But for I ⊂ ∆, we have PI = Zj(P̃I,k), so if P̃I,k stabilizes that kernel,

I ⊂ ∆(V ). �

C) Weights of parabolically induced representations

III.12. Let P = MN be a parabolic subgroup of G containing B, and (τ,W ) a

representation of M . We investigate the weights of IndGP W and the corresponding
Hecke eigenvalues. From now on, we identify the irreducible representations of K and
those of G = K/K(1).

In this part C) we let (ρ, V ) be an irreducible representation of K, with parameter
(ψV ,∆(V )). Recall that if (π,X) is a representation of G, for example X = IndGP W ,
then HomK(V,X) is a right HG(V )-module. The formula for the action is

(III.12.1) (ϕΦ)(v) =
∑

g∈G/K

gϕ(Φ(g−1)v) for v ∈ V, ϕ ∈ HomK(V,X),

and Φ ∈ HG(V ).

Proposition (i) The natural isomorphism

HomK(V, Ind
G
P W )

can

∼−→ HomM0(VN0 ,W )

is HG(V )-linear, where HG(V ) acts on the right-hand side via SGM .

(ii) V is a weight for IndGP W if and only if VN0 is a weight for W .

(iii) The map SGM identifies the eigenvalues of V in IndGP W and the eigenvalues of
VN0 in W .

Proof (i) comes from III.3 and (ii) is an immediate consequence. We have seen that
ZM (VN0) is the localization of ZG(V ) at some element τs. Clearly τs acts invertibly on
HomM0(VN0 ,W ); as the canonical isomorphism is HG(V )-linear, τs also acts invertibly
on HomK(V, Ind

G
P W ), which gives (iii). �

A useful consequence of (III.12.1) is the following lemma. Recall that for z ∈
Z+∩ZψV

, ZG(V ) contains a unique element Tz such that SuppTz = KzK and Tz(z) ∈

EndC(V ) induces the identity on V Uop [HV1, 7.3, 2.9].

Lemma Let (π,X) be a representation of G and ϕ ∈ HomK(V,X). Let z ∈ ZψV
.

Assume z ∈ Z⊥
∆, i.e. that z normalizes K. Then SGZ (Tz) = τz and (ϕτz)(v) = z−1ϕ(v)
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for v in V Uop . If ϕ is an eigenvector for ZG(V ) with eigenvalue χ, then z−1 acts on

ϕ(V Uop) by χ(τz).

Proof By assumption zK = Kz, and the endomorphism Tz(z) satisfies ρ(k)Tz(z) =
Tz(z)ρ(z

−1kz) for k ∈ K [loc. cit., 7.3]. As z normalizes U0 and (Uop)
0, Tz(z) induces

endomorphisms of VU and V Uop ; since the natural map V Uop → VU is an isomorphism,

Tz(z) induces the identity on VU . From (III.3.2) we get SGZ (Tz) = τz, and (III.12.1)
gives

(ϕTz)(v) = z−1ϕ(Tz(z)v) for v ∈ V,

hence the result. �

III.13. Let ϕ ∈ HomK(V, Ind
G
P W ) and ϕM ∈ HomM0(VN0 ,W ) correspond via

(III.3.1). Then ϕ gives rise to a G-morphism, again written ϕ, from indGK V to IndGP W ,
and similarly we get an M -morphism ϕM : indMM0 VN0 →W .

Consider the following diagram, where horizontal maps are canonical isomorphisms

HomG(ind
G
K V, Ind

G
P (ind

M
M0 VN0))

can
∼−−−−→ HomM (indMM0 VN0 , indMM0 VN0)





y
IndG

P ϕM





y

ϕM

HomG(ind
G
K V, Ind

G
P W )

can
∼−−−−→ HomM (indMM0 VN0 ,W )

By naturality, the vertical maps obtained by composing with IndGP ϕM and ϕM , as
indicated, make the diagram commutative. The identity map of indMM0 VN0 yields the
canonical intertwiner

(III.13.1) I : indGK V −→ IndGP (ind
M
M0 VN0)

mentioned in I.6. We get:

Lemma IndGP ϕM ◦ I = ϕ.

By [HV2, Proposition 4.1], I is injective. As I is HG(V )-linear, it factors as follows:

indGK V −→ ZM (VN0)⊗ZG(V ) ind
G
K V

u
−→ HM(VN0)⊗HG(V ) ind

G
K V

Θ
−→ IndGP (ind

M
M0 VN0),

for some canonical map Θ. SinceHM (VN0) is the localization of HG(V ) at some central
element, and ZM (VN0) is the localization of ZG(V ) at the same element, the map u is
an isomorphism.

III.14. The main result of [HV2] is, taking into account III.10 Lemma (ii):

Theorem Let (ψV ,∆(V )) be the parameter of V . If ∆(V ) ⊂ ∆M then the map Θ of
III.13 is an isomorphism.

We derive some consequences.

Corollary 1 Let ϕ ∈ HomK(V, Ind
G
P W ) be an eigenvector for ZG(V ). If ∆(V ) ⊂ ∆M

and if ϕM (VN0) generates W as a representation of M , then ϕ(V ) generates IndGP W
as a representation of G.

Proof By the theorem, Θ is surjective. By hypothesis ϕM : indMM0 VN0 → W is
surjective, so by III.13 Lemma the map induced by ϕ

ZM (VN0)⊗ZG(V ) ind
G
K V −→ IndGP W
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is surjective. But ZG(V ) acts on ϕ via a character which extends to ZM (VN0) (III.12
Proposition (ii)) so we conclude that ϕ(indGK V ) = IndGP W , hence the result. �

Corollary 2 Assume that (τ,W ) is irreducible and admissible. Then IndGP W is irre-
ducible if and only if every non-zero subrepresentation of it contains a weight V with
∆(V ) ⊂ ∆M .

Proof Since W has some weight, by III.12 Proposition (i) and III.10 Lemma (i),
IndGP W has a weight V with ∆(V ) ⊂ ∆M . Conversely if a subrepresentation X

of IndGP W contains a weight V with ∆(V ) ⊂ ∆M , there is an eigenvector ϕ ∈
HomK(V,X) for ZG(V ). As τ is irreducible, ϕM (VN0) generates W and by the propo-
sition X = IndGP W . �

D) Determination of P (σ) for supersingular σ

III.15. We want to apply the preceding corollary to prove the irreducibility of
I(P, σ,Q) for a supersingular triple (P, σ,Q). That can only be done in stages. First we
determine P (σ) in terms of weights and eigenvalues of σ. In other words, we determine
the set ∆(σ) of α ∈ ∆−∆M such that σ is trivial on Z ∩M ′

α (II.7).
As the generality will be useful in Chapter V, we consider the situation where

P =MN is a parabolic subgroup of G containing B, and (σ,W ) is a representation of
M satisfying the following hypothesis:

(H) There is an irreducible representation (ρ, V ) ofM0 and some ϕ in HomM0(V,W )
such that σ is generated by ϕ(V ) as a representation of M .

Hypothesis (H) is certainly true if σ is irreducible and admissible, and then we can
take ϕ to be an eigenvector for ZM (V ), and the corresponding eigenvalue is supersin-
gular if σ is. As before, write (ψV ,∆(V )) for the parameter of V .

Lemma Assume Hypothesis (H). Let α ∈ ∆. If σ is trivial on Z ∩M ′
α, then ψV is

trivial on Z0 ∩M ′
α.

Proof If σ is trivial on Z ∩M ′
α, then certainly Z ∩M ′

α acts trivially on ϕ(V ). As
ϕ ∈ HomM0(V,W ) is injective, Z0 ∩M ′

α acts trivially on V hence on VU0 and ψV is
trivial on Z0 ∩M ′

α. �

III.16. Proposition Let α ∈ ∆.
(i) If ψV is trivial on Z0 ∩M ′

α then Z ∩M ′
α ⊂ ZψV

.
(ii) |α| (Z ∩M ′

α) is isomorphic to Z.
(iii) Let z ∈ Z ∩M ′

α. Then |α|(z) = 1 if and only if z ∈ Z0 ∩M ′
α.

Notation By (ii) there is an element aα in Z ∩M ′
α with |α|(aα) > 1, such that |α|(aα)

generates |α|(Z ∩M ′
α); by (iii) the element aα is well-defined modulo Z0 ∩M ′

α. Note
that if α is orthogonal to ∆M then aα ∈ Z⊥

∆M
(see proof of III.7 Corollary) and τaα is

a unit of ZM (V ). If ψV is trivial on Z0 ∩M ′
α the element τaα of ZZ(VU∩M0) does not

depend on the choice of aα, so we write it τα.

Proof of the proposition Assume that ψV is trivial on Z0∩M ′
α, and take z ∈ Z∩M ′

α;
then, for z′ ∈ Z (in particular for z′ ∈ Z0), zz′z−1z′−1 belongs to Z0 ∩M ′

α (because
Z/Z0 is abelian and Z ∩M ′

α is normal in Z), so we get ψV (zz
′z−1z′−1) = 1. That

shows that z normalizes ψV and belongs to ZψV
, hence (i).

Let us introduce the isotropic part M̃α = Mis
α of the simply connected covering of

the derived group of Mα, its minimal Levi subgroup Z̃α lifting Z, and the maximal
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split torus S̃α of Z̃α. Write j for the canonical map M̃α → Mα. We have M ′
α = j(M̃α)

and j−1(Z) = Z̃α, so Z ∩M ′
α = j(Z̃α).

Let vZ : Z → X∗(S)⊗Q be the map of [HV1, 3.2]; its kernel is the maximal compact
subgroup of Z and by [loc. cit., 6.2] Z0, which is the kernel of the Kottwitz invariant
wZ of Z, is equal to Ker vZ ∩ KerwG where wG is the Kottwitz invariant of G [Kot,
§7]. We have the analogous map vZ̃α

and a commutative diagram

Z̃α
v
Z̃α−−−−→ X∗(S̃α)⊗Q





y





y

Z
vZ−−−−→ X∗(S)⊗Q

where the vertical maps are induced by j.
As M̃α is semisimple and simply connected, wM̃α

is trivial and by functoriality of the

Kottwitz invariant wG is trivial onM ′
α = j(M̃α); in particular Z0∩M ′

α = Ker vZ ∩M
′
α.

The vertical map on the right of the above diagram is injective so j−1(Z0 ∩M ′
α) =

Ker vZ̃α
. Thus (Z ∩M ′

α)/(Z
0 ∩M ′

α) is isomorphic to Z̃α/Ker vZ̃α
, i.e. to the image of

vZ̃α
. Since S̃α has dimension 1, that image is isomorphic to Z. Now for z ∈ Z̃α we

have |α|(j(z)) = q−〈α,vZ (j(z))〉 = q−〈α,v
Z̃α

(z)〉 and (ii), (iii) follow. �

Remark From the above proof it is clear that vZ(aα) is a (negative) rational multiple
of α∨. See also IV.11 Example 3.

III.17. Let us derive consequences of III.16.

Proposition Assume Hypothesis (H) (III.15). Let α ∈ ∆ be orthogonal to ∆M . Then
the following conditions are equivalent :

(i) σ is trivial on Z ∩M ′
α,

(ii) ψV is trivial on Z0 ∩M ′
α and (ϕτα)(v) = ϕ(v) for v ∈ V Uop∩M0

.

Proof Apply first III.12 Lemma to get

(∗) (ϕτα)(v) = a−1
α ϕ(v)

for v ∈ V Uop∩M0
. Now assume (i). By III.15 Lemma, ψV is trivial on Z0 ∩ M ′

α;
then, since α is orthogonal to ∆M , aα belongs to Z⊥

∆M
and (∗) implies (ii). Conversely

assume (ii). Applying III.16 Proposition and (∗) again we get that Z∩M ′
α acts trivially

on the line ϕ(V Uop∩M0
). But as α is orthogonal to ∆M , M normalizes M ′

α and hence
also Z ∩M ′

α; consequently the set of fixed points of Z ∩M ′
α in W is invariant under

M . As it contains ϕ(V Uop∩M0
) it contains ϕ(V ) since V Uop∩M0

generates V over M0,
and by hypothesis (H), Z ∩M ′

α acts trivially on W . �

Corollary Assume Hypothesis (H) and that moreover ϕ is a ZM(V )-eigenvector with
supersingular eigenvalue χ. Then ∆(σ) as in (II.7) is the set of α ∈ ∆, orthogonal to
∆M , such that ψV is trivial on Z0 ∩M ′

α and χ(τα) = 1.

Proof Assume α ∈ ∆(σ) is not orthogonal to ∆M . By II.7 Corollary 2 and Remark 5,
there is a proper parabolic subgroup Q =MQNQ ofM (containing M ∩B) such that σ

is trivial on NQ and is a subrepresentation of IndMQ (σ|MQ
). By III.12 Proposition (iii),

no eigenvalue of σ can be supersingular. Consequently any α in ∆(σ) is orthogonal to
∆M and the result follows from the proposition. �

In particular, we have determined P (σ) for a supersingular representation σ of M .
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E) Weights and eigenvalues of I(P, σ,Q)

III.18. In this section, for a supersingular triple (P, σ,Q) (I.5), we determine the
weights and eigenvalues of I(P, σ,Q). A slightly more general situation is useful in
part G) though.

Proposition Consider a B-triple (P, σ,Q) as in I.5 with P = MN , and assume
that ∆(σ) is orthogonal to ∆M . Let V be an irreducible representation of K, with
parameter (ψV ,∆(V )).

1) The following conditions are equivalent:
(i) V is weight of I(P, σ,Q),
(ii) VN0 is a weight of σ and ∆(V ) ∩∆(σ) = ∆Q ∩∆(σ).
2) If V is a weight of I(P, σ,Q), then the eigenvalues of ZG(V ) in I(P, σ,Q) are in

bijection with those of ZM (VN0) in σ via SGM .

The proof of 1) is in III.19–III.21 below, that of 2) in III.22, which actually gives
more precise information.

Remark 1 Consider the case where P = B and σ is the trivial representation of
B. Then P (σ) = G and I(B,σ,Q) = StGQ. From [Ly1, §8] we get that StGQ has a

unique weight V G
Q , with multiplicity one, and parameter (1,∆Q). That weight also

occurs with multiplicity one in IndGQ 1 and the natural map HomK(V
G
Q , Ind

G
Q 1) →

HomK(V G
Q ,St

G
Q) is an isomorphism; similarly V G

Q occurs with multiplicity one in IndGB 1

and the natural map HomK(V G
Q , Ind

G
Q 1) → HomK(V

G
Q , Ind

G
B 1) is an isomorphism.

Those isomorphisms are HG(V
G
Q )-equivariant, and the algebra HG(V

G
Q ), isomorphic to

the monoid algebra C[Z+/Z0], acts via the augmentation character sending τz to 1 for
z ∈ Z+. That special case will be used in the proof of part 2) of the proposition.

The proposition may be applied to a supersingular triple, by III.17 Corollary.

Corollary Assume (P, σ,Q) is a supersingular triple; if V is a weight of I(P, σ,Q)
then for any eigenvalue χ of ZG(V ) in I(P, σ,Q), we have ∆0(χ) = ∆M .

Proof By part 2) of the proposition, χ extends to a character of ZM (VN0) so ∆0(χ) ⊂
∆M . On the other hand the extended character is an eigenvalue of σ which is super-
singular so ∆M ⊂ ∆0(χ). �

Remark 2 In the context of the corollary, if P 6= G, then no eigenvalue of I(P, σ,Q)
is supersingular.

III.19. By III.12 Proposition, we immediately reduce the proof of part 1) of the
proposition to the case where P (σ) = G. In the course of the proof we shall glean
more information on the weights and eigenvalues.

We put ∆1 = ∆M and ∆2 = ∆(σ), so that ∆ is the union of two orthogonal subsets

∆1 and ∆2. As in II.4 we introduce the group G̃ = Gis. It appears as the product
of two factors G̃1 and G̃2 attached to ∆1, ∆2. Note that G̃ and G have the same
semisimple building and their actions on it are compatible. Let K̃ be the parahoric
subgroup of G̃ attached to the point x0. It decomposes as K̃1 × K̃2 where for i = 1, 2,
K̃i = K̃ ∩ G̃i is a parahoric subgroup of G̃i. Write ι for the natural map G̃ → G. For
i = 1, 2, let Mi be the Levi subgroup M∆i

of G. Then M ′
i = ι(G̃i) and Mi = ZM ′

i .
By II.7 Remark 4, M ′

1 and M ′
2 commute with each other, Z normalizes each of them

and G = ZM ′
1M

′
2.

Proposition (i) K̃ = ι−1(K), Z̃0 = ι−1(Z0) and ι(K̃i) = K ∩M ′
i for i = 1, 2.
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(ii) Let α ∈ Φ; then ι induces a group isomorphism of Ũ0
α = Ũα ∩ K̃ onto U0

α =
Uα ∩K.

Here Ũα denotes the root subgroup of G̃ attached to α ∈ Φ.

Proof By functoriality of the Kottwitz invariant, since G̃ is semisimple simply con-
nected, wG ◦ ι is trivial; on the other hand an element x ∈ G̃ fixes the point x0 if and
only if ι(x) fixes x0. So we have K̃ = ι−1(K) and intersecting with Z̃ = ι−1(Z) we get

Z̃0 = ι−1(Z0). If x ∈ K̃i then ι(x) ∈ K ∩ ι(G̃i) = K ∩M ′
i . Conversely if x ∈ G̃i and

ι(x) ∈ K then x ∈ K̃ ∩ G̃i = K̃i. This proves (i).

(ii) Let α ∈ Φ. As ι(K̃) ⊂ K we have ι(Ũ0
α) ⊂ U0

α. Conversely for x ∈ Ũα, ι(x) ∈ U0
α

implies x ∈ Ũα ∩ ι−1(K) = Ũ0
α by (i). �

Corollary We have K = Z0ι(K̃). For i = 1, 2, M0
i = Z0ι(K̃i).

Proof This comes from (ii) of the proposition, given III.7 Lemma. �

Remark By II.7 Remark 4, M ′
1 ∩M

′
2 is finite and central in G. As it is contained in

KerwG, it follows that Z
0 contains M ′

1 ∩M
′
2, which is equal to ι(K̃1) ∩ ι(K̃2).

III.20. Let now (ρ, V ) be an irreducible representation of K. We want to write V
as a tensor product adapted to the orthogonal decomposition ∆ = ∆1 ⊔∆2.

Write (ρ̃, Ṽ ) for the representation of K̃ obtained from ρ via ι : K̃ → K. By

III.19 Proposition (ii) ι(K̃) contains G
′
, so by III.11 Corollary ρ̃ is irreducible. Since

K̃ = K̃1 × K̃2, Ṽ decomposes as a tensor product Ṽ1 ⊗ Ṽ2 where for i = 1, 2, Ṽi is an
irreducible representation of K̃i which is trivial on K̃3−i.

To decompose V as a tensor product V1 ⊗ V2 of irreducible representations of K,
where V1 restricts to Ṽ1 via ι, and V2 to Ṽ2, we have to take some care, as K is not
the direct product M0

1 ×M0
2 .

Proposition (i) For i = 1, 2, let Vi be an irreducible representation of K trivial
on K ∩M ′

3−i. Then V1 ⊗ V2 is irreducible with parameter (ψV1ψV2 ,∆(V1) ∩ ∆(V2)).
Moreover, ∆(Vi) contains ∆3−i.

(ii) Let V be an irreducible representation of K. If V2 is an irreducible representation
of K trivial on K ∩M ′

1 with HomK∩M ′
2
(V2, V ) 6= 0, then V1 = HomK∩M ′

2
(V2, V ) is an

irreducible representation of K trivial on K ∩M ′
2 and V ≃ V1 ⊗ V2.

(iii) Let V be an irreducible representation of K. Then V ≃ V1 ⊗ V2 with Vi as in
(i) if and only if V is trivial on M ′

1 ∩M
′
2.

We will not need part (iii), we only included it for completeness.

Proof (i) Let Ṽi be the pullback of Vi to K̃ via ι. Then Ṽi is trivial on K̃3−i, so

Ṽ1 ⊗ Ṽ2 is an irreducible representation of K̃. Hence V := V1 ⊗ V2 is an irreducible
representation of K. If Q =MQNQ is a parabolic subgroup containing B, then

VN0
Q
≃ (V1)N0

Q
⊗ (V2)N0

Q
, as N0

Q = (N0
Q ∩M ′

1)× (N0
Q ∩M ′

2).

Hence by III.10, ∆Q ⊂ ∆(V ) if and only if ∆Q ⊂ ∆(Vi) for i = 1, 2, so ∆(V ) =
∆(V1)∩∆(V2). Taking Q = B, we deduce ψV = ψV1ψV2 . As K ∩M ′

3−i is trivial on Vi,
we get ∆3−i ⊂ ∆(Vi).

(ii) This follows from Clifford theory [Abe, Lemma 5.3].
(iii) The “if” direction is obvious. Assume that V is trivial on M ′

1 ∩M
′
2. Let W

be an irreducible representation of K ∩M ′
2 such that HomK∩M ′

2
(W,V ) 6= 0. Via ι, W

is an irreducible representation of K̃2, which we consider as a representation W̃ of K̃
trivial on K̃1. As V , henceW , is trivial ι(K̃1)∩ι(K̃2) by assumption, it follows that W̃
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is trivial on Ker ι, so we have extended W to an irreducible representation of K ∩G′,
which is trivial on K ∩M ′

1. We may view W as an irreducible representation of G′

and we choose an irreducible representation V2 of G such that W occurs in V2|G′ . By
III.11 Corollary W ≃ V2|G′ and hence HomK∩M ′

2
(V2, V ) 6= 0. By part (ii), V ≃ V1⊗V2

with Vi as in (i). �

III.21. Let (P, σ,Q) be a B-triple with P (σ) = G. We are now finally ready to
determine the weights of eσ ⊗ StGQ. We keep the notation of III.19. Recall that by

construction eσ is trivial on M ′
2 and StGQ is trivial on M ′

1.

Let us fix a weight V of I(P, σ,Q) = eσ⊗StGQ. We decompose the pullback Ṽ of V to

a representation of K̃ = K̃1× K̃2, via ι, as Ṽ ≃ Ṽ1⊗ Ṽ2. Therefore HomK(V, eσ⊗StGQ)
injects into

HomK̃(Ṽ , eσ ⊗ StG̃
Q̃
) ≃ HomK̃(Ṽ1,

eσ)⊗HomK̃(Ṽ2,St
G̃
Q̃
),

where we used that K̃1 acts trivially on Ṽ2,St
G̃
Q̃

and K̃1 acts trivially on Ṽ1,
eσ. As

StG̃
Q̃

has a unique weight (III.18), Ṽ2 is the pullback via ι of the unique weight V2

of StGQ. By lifting via ι : K̃2 → ι(K̃2) = K ∩ M ′
2, we deduce HomK∩M ′

2
(V2, V ) =

HomK̃2
(Ṽ2, Ṽ ) 6= 0. By III.20 Proposition (ii), V ≃ V1 ⊗ V2 for some irreducible rep-

resentation V1 of K trivial on K ∩ M ′
2. We also see by III.20 Proposition (i) and

III.18 Remark 1 that ∆(V ) ∩ ∆2 = ∆(V2) ∩ ∆2 = ∆Q ∩ ∆2. The natural injec-

tion HomK(V2,St
G
Q) →֒ HomK∩M ′

2
(V2,St

G
Q) is an isomorphism of 1-dimensional vector

spaces, because the right-hand side is isomorphic to HomK̃(Ṽ2,St
G̃
Q̃
) via ι. Thus the

following lemma, in our situation, implies that V1 is a weight of eσ, so VN0 is a weight
of σ. This proves that (i) implies (ii) in III.18 Proposition 1).

Lemma Let σ1 be a representation of G trivial on M ′
2, σ2 a representation of G

trivial on M ′
1. Let V1 be an irreducible representation of K trivial on K ∩ M ′

2, V2
an irreducible representation of K trivial on K ∩ M ′

1. Assume that the inclusion
HomK(V2, σ2) → HomK∩M ′

2
(V2, σ2) is an isomorphism. Then the natural inclusion of

HomK(V1, σ1)⊗HomK(V2, σ2) into HomK(V1 ⊗ V2, σ1 ⊗ σ2) is an isomorphism.

Proof Look first at points fixed by K ∩M ′
2 in Hom(V1⊗V2, σ1⊗σ2). As K ∩M ′

2 acts
trivially in V1 and σ1, it is simply Hom(V1, σ1)⊗HomK∩M ′

2
(V2, σ2), so by the assump-

tion it is also Hom(V1, σ1)⊗HomK(V2, σ2). Now K acts trivially on HomK(V2, σ2), so
taking fixed points under K indeed gives HomK(V1, σ1)⊗HomK(V2, σ2). �

We now prove that (ii) implies (i) in III.18 Proposition 1). Let V be an irre-
ducible representation of K satisfying (ii). From III.12 Proposition (i), V is a weight

of IndGP σ ≃ eσ ⊗ IndGP 1. Therefore, V is a weight of I(P, σ,Q′) for some parabolic
Q′ ⊃ P . As we have already proved that (i) implies (ii) in III.18 Proposition 1), we
deduce that ∆Q′ ∩∆2 = ∆Q ∩∆2, so Q

′ = Q. �

III.22. It remains to prove part 2) of III.18 Proposition. We in fact establish some-
thing more precise, which gives what we need by III.12 Proposition. Also, by that
proposition we may assume P (σ) = G.

Lemma 1 Let (ρ, V ) be a weight of I(P, σ,Q) where P (σ) = G.

(i) The quotient map IndGQ 1 → StGQ induces an HG(V )-isomorphism

HomK(V, Ind
G
Q
eσ) −→ HomK(V, I(P, σ,Q)).
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(ii) The inclusion IndGQ 1 → IndGP 1 induces an HG(V )-isomorphism

HomK(V, Ind
G
Q
eσ) −→ HomK(V, IndGP σ).

Proof It is clear that the maps in (i), (ii) are HG(V )-equivariant. As in III.21 write
V as V1 ⊗ V2 where V2 is the unique weight of StGQ (it has parameter (1,∆Q)). By
III.21 Lemma (the hypothesis is verified by pulling back via ι, as in III.21), we get
isomorphisms

HomK(V1 ⊗ V2,
eσ ⊗ StGQ) ≃ HomK(V1,

eσ)⊗HomK(V2,St
G
Q),

HomK(V1 ⊗ V2,
eσ ⊗ IndGQ 1) ≃ HomK(V1,

eσ)⊗HomK(V2, Ind
G
Q 1),

HomK(V1 ⊗ V2,
eσ ⊗ IndGP 1) ≃ HomK(V1,

eσ)⊗HomK(V2, Ind
G
P 1).

The maps IndGQ 1 → StGQ and IndGQ 1 → IndGP 1 induce on each side vertical maps
which give commutative diagrams. As the vertical maps on the right-hand side are
isomorphisms by III.18 Remark 1, so are the vertical maps on the left-hand side, and
(i), (ii) are implied by the following well-known lemma. �

Lemma 2 Let H ′ be a closed subgroup of a locally profinite group H and indHH′ the
smooth compact induction functor. Let V be a smooth representation of H ′ and W a
smooth representation of H. Then there is an isomorphism Φ of representations of H,
W ⊗ indHH′ V

∼
−→ indHH′(W ⊗ V ), given by the formula

Φ(w ⊗ f) : h 7−→ hw ⊗ f(h) for w ∈W, f ∈ indHH′ V.

F) Irreducibility of I(P, σ,Q)

III.23. Proposition Let (P, σ,Q) be a supersingular triple. Then I(P, σ,Q) is irre-
ducible.

Proof It is enough to prove that if V is an irreducible representation of K and
ϕ ∈ HomK(V, I(P, σ,Q)) is a ZG(V )-eigenvector with eigenvalue χ, then the subrep-
resentation X of I(P, σ,Q) generated by ϕ(V ) is I(P, σ,Q). So we fix such a situation
and write (ψV ,∆(V )) for the parameter of V . We prove the result by induction on the
cardinality of ∆(V ).

By III.14 Corollary 1 we have X = I(P, σ,Q) if ∆(V ) ⊂ ∆P (σ), so we assume that

this is not the case. We pick α in ∆(V ) but not in ∆P (σ), and let V ′ be an irreducible
representation of K with parameters (ψV ,∆(V ) − {α}). Note that V ′

U0 and VU0 are
isomorphic, so that χ defines a character of ZG(V

′) via the Satake isomorphism, which
we also denote by χ.

Via ϕ, X is a quotient of χ⊗ZG(V ) ind
G
K V . By III.18 Corollary ∆0(χ) = ∆M , hence

α /∈ ∆0(χ). By the change of weight theorem (IV.2 Corollary), χ ⊗ZG(V ) ind
G
K V and

χ ⊗ZG(V ′) ind
G
K V

′ are isomorphic unless α is orthogonal to ∆0(χ), ψV is trivial on

Z0 ∩M ′
α and χ(τα) = 1 (see III.16 for the notation τα). By induction then, we are

reduced to the case where α is orthogonal to ∆0(χ), ψV is trivial on Z0 ∩M ′
α and

χ(τα) = 1. As ∆0(χ) = ∆M , the conditions imply (III.17 Corollary) that α belongs to
∆(σ) ⊂ ∆P (σ) contrary to assumption. �

G) Injectivity of the parametrization

III.24. Let (P1, σ1, Q1) and (P2, σ2, Q2) be supersingular triples such that

I(P1, σ1, Q1) ≃ I(P2, σ2, Q2).
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Let V be a weight of I(P1, σ1, Q1), with parameter (ψV ,∆(V )), and χ an eigenvalue
of ZG(V ) in I(P1, σ1, Q1). We have seen ∆0(χ) = ∆P1

(III.19 Corollary) so we deduce
∆P1

= ∆P2
and P1 = P2. Write Pi = MiNi as usual. By III.18 Proposition, VN0

i
is a

weight of σi with supersingular eigenvalue χ (via SGMi
). Then III.17 Corollary implies

that P (σ1) = P (σ2). Taking the ordinary part functor [Eme, Vig3] with respect to

P (σ1), we deduce that
eσ1⊗St

P (σ1)
Q1

and eσ2⊗St
P (σ2)
Q2

are isomorphic as representations

of P (σ1) = P (σ2). From II.8 Remark, we get Q1 = Q2 and σ1 ≃ σ2. This completes
the proof of the uniqueness in I.5 Theorem 4.

We insert here a consequence of the irreducibility of I(P, σ,Q) and of the injectivity
of the parametrization, which we shall use in part H) and generalize in Chapter VI.

Proposition Let P = MN be a parabolic subgroup of G containing B, and σ a
supersingular representation of M , inflated to P . Then the irreducible components
of IndGP σ are the I(P, σ,Q), Q a parabolic subgroup of G with P ⊂ Q ⊂ P (σ); each

occurs with multiplicity 1. In particular IndGP σ has finite length.

Proof The representation Ind
P (σ)
P σ is isomorphic to eσ⊗ Ind

P (σ)
P 1 (III.22 Lemma 2),

which has a filtration with subquotients eσ ⊗ St
P (σ)
Q , one for each parabolic subgroup

Q with P ⊂ Q ⊂ P (σ). The proposition then follows from III.23 Proposition by
parabolic induction from P (σ) to G. �

H) Surjectivity of the parametrization

III.25. Let (π,W ) be an irreducible admissible representation of G. To prove that
π has the form I(P, σ,Q) for a supersingular triple (P, σ,Q), we use induction on the
semisimple rank of G.

If ∆0(χ) = ∆ for all weights V of π and corresponding eigenvalues χ, then π is
supersingular and π ≃ I(G,π,G). So we fix a weight V for π with ZG(V )-eigenvalue
χ such that ∆0(χ) 6= ∆. By construction π is a quotient of χ⊗ZG(V ) ind

G
K V .

Let P =MN be the parabolic subgroup such that ∆P = ∆0(χ). Consider σ = χ⊗
indMM0 VN0 . By the filtration theorem (I.6 Theorem 6, proved in Chapter V), χ⊗indGK V

has a filtration with subquotients Ie(P, σ,Q) = IndGPe
(eσ ⊗ StPe

Q ) where P ⊂ Q ⊂ Pe.

So π is a quotient of some Ie(P, σ,Q). If Pe 6= G, then by [HV2, Proposition 7.9] (note
that σ has a central character by III.12 Lemma) there is an irreducible admissible
representation ρ of the Levi quotient of Pe such that π is a quotient of IndGPe

ρ. By
the induction hypothesis and III.24 Proposition, ρ is an irreducible constituent of
IndPe

P1
ρ1 where P1 is a parabolic subgroup of Pe containing B, and ρ1 is a supersingular

representation of the Levi quotient of P1. Then π is an irreducible constituent of
IndGP1

ρ1, so by III.24 Proposition it is isomorphic to I(P1, ρ1, Q
′) for some Q′.

If Pe = G, π is a quotient of some eσ ⊗ StGQ. By II.8 Proposition and Remark, π is

isomorphic to eσπ ⊗ StGQ for some irreducible admissible representation σπ of M . The

eigenvalues of σπ are those of π by III.18 Proposition, and since ∆M = ∆0(χ), σπ has
a supersingular eigenvalue. As ∆M 6= ∆, the induction hypothesis implies that σπ is
supersingular, cf. III.18 Remark 2, and π ≃ I(P, σπ, Q). �

III.26. It is worth commenting on the admissibility assumptions in our results.
The reader may notice that, since admissibility plays no rôle in Chapters IV and
V, our results would still be true if instead of irreducible admissible representations,
we considered irreducible representations (σ,W ) such that for some weight (ρ, V ) of σ,
HomK(V,W ) contains an eigenvector for ZG(V ). But the classification thus obtained
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would depend on the choice of K, S, B, whereas we shall see in Chapter VI that with
the admissibility assumption it does not depend on those choices. Of course one may
hope that the condition above actually implies admissibility or even, as is the case for
complex representations, that any irreducible representation of G is admissible. Note
that because of our admissibility condition we do not assert that G has any supersin-
gular representation. One of us (F.H.) can prove, by a global argument, that when
G = GLn(F ) and F has characteristic 0, supersingular representations of G exist.

IV. Change of weight

IV.1. The main goal of this chapter is to establish our change of weight theorem
(IV.2 Corollary). Before commenting on the method of proof, let us state precisely
what we prove here. We fix an irreducible representation ρ of K on a space V , with
parameter (ψV ,∆(V )). We consider the “universal” representation indGK V , which we

see as a sub-representation of IndGB(ind
Z
Z0(VU0)) via the injective canonical intertwiner

(III.13.1).
We assume that ∆(V ) is non-empty, and we choose α ∈ ∆(V ) and let (ρ′, V ′) be the

irreducible representation of K with parameter (ψV ,∆(V ) − {α}). Similarly we con-
sider the universal representation indGK V

′ as a subrepresentation of IndGB(ind
Z
Z0 V ′

U0).
To compare the two universal representations, we fix non-zero vectors v in V and

v′ in V ′ which are invariant under U0
op. The image of v in VU0 is then a basis of

VU0 , and similarly for v′. Using those images as basis vectors, we obtain embed-
dings of indGK V and indGK V

′ into the same representation IndGB(ind
Z
Z0 ψV ). More-

over the Satake isomorphism induces an algebra homomorphism HG(V ) → HZ(ψV );

the algebra HZ(ψV ) acts on indZZ0 ψV , hence on IndGB(ind
Z
Z0 ψV ), and the embedding

indGK(V ) → IndGB(ind
Z
Z0 ψV ) is HG(V )-equivariant. We have similar properties for V ′.

Note that HG(V ) and HG(V
′) have the same image in HZ(ψV ), so we identify them

with that common image, which we write HG, and similarly we write ZG for their
common centre.

For z in Z normalizing ψV , we have the function τz in HZ(ψV ) with support Z0z
and value 1C at z. Recall from III.16 the notation aα and τα = τaα , when ψV is trivial
on Z0 ∩M ′

α.

Theorem Let z ∈ Z+. Assume that z normalizes ψV and that |α|(z) < 1. We have:
(i) τz(ind

G
K V ) ⊂ indGK V

′.

(ii) If ψV is not trivial on Z0 ∩M ′
α, then τz(ind

G
K V

′) ⊂ indGK V .

(iii) If ψV is trivial on Z0 ∩M ′
α, then τz(1− τα)(ind

G
K V

′) ⊂ indGK V .

Remark In (iii) τz(1− τα) = τz − τzaα belongs to ZG(V ) if z ∈ ZψV
and zaα belongs

to Z+; moreover, if |α|(z) is small enough, zaα belongs to Z+.

IV.2. We obtain our change of weight theorem:

Corollary Let χ be a character of ZG and assume that α /∈ ∆0(χ). Then χ⊗ZG
indGK V

and χ ⊗ZG
indGK V

′ are isomorphic unless α is orthogonal to ∆0(χ), ψV is trivial on
Z0 ∩M ′

α and χ(τα) = 1.

We remark that χ(τα) is well defined if α is orthogonal to ∆0(χ) (III.4, III.16
Notation).

Proof Choose z as in the theorem, with χ(τz) 6= 0. For example, we can take for
z the element zα of III.4, since α /∈ ∆0(χ): then χ(τzα) 6= 0. Multiplying by τz in
IndGB(ind

Z
Z0 ψV ) is ZG-linear, so, when ψV is not trivial on Z0 ∩M ′

α, by (i) and (ii) of
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the theorem, τz induces G-equivariant maps from indGK V to indGK V
′ and back. The

composites in both directions are given by the action of τ2z . Tensoring with χ, we see
that the representations χ ⊗ZG

indGK V and χ ⊗ZG
indGK V

′ are isomorphic, because
χ(τ2z ) 6= 0. That gives the desired result when ψV is non-trivial on Z0 ∩M ′

α.
Assume then that ψV is trivial on Z0 ∩M ′

α. Replacing z by a positive power, we
may assume zaα ∈ Z+. If α is not orthogonal to ∆0(χ) then there is β in ∆0(χ) with
|β|(zaα) < 1 and then χ(τzaα) = 0, so the same reasoning applies, using (iii) instead
of (ii). It similarly applies if α is orthogonal to ∆0(χ) and χ(τα) 6= 1. �

IV.3. Let us now comment on the proof of IV.1 Theorem. We abbreviate ψ =
ψV , J = ∆(V ), J ′ = J − {α}, and X = IndGB(ind

Z
Z0 ψ).

We first remark that indGK V is generated, as a representation of G, by a single
element, the function with support K and value v at 1G. We write f for its image
in X : it is described explicitly in IV.4 below. Similarly we have a function f ′ in X ,
corresponding to v′, which generates the subrepresentation indGK V

′.
Let I be the pro-p Iwahori subgroup of G which is the inverse image in K of Uop

k
14.

We use work of the fourth-named author [Vig4] which determines the structure of the
Hecke algebra H = H(G, I), the intertwining algebra in G of the trivial character of
I. The space X I is a right module over H, and for x ∈ X I and T in H, xT belongs
to the G-subspace generated by x. By construction f and f ′ belong to X I and to
prove the theorem we show that: for (i) τzf ∈ f ′H; for (ii) τzf

′ ∈ ZGf + fH; for (iii)
τz(1 − τα)f

′ ∈ ZGf + fH. That is not an easy matter and takes up the rest of this
chapter.

IV.4. Let us first identify f as an element of X I ; the obvious analogue will hold
for f ′.

As G = BK it is enough to specify f at g ∈ K. Going through the construction of
the embedding indGK V → IndGB(ind

Z
Z0 ψ) we get that for g in K, f(g) is the function in

indZZ0 ψ with support Z0 and value ε(g) at 1, where gv = ε(g)v in VU0 , bars indicating
the images under V → VU0 .

The value ε(g) depends only on the image g of g in K/K(1), we write accordingly
ε(g). By [HV2, Corollary 3.19] we have ε(g) 6= 0 if and only if g belongs to BkPJ,kB

op
k

(recall from III.9 Definition that PJ,k is the stabilizer in Gk of the kernel of the quotient
map V → VU0); that last set is also PJ,kU

op
k . We can be more precise; we obviously have

ε(gx) = ε(g) for x ∈ Uop
k , so it is enough to describe ε|PJ,k

. Since PJ,k is the stabilizer

in Gk of the kernel of V → VU0 , the restriction ε|PJ,k
is a character PJ,k → C×; as such

it is trivial on unipotent elements. On Zk it is given by the action of Zk on V Uop
k or

VUk
, so it is equal to ψ there. In other words, on PJ,k the character ε is simply the

(unique) extension of ψ to PJ,k.

IV.5. To relate f and f ′ we shall express both of them in terms of Hecke operators
in the subalgebra H(K, I) of H(G, I) acting on a single function f0 in X I .

We first describe the double coset spaces I\G/I and B\G/I. Recall that the Weyl
group W0 of G can be seen as N 0/Z0 or Nk/Zk. As G = BK the inclusion of K in
G induces a bijection B0\K/I ≃ B\G/I; as moreover I contains the normal subgroup
K(1) of K, reduction mod K(1) induces a bijection B0\K/I ≃ Bk\Gk/U

op
k and the

Bruhat decomposition in Gk gives a bijection Nk/Zk ≃ Bk\Gk/U
op
k . All in all, we see

that the map N 0 → B\G/I g 7→ BgI induces a bijection W0 = N 0/Z0 ≃ B\G/I.

14Beware of the notation: here, for convenience, we write I for a pro-p “lower” Iwahori subgroup.
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On the other hand, the map N → I\G/I induces a bijection N/(Z∩K(1)) ≃ I\G/I
and, by restriction, a bijection N 0/(Z∩K(1)) ≃ I\K/I. Under reduction moduloK(1)
we get the bijection Nk ≃ Uop

k \Gk/U
op
k given by the Bruhat decomposition.

Notation We put Z(1) = Z ∩K(1); it is a normal subgroup of Z, and the maximal
pro-p subgroup of Z0. We write 1W for the group N/Z(1) and 1W0 for the group
N 0/Z(1) (naturally isomorphic to Nk), W for the group N/Z0. We have obvious
exact sequences of groups

1 −→ Zk −→ 1W0 −→W0 −→ 1,

1 −→ Zk −→ 1W −→W −→ 1.

Moreover W is the semi-direct product of Λ = Z/Z0 with W0 viewed as N 0/Z0. We
also put 1Λ = Z/Z(1) and 1Λ

+ = Z+/Z(1).
For g in G we write T (g) for the double coset IgI viewed as an element of H(G, I).

On an element ϕ in X I it acts via

(IV.5.1) (ϕT (g))(h) =
∑

x∈I/(I∩g−1Ig)

ϕ(hxg−1) for h ∈ G.

When g ∈ N , T (g) depends only on the class w of g modulo Z(1), and we write T (w)
for T (g). In a similar manner, reduction moduloK(1) gives an isomorphism of H(K, I)
onto H(Gk, U

op
k ); accordingly for g ∈ K, T (g) depends only on the reduction g of g in

Gk and we write also T (g). In fact we shall also have use of the Hecke algebras with
integer coefficients HZ(G, I) and HZ(K, I) (isomorphic to HZ(Gk, U

op
k )) and we use

the same notations T (g), T (w), T (g).

IV.6. Basic generators and relations for HZ(G, I) and HZ(K, I) are given in [Vig4].
By tensoring with C they give generators and relations for H(G, I) and H(K, I). We
now state the results we use, referring to loc. cit. for details. We need a bit more
notation, though.

For β ∈ ∆, we let sβ be the corresponding reflection in W0. We put Σ0 = {sβ |
β ∈ ∆}. The pro-p Iwahori subgroup I is attached to an alcove a in the (semisimple)
Bruhat-Tits building of G, with vertex the special point x0, and we let Σ be the set of
reflections across the walls of a, so that Σ0 appears as the subset of reflections across
walls passing through x0. Then Σ generates an affine Weyl group W a canonically
identified with the subgroup (N ∩KerwG)/Z

0 of W ; also W is the semi-direct product
of its normal subgroup W a and the subgroup Ω stabilizing the alcove a. We let ℓ be
the length function of the Coxeter system (W a,Σ) and we extend it to W , trivially
on Ω, i.e. so that ℓ(wω) = ℓ(w) for w ∈ W a, ω ∈ Ω; on W0 it restricts to the length
function of the Coxeter system (W0,Σ0). Inflating through 1W → W we get a length
function on 1W and 1W0, still written ℓ. The operators T (w) in HZ(G, I) for w ∈ 1W
satisfy the “braid relations”

(IV.6.1) T (w)T (w′) = T (ww′) when ℓ(ww′) = ℓ(w) + ℓ(w′).

There are other relations, the “quadratic relations” [Vig4, Proposition 4.3]. Essentially
there is one such relation for each s ∈ Σ. It comes directly from the finite field case,
treated in [CE, 6.8]. For s ∈ Σ0, s = sβ for some β ∈ ∆, we may describe the relation
as follows: let ns be a lift of sβ in Nk ∩M

′
β,k (so that n2s belongs to Zk ∩M

′
β,k); then

the quadratic relation for T (ns) is:

(IV.6.2) T (ns)(T (ns)− cns) = qsT (n
2
s),
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where qs is a power of p, qs > 1 and

(IV.6.3) cns = (qs − 1)|Zk,s|
−1(

∑

t∈Zk,s

T (t)),

where Zk,s is the group Zk ∩ M ′
β,k. The number (qs − 1)|Zk,s|

−1 is an integer and

T (ns)cns = cnsT (ns). Note that cns actually depends only on s, so we may also write
it cs.

Remark In the C-algebra H(G, I), qs equals 0, so the relations simplify somewhat.
We always embed the group algebra of Zk over C into H(G, I) by sending t to T (t);
for s = sβ as above we have ψ(cns) = −1 if ψ is trivial on Zk,s (i.e. β belongs to the
set ∆(ψ) of III.8, which contains J), and ψ(cns) = 0 otherwise.

Proposition There is a unique extension of the map s 7→ ns from Σ0 to Nk to a
map w 7→ nw from W0 to Nk such that nww′ = nwnw′ for w, w′ in W0 such that
ℓ(ww′) = ℓ(w) + ℓ(w′).

Proof (Another proof is in [Vig4, Proposition 3.4].) Uniqueness is obvious, as we must
have nw = ns1 · · ·nsr for each reduced decomposition w = ss · · · sr of w in W0 with the
si in Σ0. Existence will be consequence of [Bk, §1, no 5, Proposition 5] once we prove:

(∗) For s, s′ distinct in Σ0, and m the order of ss′, then (nsns′)
ℓ = (ns′ns)

ℓ if m = 2ℓ
and (nsns′)

ℓns = (ns′ns)
ℓns′ if m = 2ℓ+ 1.

To prove (∗) we may assume that Gk is semisimple simply connected of relative
rank 2, with W0 generated by s and s′, corresponding to the two simple roots β and
β′. But then the result follows from [BT1, 6.1.8] applied to the valued root datum
associated to (Gk,Sk,Bk): indeed we can always put reduced roots of Φ in a “circular
order” as required by loc. cit., with β first and β′ in the m-th position, in which case
loc. cit. formula (9) gives exactly the required equality (∗) above. �

Henceforward we use the extension w 7→ nw, and we put νw = n−1
w−1 for w ∈W0; in

particular if w, w′ in W0 satisfy ℓ(ww′) = ℓ(w) + ℓ(w′), then νww′ = νwνw′ .

IV.7. We are now ready to define f0 (as promised in IV.5) and study the action of
H(K, I) on it. We let w0 be the longest element in W0.

Definition The function f0 in X I has support Bνw0
I and its value at νw0

is the
function eψ in indZZ0 ψ with support Z0 and equal to ψ on Z0.

Note the abuse of notation: we should choose a representative ν̃w0
of νw0

in N 0 but
neither the coset Bν̃w0

I nor the value at ν̃w0
depend on that choice. We shall allow

similar abuse of notation below. Note also that f0 depends on the choice of νw0
.

Notation For z ∈ Zk and w ∈ W0 we put w · z = nwzn
−1
w (it is simply the natural

action of w ∈ W0 = Nk/Zk on Zk); more generally we shall use a dot to denote a
conjugation action, which will be clear from the context.

Lemma For z ∈ Zk we have z−1f0 = ψ(w0 · z
−1)f0 = f0T (z) = τw0·zf0.

The last equality in the lemma will be generalized below (IV.10).

Proof Since Z0 normalizes I, the first equality in the lemma comes from an immediate
computation, whereas the equality f0T (z) = z−1f0 comes from (IV.5.1). The equality
τzf0 = ψ(z−1)f0 is equally easy. �

Proposition Let w ∈W0. Then f0T (nw) has support Bνw0wI and value eψ at νw0w.

Proof As f0T (nw) is I-invariant, it is enough to compute its value at νw′ for w′ in
W0. By definition (f0T (nw))(g) =

∑

f0(ghn
−1
w ) for g ∈ G, where the sum runs over h
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in I/(n−1
w Inw ∩ I). Assume that for such an h, f0 is not 0 at νw′hn−1

w . Then looking
modulo K(1), we get that νw′Uop

k n−1
w ∩ Bkνw0

Uop
k is non-empty, and, multiplying on

the right by ν−1
w0

, that νw′Uop
k n−1

w ν−1
w0

∩Bk 6= ∅ and hence Bkνw′Uop
k ∩Bkνw0

nwU
op
k 6= ∅;

by the Bruhat decomposition in Gk, that implies w′ = w0w. Assume that w′ = w0w;
then h belongs to ν−1

w′ B0νw0
Inw. However note that ℓ(w0w)+ℓ(w

−1) = ℓ(w0) (because
w0 is the longest element in W0), so that νw′νw−1 = νw0

; we deduce that the image of
h in Gk belongs to n

−1
w Bop

k nw∩U
op
k = n−1

w Uop
k nw∩U

op
k . But that shows that h belongs

to n−1
w Inw ∩ I and consequently (f0T (nw))(νw0w) = f0(νw0wn

−1
w ) = f0(νw0

) = eψ. �

Corollary f =
∑

w∈w0WJ

f0T (nw).

Proof By the description in IV.4, for w in W0, f(νw) is equal to eψ if w belongs to
WJ and is 0 otherwise: we only have to remark that PJ,kU

op
k = BkWJU

op
k , and since

ψ(Zk ∩M
′
β,k) = 1 for β ∈ J , the character ε of IV.4 is trivial on νw for w ∈WJ . �

IV.8. We need to determine the action of cns on f0T (nw) for s = sβ, β ∈ J . We
recall that J ⊂ ∆(ψ).

Proposition Let β ∈ ∆(ψ), s = sβ and z ∈ Zk ∩M ′
∆(ψ),k. For w ∈ w0W∆(ψ), we

have

f0 T (nw)T (z) = f0 T (nw) and

f0 T (nw)cns = −f0 T (nw).

In particular fcns = −f .

Proof By III.10 Example 2, ψ is trivial on Zk ∩M
′
∆(ψ),k. By IV.7 Lemma then, we

get f0T (z) = f0 for z ∈ Zk ∩ w0M
′
∆(ψ),kw

−1
0 . The braid relation gives T (nw)T (t) =

T (w·t)T (nw) for t ∈ Zk, w ∈W0. For z ∈ Zk∩M
′
∆(ψ),k we have w · z ∈ Zk∩M

′
∆(ψ),k for

w ∈W∆(ψ), hence (w0w) ·z ∈ Zk ∩w0M
′
∆(ψ),kw

−1
0 , and consequently f0T (nw0w)T (z) =

f0T (nw0w). That gives the first assertion.
The second one comes from the expression of cns in (IV.6.3), noting that qs gives 0

in C; the last assertion follows from IV.7 Corollary. �

IV.9. Notation Let wJ be the longest element in WJ ⊂ W0 and put wJ = w0wJ
(note that wJ and w0 have order 2). We put fJ = f0T (nwJ ).

Lemma 1 For w ∈WJ we have (i) ℓ(wJw) = ℓ(wJ)+ℓ(w), (ii) T (nwJw) = T (nwJ )T (nw),
and (iii) f0T (nwJw) = fJT (nw).

Proof We have ℓ(wJw) = ℓ(w0wJw) = ℓ(w0) − ℓ(wJw); if w ∈ WJ we also have
ℓ(wJw) = ℓ(wJ ) − ℓ(w) so we get ℓ(wJw) = ℓ(wJ ) + ℓ(w); by the braid relation
T (nwJw) = T (nwJ )T (nw), and the last assertion follows. �

By Lemma 1, and IV.7 Corollary, IV.8 Proposition, we have f =
∑

w∈WJ

fJT (nw) and

for w ∈WJ

(IV.9.1) fJT (nw)cns = −fJT (nw).

For s ∈ Σ0 we put T ∗(ns) = T (ns)− cns , so that in HZ(K, I) we get

T (ns)T
∗(ns) = T ∗(ns)T (ns) = qsT (n

2
s) (= 0 in H(K, I)).

That definition can be extended to defining T ∗(nw) for w ∈ W0, so that T ∗(nww′) =
T ∗(nw)T

∗(nw′) if ℓ(ww′) = ℓ(w) + ℓ(w′) [Vig4, Proposition 4.13]. We now use the
Bruhat order ≤ on the Coxeter group WJ .
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Proposition For w ∈WJ we have

fJ
(

∑

v≤w

T (nv)
)

= fJT
∗(nw) and in particular

f = fJT
∗(nwJ

) = f0T (nwJ )T ∗(nwJ
).

A similar proposition can be found in [Oll2, Lemma 5.1].

Proof We use induction on ℓ(w). The result is true for w = 1. If ℓ(w) = ℓ ≥ 1, we
write w = w′s with ℓ(w′) = ℓ− 1, ℓ(s) = 1. As ℓ(w) = ℓ(w′) + ℓ(s) we have T ∗(nw) =
T ∗(nw′)T ∗(ns) = T ∗(nw′)(T (ns) − cns). By induction fJT

∗(nw′) =
∑

v≤w′

fJT (nv).

Remembering that for v in WJ we have T (nwJ )T (nv) = T (nwJv) and by (IV.9.1)
fJT (nv)cns = −fJT (nv). So finally we obtain

fJT
∗(nw) = fJT

∗(nw′)(T (ns) + 1).

By induction fJT
∗(nw′) =

∑

v≤w′

fJT (nv), so we want to compute A =
∑

v≤w′

fJT (nv)T (ns).

Divide the set of v ≤ w′ in the disjoint union X ⊔ Y ⊔ Y s where

Y = {v ∈WJ , v < vs ≤ w′},
Y s = {v ∈WJ , vs < v ≤ w′},
X = {v ∈WJ , v ≤ w′ and vs 
 w′}.

In A, the subsum over Y ⊔ Y s is
∑

v∈Y

fJ(T (nvs) + T (nv))T (ns).

But for v ∈ Y , we have v < vs so T (nvs) = T (nv)T (ns) and fJ(T (nvs)+T (nv))T (ns) =
fJT (nv)(T (ns) + 1)T (ns). By (IV.9.1) that equals fJT (nv)T

∗(ns)T (ns) which is 0
because T ∗(ns)T (ns) = 0 in H. So A =

∑

v∈X
fJT (nv)T (ns). Since for v ∈ X, we have

v < vs we get A =
∑

v∈X
fJT (nvs).

The proof will be complete once we get:

Lemma 2 Xs = {v ∈WJ , v ≤ w and v 
 w′}.

Proof We use properties of the Bruhat order [Deo, Theorem 1.1 (II) (ii)]. Let a, b in
WJ with a ≤ b. Then:

(1) If a < as then a ≤ bs; (2) if b > bs then as ≤ b.

Let v ∈ X, i.e. v ≤ w′, vs 
 w′. Then by (2) applied to a = v, b = w, we get vs ≤ w.
Conversely let v ∈ WJ verify v ≤ w and v 
 w′; if v < vs then v ≤ w′ by (1) applied
to a = v, b = w, which is a contradiction; so vs < v ≤ w, which gives vs ≤ w′ by (1)
applied to a = vs and b = w. That proves the lemma. �

IV.10. We now turn to the promised generalization of IV.7 Lemma which will be
used in IV.15.

Proposition Let z ∈ Z with z−1 ∈ Z+. Assume that νw0
· z normalizes ψ. Then

f0T (z) = τνw0
·zf0.

Remark If z−1 belongs to Z+, νw0
· z also belongs to Z+, and conversely.

Proof As both terms are I-invariant, we only need to check that they are equal at
νw for w ∈ W0. Now (f0T (z))(g) =

∑

f0(ghz
−1) for g ∈ G, where the sum runs over

h ∈ I/(z−1Iz ∩ I). But I has an Iwahori decomposition and the assumption that z−1
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belongs to Z+ gives z−1(I ∩ U)z ⊂ I ∩ U , z−1(I ∩ Uop)z ⊃ I ∩ Uop, thus the inclusion
of I ∩ U into I induces of bijection of (I ∩ U)/(z−1Iz ∩ U) onto I/(z−1Iz ∩ I), and it
is enough to let h run through (I ∩U)/(z−1Iz ∩U). For such an h, νwhz

−1 belongs to
Bνw0

I only if w = w0: indeed νwhz
−1 ∈ BnwU and Bνw0

I ⊂ Bnw0
U , so the Bruhat

decomposition in G implies w = w0. Consequently both terms of the desired equality
vanish at νw for w 6= w0.

Consider now (f0T (z))(νw0
). Let h ∈ I ∩ U with νw0

hz−1 = bνw0
j for some b in

B, j in I; again by the Iwahori decomposition of I, we may assume that j belongs
to I ∩ U and then the equality h = (ν−1

w0
bνw0

)z(z−1jz), where ν−1
w0
bνw0

z ∈ Bop and

z−1jz ∈ U , shows that h is equal to z−1jz and belongs to z−1Iz ∩ U ; consequently
(f0T (z))(νw0

) = f0(νw0
z−1) = f0((νw0

· z−1)νw0
) = (νw0

· z−1)f0(νw0
). That is equal to

(νw0
·z−1)eψ, which sends z′ to eψ(z

′(νw0
·z−1)). On the other hand if νw0

·z normalizes
ψ, we have (τνw0

·zf)(νw0
) = τνw0

·zeψ, sending z
′ to eψ((νw0

· z−1)z′). That gives the
result since νw0

· z normalizes ψ. �

IV.11. To go further, we need other generators, indeed other bases, of HZ(G, I).
They are constructed in [Vig4, Ch. 5] using (spherical) orientations. We need not
know what such an object is, only that it is determined by a Weyl chamber in the
vector space Vad = X∗(Sad)⊗R, where Sad is the torus image of S in the adjoint group
Gad of G. We have the dominant Weyl chamber D+ = {v ∈ Vad, β(v) > 0 for β ∈ ∆},
and the antidominant Weyl chamber D− = −D+ = w0D

+. Of course W0 acts, on the
left, on the set of Weyl chambers, hence on orientations; but as in loc. cit., we let W0

(and hence 1W via 1W → W0) act on the right on orientations by (o,w) 7→ o · w,
so that if an orientation o corresponds to the Weyl chamber D, o · w corresponds to
w−1(D).

We recall the natural map ν : Z → Vad used in [Vig4, 3.3]: the action of z ∈ Z on Vad
is via translation by ν(z). We remark that ν is the composite of −vZ : Z → X∗(S)⊗R
with X∗(S) ⊗ R → Vad. By loc. cit. Z+ is the set of z ∈ Z such that ν(z) belongs to
the closure of D− (i.e. β ◦ ν(z) ≤ 0 for β ∈ ∆). The map ν factors through 1Λ and Λ,
and we still write ν for the corresponding maps.

Note however that in citing loc. cit. Ch. 5, some care is needed.
The first thing is that the roots in loc. cit. are in the reduced root system Φa on Vad

attached to the collection of affine root hyperplanes in Vad (it is denoted Σ in loc. cit.).
It is not in general the root system Φ attached to (Gad,Sad). Let us describe what is
happening. The space Vad = X∗(Sad) ⊗ R is naturally a quotient of X∗(S) ⊗ R, and
its dual X∗(Sad)⊗R appears as the subspace of X∗(S)⊗R generated by the roots in
Φ, which are then the same for (G,S) and (Gad,Sad). The coroot in Vad attached to
a given root β in Φ is the image of β∨ ∈ X∗(S), we also write it β∨. The root system
Φa on Vad can be described from Φ as follows. For each β ∈ Φ, there is a positive
integer eβ such that Φa is the set of βa := eββ for β ∈ Φ – in particular e2β = eβ/2 if
2β ∈ Φ. The root systems Φa and Φ share the same Weyl group W0, and consequently
the same Weyl chambers. The choice of Weyl chamber defining Φ+ also defines Φ+

a

and β 7→ βa gives a bijection of ∆ onto the set ∆a of simple roots in Φa. Note also
that (βa ◦ ν)(Λ) ⊂ Z and that the coroot in Vad associated to βa ∈ Φa is β∨a = e−1

β β∨.

Examples 1) If G is split, then Φa = Φ, eβ = 1 for β ∈ Φ.
2) For G = GLr(D), where D is a central division algebra over F , of finite degree

d2, then eβ = d for all β ∈ Φ.
3) Assume that G is semisimple simply connected of relative rank 1. Then there is

only one positive root β and βa◦ν(Λ) = 2Z (loc. cit. 5.14). Going back to the situation
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of III.16 with no condition on the reductive group G we deduce that ν(aβ) = β∨a , since

〈βa, β
∨
a 〉 = 2. In particular vZ(aβ) = −e−1

β β∨.

The second thing to be careful about is that the choice of Iwahori subgroup corre-
sponds to a choice of alcove with vertex x0, and positivity conditions are with respect
to that choice. As we work with the “lower” pro-p Iwahori subgroup I, the alcove with
vertex x0 which corresponds to I is the one contained in D−, so positive roots in loc.
cit. Ch. 5 correspond to negative roots here. In citing loc. cit. Ch. 5 therefore we either
have to exchange positive and negative roots, or to replace ν with −ν; we choose the
first solution. For example Σ+,D+ in loc. cit. correspond to Φ−

a ,D
− here.

IV.12. Let o be an orientation. By [Vig4, Corollary 5.26] it gives a basis (Eo(w))w∈1W

for HZ(G, I). In HZ(G, I) some computations are easier because it is a “characteristic
zero” algebra. The above basis of HZ(G, I) specializes to a basis (Eo(w))w∈1W of H
over C: we use the same notation, making the context precise when necessary.

To w ∈ 1W is attached an element qw in Z, such that qns = qs for s ∈ Σ0 and qw = 1
if ℓ(w) = 0. The main relations in HZ(G, I) satisfied by the Eo(w) are the following
relations: for w, w′ in 1W ,

(IV.12.1) Eo(w)Eo·w(w
′) = qw,w′Eo(ww

′) with qw,w′ = (qwqw′q−1
ww′)

1/2.

Beware that in general o · w 6= o, although it is the case when w ∈ 1Λ. Note that
qw,w′ = 1 if and only if ℓ(ww′) = ℓ(w) + ℓ(w′), and qw,w′ gives 0 in C otherwise (loc.
cit., Remark 4.18 and Lemma 4.19).

In particular, if Ao is the subspace of H with basis (Eo(λ)) for λ ∈ 1Λ, the multi-
plication in Ao is straightforward:

(IV.12.2) Eo(λ)Eo(λ
′) =

{

Eo(λλ
′) if ℓ(λλ′) = ℓ(λ) + ℓ(λ′),

0 otherwise.

Thus Ao is a subalgebra of H. In fact the condition ℓ(λλ′) = ℓ(λ) + ℓ(λ′) means that
ν(λ) and ν(λ′) belong to the same closed Weyl chamber in Vad, cf. loc. cit. 5.12.

If o is an orientation, we let Λo be the set of λ ∈ Λ such that ν(λ) belongs to the
closure of the corresponding Weyl chamber; we similarly define 1Λo. For λ in 1Λo, we
have Eo(λ) = T (λ), loc. cit. Example 5.30.

We shall need the orientation oI attached to a subset I of ∆: by definition it is
the orientation corresponding to the Weyl chamber wI(D

−). Hence o∆ corresponds to
D+, o∅ corresponds to D−, oI = o∆ · wI , ΛoI = wI · Λ

+ (hence 1ΛoI = νwI
· 1Λ

+). For
w ∈ WI we then have EoI (nw) = T (nw), loc. cit. Example 5.32. (Note that wI(D

−)
here equals wI(D

+) in loc. cit. which corresponds to owI(∆) in loc. cit.)

IV.13. We need some length formulas (loc. cit. Corollary 5.10 and 5.11). We have
to be careful to remember that Σ+ in loc. cit. corresponds to Φ−

a . For λ ∈ Λ, w ∈W0,
we have

ℓ(w · λ) =
∑

β∈Φ+
a

|β ◦ ν(λ)| = ℓ(λ),(IV.13.1)

ℓ(wλ) =
∑

β∈Φ+
a ∩w−1(Φ+

a )

|β ◦ ν(λ)|+
∑

β∈Φ+
a ∩w−1(Φ−

a )

|β ◦ ν(λ)− 1|,(IV.13.2)

ℓ(λw) =
∑

β∈Φ+
a ∩w(Φ+

a )

|β ◦ ν(λ)|+
∑

β∈Φ+
a ∩w(Φ−

a )

|β ◦ ν(λ) + 1|.(IV.13.3)
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Note that for β ∈ ∆ and w = sβ = w−1, sβ permutes Φ+
a − {βa} and sends βa to −βa

so Φ+
a ∩ sβ(Φ

−
a ) = {βa}.

Lemma Let I ⊂ ∆. Then, for λ ∈ ΛoI , ℓ(w
Iλ) = ℓ(wI) + ℓ(λ).

Proof By (IV.13.2) we need to check that β ◦ ν(λ) ≤ 0 for β ∈ Φ+ ∩ (wI)−1(Φ−); but
λ ∈ ΛoI means that β ◦ ν(λ) ≥ 0 for β ∈ wI(Φ

−) = (wI)−1(Φ+). �

IV.14. An important result in this chapter is the following (see [Oll, Section 5] for
GLn).

Theorem Let w ∈WJ . Then for λ ∈ 1Λ,

fJT
∗(nw)EoJ (λ) =

{

τ((νwJ
nw) · λ)fJT

∗(nw) if (νwJ
nw) · λ ∈ 1Λ

+ and normalizes ψ,

0 if (νwJ
nw) · λ /∈ 1Λ

+.

The proof of the theorem is in IV.15–IV.18. Taking w = wJ we get by IV.9 Propo-
sition:

Corollary For λ ∈ 1Λ,

fEoJ (λ) =

{

τ(λ)f if λ ∈ 1Λ
+ and normalizes ψ,

0 if λ /∈ 1Λ
+.

Remarks

1) We have used the notation τ(µ) for µ ∈ 1Λ
+ to mean τz for z ∈ Z+ with

image µ ∈ 1Λ
+. The shift of indices is only for typographical convenience.

2) As ψ extends to a character of MJ,k by IV.4, each nw for w ∈WJ normalizes
ψ, and it follows that λ normalizes ψ if and only if so does (νwJ

nw) · λ.
3) The subspace of AoJ generated by the EoJ (λ) for λ in 1Λ normalizing ψ is

a subalgebra AoJ (ψ) of AoJ The map AoJ (ψ) → HZ(ψ) sending EoJ (λ) to
τ((νwJ

nw) ·λ) if (νwJ
nw) ·λ ∈ 1Λ

+ and to 0 otherwise is an algebra homomor-
phism θνwJ

nw , and for T ∈ AoJ (ψ) we have

fJT
∗(nw)T = θνwJ

nw(T )fJT
∗(nw).

4) The theorem says nothing when (νwJ
nw) ·λ ∈ 1Λ

+ and does not normalize ψ.
We do not use this case.

IV.15. We prove the theorem by induction on ℓ(w). We treat first the case where
w = 1. Recalling that fJ = f0T (nwJ ), we want to compute f0T (nwJ )EoJ (λ). By
IV.12, we have T (nwJ ) = Eo∆(nwJ ), so we look at Eo∆(nwJ )EoJ (λ).

Assume first that νwJ
·λ belongs to 1Λ

+, i.e. that λ belongs to 1ΛoJ , and that νwJ
·λ

normalizes ψ. Then IV.13 Lemma gives ℓ(nwJ )+ ℓ(λ) = ℓ(nwJλ), hence Eo∆(nwJλ) =
Eo∆(nwJ )EoJ (λ). Since ℓ(nwJ · λ) = ℓ(λ) by (IV.13.1), we also obtain ℓ(nwJ · λ) +
ℓ(nwJ ) = ℓ(nwJλ) hence Eo∆(nwJλ) = Eo∆(nwJ · λ)Eo∆(nwJ ), and finally

Eo∆(nwJ · λ)Eo∆(nwJ ) = Eo∆(nwJ )EoJ (λ) = T (nwJ )EoJ (λ).

We can apply IV.10 Proposition to nwJ · λ. Indeed νw0
· (nwJ · λ) = (νw0

nwJ ) · λ and
νw0

nwJ = νwJ
. Since by IV.12 Eo∆(nwJ · λ) = T (nwJ · λ), that gives f0Eo∆(nwJ · λ) =

τ(νwJ
· λ)f0, so τ(νwJ

·λ)fJ = f0Eo∆(nwJ · λ)T (nwJ ) = fJEoJ (λ), which is the desired
formula when νwJ

· λ belongs to 1Λ
+.

Fix a regular such λ and let λ′ ∈ 1Λ− 1ΛoJ . Then EoJ (λ)EoJ (λ
′) = 0 by (IV.12.2),

and fJEoJ (λ)EoJ (λ
′) = 0, implying τ(νwJ

· λ)fJEoJ (λ
′) = 0. Since τ(νwJ

· λ) is
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invertible in HZ(ψ), we get fJEoJ (λ
′) = 0, which is the formula we want for λ′. The

theorem is proved for w = 1.

IV.16. Now let ℓ(w) = ℓ ≥ 1, and write w = w′s with ℓ(w′) = ℓ− 1 and s = sβ for
some β ∈ J – note that w′(β) ∈ Φ+ since ℓ(w′s) = ℓ(w′)+1. In particular nw = nw′ns
and T ∗(nw) = T ∗(nw′)T ∗(ns).

We need to investigate T ∗(ns)EoJ (λ) for λ ∈ 1Λ. Suppose we can prove

(∗) fJT
∗(nw′)T ∗(ns)EoJ (λ) = fJT

∗(nw′)EoJ (ns · λ)T
∗(ns);

then the desired formula follows from the induction hypothesis. So we need to compare
EoJ (ns · λ)T

∗(ns) and T ∗(ns)EoJ (λ). By loc. cit. Corollary 5.53 we have, for any
orientation o such that Ker β is a wall of the Weyl chamber corresponding to o:

(IV.16.1) If β ◦ ν(λ) = 0, Eo(ns · λ)Eo(ns) = Eo(ns)Eo(λ);
if β ◦ ν(λ) > 0, Eo(ns · λ)Eo(ns) = Eo·s(ns)Eo(λ);
if β ◦ ν(λ) < 0, Eo(ns · λ)Eo·s(ns) = Eo(ns)Eo(λ).

We now apply the results in loc. cit. §5.4 to our case, where o = oJ . (We need to
point out that since β ∈ J , Ker(β) is a wall of the Weyl chamber corresponding to oJ ;
also loc. cit. uses the notation s for an element of 1W0, where we use ns, but we do have
n2s ∈ Zk as required by loc. cit. 5.35 and 5.36.) Since β ∈ J , we have EoJ (ns) = T (ns)
(IV.12) and EoJ ·s(ns) = T ∗(ns) by loc. cit. Example 5.32. So we get:

(IV.16.2) If β ◦ ν(λ) = 0, EoJ (ns · λ)T (ns) = T (ns)EoJ (λ);
if β ◦ ν(λ) > 0, EoJ (ns · λ)T (ns) = T ∗(ns)EoJ (λ);
if β ◦ ν(λ) < 0, EoJ (ns · λ)T

∗(ns) = T (ns)EoJ (λ).

IV.17. Accordingly we distinguish the three cases.
Assume first β ◦ ν(λ) = 0; then formula (∗) of IV.16 follows from (IV.16.2) and the

following lemma.

Lemma Assume β ◦ ν(λ) = 0. Then EoJ (ns · λ)cns = cnsEoJ (λ).

Proof We work within the Levi subgroup Mβ of G. As β ◦ ν(λ) = 0, λ normalizes
K∩Mβ (III.7 Corollary). (Note that K∩Mβ is the parahoric subgroup ofMβ attached
to our special point x0; λ also normalizes the pro-p radical K(1) ∩Mβ of K ∩Mβ.)
Consequently λ acts via conjugation onMβ,k; that action stabilizes Uβ,k and U

op
β,k, so it

also stabilizes the subgroup M ′
β,k they generate. Consequently λ acts via conjugation

on Zk,s = Zk ∩M
′
β,k. On the other hand, an element t in Zk,s has length 0, implying

EoJ (ns · λ)T (t) = EoJ ((ns · λ)t) and T (t)EoJ (λ) = EoJ (tλ). Now, computing in 1W ,
(ns · λ)tλ

−1 = (nsλn
−1
s λ−1)(λtλ−1). As t runs through Zk,s, so does λtλ−1; on the

other hand, by construction ns belongs to M ′
β,k so nsλn

−1
s λ−1 belongs to Zk,s. The

result follows. �

IV.18. Assume now that β ◦ ν(λ) < 0. Since w′(β) is positive, (wJw
′s)(β) =

−wJw
′(β) is positive too. But ((wJw

′s)(β)) ◦ ν, evaluated on νwJ
nw′(λ) gives (s(β) ◦

ν)(λ) = −β◦ν(λ) > 0 so νwJ
nw′(λ) is not in 1Λ

+, and consequently fJT
∗(nw′)EoJ (λ) =

0 by the induction hypothesis. But by (IV.16.2)

fJT
∗(nw′)[T ∗(ns)EoJ (λ)− EoJ (ns · λ)T

∗(ns)] = −fJT
∗(nw′)cnsEoJ (λ).

Since fJT
∗(nw′)cns = −fJT

∗(nw′) by IV.8 Proposition, −fJT
∗(nw′)cnsEoJ (λ) is equal

to fJT
∗(nw′)EoJ (λ), which is 0 by the above, and (∗) is true in that case too.

The case where β ◦ ν(λ) > 0 is dealt with similarly: in that case we find

fJT
∗(nw′)[T ∗(ns)EoJ (λ)− EoJ (ns · λ)T

∗(ns)] = fJT
∗(nw′)EoJ (ns · λ)cns
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by (IV.16.2) and that is 0 by induction because νwJ
nw(λ) is not in 1Λ

+ (as (wJw(β))◦ν
is positive on it). This completes the proof of IV.14 Theorem. �

IV.19. We now reach the easier part of our change of weight, which is a consequence
of the following theorem.

Theorem Assume that λ ∈ 1Λ normalizes ψ. Then

f ′EoJ′ (λn
−1
wJwJ′

)T ∗(nwJwJ′ ) =

{

τ(λ)f λ ∈ 1Λ
+ and α ◦ ν(λ) < 0,

0 otherwise.

Taking z ∈ Z+, normalizing ψ, and with |α|(z) < 1, we get f ′T = τzf for some T
in H, which gives IV.1 Theorem (i). To prove the theorem, we first prove:

Lemma f ′ = fJT
∗(nwJwJ′wJ

)T (nwJwJ′ ).

Proof By IV.7 Corollary, f ′ = f0
∑

w∈w0WJ′

T (nw), which can also be written as f ′ =

f0
∑

v∈WJ′

T (nw0vwJ′ ). For v in WJ ′ , write w0vwJ ′ = wJ(wJvwJ)(wJwJ ′). We have

ℓ(w0vwJ ′) = ℓ(w0)− ℓ(vwJ ′) = ℓ(w0)− ℓ(wJ ′) + ℓ(v) (since v ∈WJ ′),

and

ℓ(wJ ) = ℓ(w0)− ℓ(wJ), ℓ(wJvwJ ) = ℓ(v), ℓ(wJwJ ′) = ℓ(wJ)− ℓ(wJ ′),

so ℓ(w0vwJ ′) = ℓ(wJ) + ℓ(wJvwJ) + ℓ(wJwJ ′). Consequently
∑

v∈WJ′

T (nw0vwJ′ ) = T (nwJ )
(

∑

v∈WJ′

T (nwJvwJ
)
)

T (nwJwJ′ )

and f ′ = fJ(
∑

v∈WJ′

T (nwJvwJ
))T (nwJwJ′ ).

Now J ′′ = −wJ(J
′) is a subset of J and wJWJ ′wJ =WJ ′′ ; the element wJwJ ′wJ is

the longest element of that group, hence
∑

v∈WJ′

T (nwJvwJ
) =

∑

v≤wJwJ′wJ

T (nv).

By IV.9 Proposition

fJ
(

∑

v≤wJwJ′wJ

T (nv)
)

= fJT
∗(nwJwJ′wJ

)

so f ′ = fJT
∗(nwJwJ′wJ

)T (nwJwJ′ ). �

Proof of the theorem Put v = wJwJ ′ . Note that since v ∈WJ , nv · λ normalizes ψ,
see IV.14 Remark 2).

By the relations (IV.12.1) we get

qnv,λn
−1
v
EoJ (nv · λ) = EoJ (nv)EoJ ·v(λn

−1
v ).

On the other hand EoJ (nw) = T (nw) for w ∈WJ , so we get

T (nv)EoJ ·v(λn
−1
v ) = qnv,λn

−1
v
EoJ (nv · λ).

We now compute

f ′EoJ ·v(λn
−1
v ) = fJT

∗(nwJwJ′wJ
)T (nv)EoJ ·v(λn

−1
v )

= qnv,λn
−1
v
fJT

∗(nwJwJ′wJ
)EoJ (nv · λ).
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By IV.14 Theorem we see that fJT
∗(nwJwJ′wJ

)EoJ (nv · λ) is 0 if λ /∈ 1Λ
+. If

α ◦ ν(λ) = 0, since v(α) ∈ Φ−, ℓ(λv−1) > ℓ(λ) − ℓ(v−1) = ℓ(v · λ) − ℓ(v) by IV.13, so
qnv,λn

−1
v

= 0.

Assume α ◦ ν(λ) < 0 and λ ∈ 1Λ
+. Let β ∈ Φ+ with v(β) ∈ Φ−. Since v ∈WJ , β is

a linear combination of roots in J (with non-negative integer coefficients). Moreover
wJ ′(β) ∈ Φ+, so the coefficient of α in β is positive. Then for β ∈ Φ+ ∩ v−1(Φ−)
we have β ◦ ν(λ) ≤ α ◦ ν(λ) by the above, so β ◦ ν(λ) < 0, which implies by IV.13
that ℓ(λv−1) = ℓ(v ·λ)− ℓ(v−1) and fJT

∗(nwJwJ′wJ
)EoJ (nv ·λ) = τ(λ)fJT

∗(nwJwJ′wJ
)

by IV.14 Theorem (indeed, ℓ(wJwJ ′wJ) + ℓ(v) = ℓ(wJ) implies nwJwJ′wJ
nv = nwJ

,
so νwJ

nwJwJ′wJ
nv = 1). The theorem follows on multiplying by T ∗(nv), noting

T ∗(nwJwJ′wJ
)T ∗(nv) = T ∗(nwJ

) and oJ ′ = oJ · v. �

IV.20. We now turn to the other part of the change of weight, which is harder. From
now on, we put s = sα.

Lemma f ′ = f − fJT
∗(nwJs) = fJT

∗(nwJs)T (ns).

Proof By IV.9 we have f = fJ
(

∑

w≤wJ

T (nw)
)

and fJT
∗(nwJs) = fJ

(

∑

w≤wJs
Tw

)

so

f − fJT
∗(nwJs) = fJ(

∑

T (nw)) where the sum runs over w in WJ with w � wJs;
but for w ∈ WJ , w ≤ wJs is equivalent to s ≤ wJw, so w � wJs means that
wJw belongs to WJ ′ . Consequently f − fJT

∗(nwJs) = fJ
(

∑

w∈WJ′

T (nwJwJ′w)
)

=

f0T (nwJ )
(

∑

w∈WJ′

T (nwJwJ′w)
)

. For w inWJ ′ , ℓ(wJwJ ′w) = ℓ(wJ)−ℓ(wJ ′w) = ℓ(wJ)−

ℓ(wJ ′) + ℓ(w) = ℓ(wJwJ ′) + ℓ(w) so T (nwJwJ′w) = T (nwJwJ′ )T (nw). On the other

hand, ℓ(wJ) + ℓ(wJwJ ′) = ℓ(w0) − ℓ(wJ ) + ℓ(wJ) − ℓ(wJ ′) = ℓ(wJ
′

) so T (nwJ′ ) =

T (nwJ )T (nwJwJ′ ). It follows that f − fJT
∗(nwJs) = f0T (nwJ′ )

(
∑

w∈WJ′

T (nw)
)

= f ′ by

IV.7 Corollary applied to J ′. Moreover, as ℓ(wJs) + ℓ(s) = ℓ(wJ) we have T ∗(nwJ
) =

T ∗(nwJs)T
∗(ns) and f = fJT

∗(nwJ
) = fJT

∗(nwJs)(T (ns) + 1), as seen in IV.9 above,
so f ′ = fJT

∗(nwJs)T (ns). �

IV.21. Let now λ ∈ 1Λ
+ and put λ′ = ns · λ. It is the element fEoJ ·s(nsλ

′) that we
want to relate to f ′. To get an expression for it, we again need to distinguish cases,
according to the integer r = −αa ◦ ν(λ) ≥ 0 (recall that αa is the simple root in Φa
corresponding to α). We first deal with the “easy” relations in H.

Lemma (i) λ′(ns · λ′) = ns · (λλ′) ∈ 1Λ
+.

(ii) If r > 0, ℓ(nsλ
′) = ℓ(λ′)− 1 and T (ns)EoJ ·s(nsλ

′) = T (n2s)EoJ (λ
′).

(iii) If r ≥ 2, then EoJ (λ
′)EoJ (nsλ

′) = 0.
(iv) If r = 1, then EoJ ·s(nsλ

′) = EoJ (nsλ
′) and

EoJ (λ
′)EoJ (nsλ

′) = EoJ (λ
′(ns · λ

′))T (ns).

Proof (i) The first equality is clear. Let us prove that λ′(ns · λ
′) is in 1Λ

+. We have
αa ◦ ν(λ

′(ns · λ
′)) = 0. For β ∈ ∆, β 6= α we compute

βa ◦ ν(λ
′(ns · λ

′)) = βa ◦ ν((ns · λ)(n
2
s · λ))

= (βa + s(βa))(ν(λ)).

It is ≤ 0 since βa, s(βa) > 0 and λ is in 1Λ
+. So we get (i).

(ii) Assume r > 0. We need to work in HZ, and then specialize to H. By (IV.13.2),
we get ℓ(nsλ

′) = ℓ(λ′) − 1 because α ◦ ν(λ′) > 0. So the relation (IV.12.1) gives
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EoJ ·s(ns)EoJ (λ
′) = qsEoJ ·s(nsλ

′). We also have EoJ (ns)EoJ ·s(ns) = qsEoJ (n
2
s), which

gives

qsEoJ (ns)EoJ ·s(nsλ
′) = qsEoJ (n

2
s)EoJ (λ

′).

Cancelling qs, using EoJ (n
2
s) = T (n2s), and specializing to H we get (ii).

(iii) We proved ℓ(nsλ
′) = ℓ(λ′) − 1 in (ii), so ℓ(λ′) + ℓ(nsλ

′) = 2ℓ(λ′) − 1. On
the other hand λ′nsλ

′ = λ′(ns · λ
′)ns and αa ◦ ν(λ′(ns · λ

′)) = 0 so ℓ(λ′nsλ
′) =

ℓ(λ′(ns · λ
′)) + 1 by (IV.13.3). But ℓ(λ′(ns · λ

′)) = ℓ(λ′) + ℓ(ns · λ
′)− 2r by (IV.13.1)

so we get ℓ(λ′) + ℓ(nsλ
′) − ℓ(λ′nsλ

′) = 2r − 2. This is > 0 if r ≥ 2, so in that case
EoJ (λ

′)EoJ (nsλ
′) = 0 by the relations (IV.12.1).

(iv) Assume now that r = 1. The first formula is given by loc. cit. Lemma
5.34. In the proof of (ii) we have seen that ℓ(λ′) + ℓ(nsλ

′) = ℓ(λ′nsλ
′) so we get

EoJ (λ
′)EoJ (nsλ

′) = EoJ (λ
′nsλ

′). On the other hand λ′nsλ
′ = λ′(ns · λ

′)ns and we
have seen ℓ(λ′nsλ

′) = ℓ(λ′(ns · λ
′)) + 1, so EoJ (λ

′nsλ
′) = EoJ (λ

′(ns · λ
′))EoJ (ns) =

EoJ (λ
′(ns · λ

′))T (ns). �

IV.22. In the sequel it is convenient to put ϕ = fJT
∗(nwJs) so that f ′ = ϕT (ns),

f = ϕ+ f ′. From IV.14 Theorem, we get the following: for µ ∈ 1Λ,

(IV.22.1) ϕEoJ (ns · µ) =

{

τ(µ)ϕ if µ ∈ 1Λ
+ and normalizes ψ,

0 if µ /∈ 1Λ
+.

Put E = EoJ ·s(nsλ
′) with λ′ = ns · λ as in IV.21 – note that λ′ also normalizes ψ.

By (ii) of IV.21 Lemma, T (ns)E = T (n2s)EoJ (λ
′), so ϕT (ns)E = τ(n2s)ϕEoJ (λ

′) by
(IV.22.1). But τ(n2s)ϕ = ϕ because n2s, which belongs to Zk ∩M

′
α,k, acts trivially on

ϕ by IV.7 Lemma. We deduce ϕT (ns)E = ϕEoJ (λ
′) = τ(λ)ϕ, again by (IV.22.1).

We are now ready to prove a change of weight formula, in the special case where
λ ∈ 1Λ

+ normalizes ψ and αa ◦ ν(λ) = −1. Indeed by (IV.22.1) and (iv) of IV.21
Lemma we get τ(λ)ϕE = ϕEoJ (λ

′)E = ϕEoJ (λ
′(ns · λ

′))T (ns), hence τ(λ)ϕE =
τ(λλ′)ϕT (ns), using again (IV.22.1). We deduce that ϕE = τ(λ′)ϕT (ns), as τ(λ) is
invertible in HZ(ψ).

Consequently fE = ϕE+ϕT (ns)E = τ(λ)ϕ+τ(λ′)ϕT (ns) = τ(λ)(f −f ′)+τ(λ′)f ′.
We have proved:

Proposition Let λ ∈ 1Λ
+ normalize ψ, and assume αa ◦ ν(λ) = −1. Then

τ(λ)f − fE = (τ(λ)− τ(λ′))f ′.

Remark Note that τ(λ)f belongs to indGK V because λ ∈ 1Λ
+, so we see that indGK V

contains (τ(λ) − τ(λ′))(indGK V
′). Note also that τ(λ)f ′ belongs to indGK V

′ for the
same reason; but τ(λ′)f ′ does not necessarily belong to indGK V

′ because λ′ is not in

1Λ
+.

IV.23. We now seek a similar formula in the case where λ ∈ 1Λ
+ normalizes ψ,

r = −αa ◦ν(λ) ≥ 2, still with λ′ = ns ·λ and E = EoJ ·s(nsλ
′). By loc. cit., Proposition

5.48 we have, in HZ, an identity

(∗) EoJ ·s(nsλ
′)− EoJ (nsλ

′) =
r−1
∑

k=1

q(k, λ′)q−1
s c(k, λ′)EoJ (µ(k, λ

′))

and by loc. cit. Proposition 5.49, in H only the terms for k = 1 and k = r− 1 may be
non-zero, so we get, in H,

E = EoJ (nsλ
′) + c1EoJ (µ1λ

′) + cr−1EoJ (µr−1λ
′)
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where the last term disappears if r = 2. For the moment we need not know what c1,
cr−1 are in C[Zk], nor what µ1 and µr−1 are in 1Λ except that they do not depend
on λ and (loc. cit., formula (90)) ν(µk) = −kα∨

a , so ν(n
−1
s · µk) = kα∨

a . From that it
follows that (n−1

s ·µ1)λ is in 1Λ
+, but not (n−1

s ·µr−1)λ if r > 2. Also by loc. cit. 5.49,
the q-terms in the identity (∗) above give 1 in C for k = 1 or k = r − 1. Indeed we
have to show that ℓ(λ′)− ℓ(µ−1

−αa
λ′) = 2: remarking that ν(µ−1

−αa
λ′) = ν(λ′)−α∨

a , that
comes from the length formula in IV.13. As in IV.22 we have ϕT (ns)E = τ(λ)ϕ. On
the other hand

ϕE = ϕEoJ (nsλ
′) + ϕc1EoJ (µ1λ

′) + ϕcr−1EoJ (µr−1λ
′)

where the last term disappears if r = 2.
But τ(λ)ϕ = ϕEoJ (λ

′) by (IV.22.1), so τ(λ)ϕEoJ (nsλ
′) = ϕEoJ (λ

′)EoJ (nsλ
′) which

is 0 by IV.21 Lemma (iii), and hence ϕEoJ (nsλ
′) = 0. For z ∈ Zk we have ϕEoJ (ns·z) =

τzϕ = ψ(z−1)ϕ so we get ϕc1EoJ (µ1λ
′) = ψ−1(n−1

s · c1)ϕEoJ (µ1λ
′), with the obvious

notation for the conjugation action on C[Zk], and the obvious extension of ψ−1 from
Zk to C[Zk]. Similarly, if r ≥ 3, ϕcr−1EoJ (µr−1λ

′) = ψ−1(n−1
s · cr−1)ϕEoJ (µr−1λ

′),
which is 0 by (IV.22.1) because (n−1

s · µr−1)λ is not in 1Λ
+. Thus for r ≥ 2,

ϕE = ψ−1(n−1
s · c1)ϕEoJ (µ1λ

′).

As ϕT (ns)E = τ(λ)ϕ we obtain:

Proposition Let λ ∈ 1Λ
+ normalize ψ, and assume −αa ◦ ν(λ) ≥ 2. Then

fE = τ(λ)ϕ+ ψ−1(n−1
s · c1)ϕEoJ (µ1λ

′).

IV.24. We now apply the formulas given by IV.22 Proposition and IV.23 Proposition
to the case where λ ∈ 1Λ

+ normalizes ψ, and deduce IV.1 Theorem (ii) and (iii). We
first assume αa ◦ ν(λ) = −1. As we have seen in IV.22 Remark, λ′ normalizes ψ and

(τ(λ)− τ(λ′))(indGK V
′) ⊂ indGK V .

Proposition Let λ ∈ 1Λ
+ normalize ψ, and assume αa◦ν(λ) = −1. Then ψ is trivial

on Z0 ∩M ′
α and τ(λ′) = τ(λ)τα.

Proof We work within Mα. The semisimple Bruhat-Tits building of Mα is a tree, the
apartment corresponding to S is the line in Vad generated by α∨

a ; the group Z acts on
that line via its quotient Λ, and λ ∈ Λ acts via translation by v with αa ◦ν(λ) = αa(v)
and as αa ◦ ν(λ) = −1, λ sends the (special) vertex x0 to the adjacent (special) vertex
x1 = x0 −

1
2α

∨
a in the apartment. We shall later prove the following claim.

For the claim the situation is the following:

Assumption Assume that G has relative semisimple rank 1, and let x1 be a vertex in
Vad (a line) adjacent to x0, and K1 the corresponding (special) parahoric subgroup of
G. Let G1,k be the group over k attached to the parahoric subgroup K1. (Note that
both K = K0 and K1 contain Z0 and Gk, G1,k contain Zk.)

Claim The subgroup of Zk generated by Zk ∩G
′
k and Zk ∩G

′
1,k is the image of Z0∩G′

in Zk.

We apply the claim to Mα. Since λ sends x0 to x1, it conjugates K0 to K1, and
conjugation by λ induces an isomorphism ofMα,k ontoMα,1,k and ofM ′

α,k ontoM
′
α,1,k.

As ψ is trivial on Zk ∩M ′
α,k by hypothesis, and λ stabilizes ψ, ψ is also trivial on

Zk ∩M
′
α,1,k and by the claim ψ is trivial on Z0 ∩M ′

α. By the second line after formula

(90) in loc. cit., from αa◦ν(λ) = −1 we get ν(λ−1λ′) = α∨
a ; but λ

′ = ns ·λ by definition,
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so λ−1λ′ = λ−1nsλn
−1
s . Take z ∈ Z with image λ in 1Λ and ñs in K ∩M ′

α ∩ N with
image ns in Mα,k (the existence follows from III.7 Lemma, for instance). Since M ′

α

is normal in Mα, z
−1ñsz is in M ′

α so λ−1nsλn
−1
s is the image in 1Λ of an element of

Z ∩M ′
α. It follows that we can take λ−1λ′ as the image in 1Λ of aα of III.16 Notation

(which verifies ν(aα) = α∨
a , cf. IV.11 Example 3), and then τ(λ′) = τ(λ)τα. �

From the above proposition and IV.22 Proposition, we get case (iii) of IV.1 Theorem
when αa ◦ ν(λ) = −1.

Corollary Let λ ∈ 1Λ
+ normalize ψ, and assume αa ◦ ν(λ) = −1. Then ψ is trivial

on Z0 ∩M ′
α and τ(λ)(1 − τα) ind

G
K V

′ ⊂ indGK V .

We note that λaα /∈ Z+ so in particular τ(λ)(1 − τα) /∈ ZG.

IV.25. We investigate the term ψ−1(n−1
s · c1)ϕEoJ (µ1λ

′) in IV.23 Proposition.

Proposition Let λ ∈ 1Λ
+ normalize ψ, and assume −αa ◦ ν(λ) ≥ 2.

(i) The element n−1
s · µ1 ∈ 1Λ is in the image of Z ∩M ′

α.
(ii) If ψ is not trivial on Z0 ∩M ′

α, then ψ
−1(n−1

s · c1) = 0.
(iii) If ψ is trivial on Z0∩M ′

α, then ψ
−1(n−1

s ·c1) = −1 and τ((n−1
s ·µ1)λ) = τ(λ)τα.

Note that from (i) and III.16 Proposition (i), n−1
s · µ1 normalizes ψ if ψ is trivial

on Z0 ∩M ′
α. In particular, in (iii) the element τ((n−1

s · µ1)λ) is defined. Using IV.23
Proposition and (IV.22.1) we get

fE =

{

τ(λ)(f − f ′) if ψ is not trivial on Z0 ∩M ′
α,

τ(λ)(1− τα)(f − f ′) if ψ is trivial on Z0 ∩M ′
α.

This formula immediately yields IV.1 Theorem (ii), (iii) when −αa ◦ ν(λ) ≥ 2 (note
that this implies λaα ∈ 1Λ

+):

Corollary Let λ ∈ 1Λ
+ normalize ψ, and assume −αa ◦ ν(λ) ≥ 2.

(i) If ψ is not trivial on Z0 ∩M ′
α then τ(λ) indGK V

′ ⊂ indGK V .
(ii) If ψ is trivial on Z0 ∩M ′

α then

τ(λ)(1 − τα) ind
G
K V

′ ⊂ indGK V.

To prove the proposition we need to know precisely what c1 and µ1 are. We have to
distinguish cases: αa ◦ ν(Λ) = δZ for δ = 1 or 2 (cf. loc. cit. Remark 5.3). The generic
case is δ = 1, which we tackle first. In that case choose λs ∈ Λ with αa ◦ ν(λs) = 1;
then µ1 = (ns ·λs)λ

−1
s and c1 = (ns ·λs) · cns . Recall that cns =

−1
|Zk,s|

∑

z∈Zk,s

z in C[Zk].

In particular, ψ−1(n−1
s · c1) = −1

|Zk,s|

∑

z∈Zk,s

ψ−1(λs · z). So we see that ψ−1(n−1
s · c1)

is non-zero if and only if ψ is trivial on λsZk,sλ
−1
s , in which case it is equal to −1.

Reasoning as in IV.24 with λs instead of λ we see that ψ−1(n−1
s · c1) 6= 0 if and only

if ψ is trivial on Z0 ∩M ′
α and the other assertions of the proposition are obtained as

in IV.24 as well (when δ = 1), noting that τα is in the centre of HZ(ψ).

IV.26. We continue the proof of IV.25 Proposition. Now assume that δ = 2. One
situation where this may happen is when G has relative semisimple rank 1, or more
generally when the connected component of the relative Dynkin diagram of G contain-
ing α has rank 1. In that case, let s̃ be the reflection in the affine Weyl group of Mα

corresponding to the affine root αa+1; it corresponds to a vertex x1 in the semisimple
Bruhat-Tits building of Mα (a tree) adjacent to the vertex x0. As in IV.24 we let K1

be the parahoric subgroup ofMα corresponding to the vertex x1 (which is special), and
K1(1) its pro-p radical. Then Z ∩K1 = Z0, Z ∩K1(1) = Z(1). The image of N ∩K1
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in K1/K1(1) = Mα,1,k is the group N1,k of k-points of the normalizer of Zk in Mα,1,k

and we can choose in N1,k a lift ns̃ of s̃ which actually belongs to M ′
α,1,k – note that

s̃ generates (N ∩K1)/Z
0 which we identify, via reduction with N1,k/Zk. Then, inside

1W = N/Z(1), we can take (loc. cit. Notation 5.37) λs = nsns̃, µ1 = λ−1
s , c1 = cs̃n

2
s,

where cs̃ = −1
|Zk,s̃|

∑

z∈Zk,s̃

z, with Zk,s̃ = Zk ∩M
′
α,1,k

15. We see that ψ−1(n−1
s · c1) 6= 0

if and only if ψ is trivial on Zk,s̃. As ψ is already trivial on Zk,s, we get by IV.24
Claim that ψ−1(n−1

s · c1) 6= 0 if and only if ψ is trivial on Z0 ∩M ′
α, in which case

ψ−1(n−1
s · c1) = −1. On the other hand, n−1

s · µ1 is in the image of Z ∩M ′
α (by lifting

ns and ns̃ to N ∩M ′
α as in IV.24). Moreover, by construction ν(µ1) = −α∨

a and as
in IV.24 we deduce that we can take the image of aα in 1Λ to be n−1

s · µ1 and that
τ((n−1

s · µ1)λ) = τ(λ)τα if ψ is trivial on Z0 ∩M ′
α.

IV.27. The only other case when δ = 2 may happen is when the connected com-
ponent of the Dynkin diagram of Φa containing α has type Cn, n ≥ 2, and α is a
long root (loc. cit. Proposition 5.14). Let then α̃a be the highest root in Φ+

a lying
in the same component as α, and s̃ be the reflection associated with α̃a + 1. Then
(loc. cit. Lemma 5.15 and Notation 5.37) µ−αa = sws̃w−1 for some w ∈W a such that
ℓ(µ−αa) = 2ℓ(w) + 2 and ws̃w−1 is the reflection s′ associated with the affine root
αa+1 (whereas s is associated with αa). Moreover µ−αa = ss′ satisfies ν(µ−αa) = α∨

a .
In that case (loc. cit.) c1 = (w · cs̃)n

2
s and λs = ns(w · ns̃), µ1 = λ−1

s with ns̃, cs̃
defined similarly as before (loc. cit., §4); but conjugating by w yields w · cs̃ = cs′ and
w · ns̃ = ns′ where now cs′ , ns′ have a similar meaning, but in the relative semisimple
rank 1 group Mα. The same reasoning as in IV.26 then gives the desired result.

IV.28. To finish the proof of IV.25 Proposition we need only prove IV.24 Claim. It
is convenient to deal first with the case where G = Gis. Then W = W a is generated
by the involutions s0 (generating N 0/Z0) and s1 (generating (N ∩K1)/Z

0). As s0s1
acts as a non-trivial translation on the apartment, s0s1 has infinite order.

Identify N 0/Z(1) with Nk and similarly (N ∩K1)/Z(1) with the group N1,k of k-
points of the normalizer of Zk in G1,k. Choose a lifting n0 of s0 in Nk ∩ G

′
k ⊂ 1W

and a lifting n1 of s1 in N1,k ∩G
′
1,k ⊂ 1W . An element w of W has a unique reduced

expression w = σ1 · · · σh with σi = s0 or s1 and we put nw = x1 · · · xh with xi = n0 if
σi = s0, xi = n1 if σi = s1. We let X be the subgroup of Zk generated by Zk ∩G

′
k and

Zk ∩G
′
1,k, and put Y = {nwx | w ∈W,x ∈ X}.

Lemma 1 X and Y are normal subgroups of 1W .

Proof Let x ∈ Zk; then n
−1
0 xn0x

−1 belongs to Zk; but Zk normalizes G′
k so n

−1
0 xn0x

−1

belongs to Zk ∩G
′
k. Similarly n−1

1 xn1x
−1 belongs to Zk ∩G

′
1,k. In particular, n0 and

n1 normalize X. Since Zk also normalizes X, so 1W itself normalizes X. As n20 and
n21 belong to X, we deduce that for w, w′ ∈W nwnw′ ∈ nww′X and n−1

w ∈ nw−1X, so
Y is indeed a normal subgroup of 1W . �

Now let H = IY I with the usual abuse of notation.

Lemma 2 H is a normal subgroup of G and (H ∩ Z0)/Z(1) = X

Proof We first prove that H is a subgroup of G. By Lemma 1, H is closed under
inverses. Working inHZ, it is enough to show that for y, y′ in Y , the product T (y)T (y′)
in HZ is a linear combination of T (y′′) for y′′ in Y . But that is given by the relations

15In principle those elements are defined in loc. cit. with respect to G, not Mα, but the above
choices in Mα also work in G. The same remark applies in IV.27.
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in HZ: the braid relations and the two quadratic relations T (ni)
2 = qiT (n

2
i ) + ciT (ni)

where qi ∈ Z and ci ∈ Z[Zk ∩G′
i,k] for i = 0, 1.

As Z0 normalizes I, and Zk normalizes Y , Z0 normalizes H. The normalizer of H
contains n0, n1 (which belong to H), Z0 and I, so it is G itself. If an element x of H
in a class IyI, y ∈ Y , is in Z0 then y has to belong to Zk so by the very definition
of Y , y belongs to X and x itself has image y in Z0/Z(1) = Zk. That gives the last
assertion of the lemma. �

Clearly H is not central in G, so H = G because the only non-central normal
subgroup of G is G itself (II.3 Proposition). But then H ∩ Z0 = G ∩ Z0 = Z0 so
X = Zk, which gives the claim for G = Gis.

Let us now prove IV.24 Claim in the general case. We show first that the claim is
equivalent to

(∗) Z(1)(Z0 ∩G′) = Z(1)
〈

Z0 ∩ 〈U0, U0
op〉, Z

0 ∩ 〈U ∩K1, Uop ∩K1〉
〉

.

It suffices to show that the image of Z0∩〈U0, U0
op〉 in Zk equals Zk ∩G

′
k (and similarly

for the other term). It is clear that an arbitrary element of Zk ∩G
′
k lifts to an element

of 〈U0, U0
op〉∩Z

0K(1). Using the Iwahori decomposition of K(1) (III.7) we can modify

the lift so that it is contained in Z0 ∩ 〈U0, U0
op〉.

The only non-trivial part of the equality (∗) is the inclusion ⊂. The inclusion is true
for Gis, and we deduce it for G by applying the natural homomorphism ι : Gis → G,
using that (Z is)0 = ι−1(Z0) (III.19 Proposition) and that Z(1) is the pro-p Sylow of
Z0. This completes the proof of IV.24 Claim and hence of IV.1 Theorem. �

V. Universal modules

V.1. In this chapter our goal is, for an irreducible representation V of K, to study
the “universal” representation indGK V as a module over the centre ZG(V ) of the Hecke
algebra HG(V ). In fact that structure is difficult to elucidate, so we consider various al-
gebra homomorphisms χ : ZG(V ) → A and the corresponding A-module A⊗χ ind

G
K V .

As an application, for a character χ : ZG(V ) → C, we prove Theorem 6 of the in-
troduction – used in Chapter III at the end of our classification – which gives a nice
filtration of C⊗χ ind

G
K V as a representation of G. In this chapter we fix an irreducible

representation V of K and let (ψ,∆(V )) be its parameter.

A) Freeness of the supersingular quotient of indGK V

V.2. Until V.11 we fix a parabolic subgroup P = MN of G containing B. Recall
from III.12 the subgroup Z⊥

∆M
of Z consisting of those z ∈ Z with |β|(z) = 1 for all

β ∈ ∆M . We write Z+M for the set of z ∈ Z with |β|(z) ≤ 1 for β ∈ ∆M . Recall
from III.4 that ZZ(VU0) is spanned by the τz for z ∈ Zψ, and that the natural image

of ZM (VN0) in ZZ(VU0) (via SGZ ) is spanned by the τz for z ∈ Z+M ∩Zψ – we identify
ZM (VN0) with that image.

Notation We let RM be the quotient of ZM (VN0) by the ideal of elements supported
on (Z+M ∩ Zψ)− Z⊥

∆M
.

As ZM (VN0) is viewed as a subset of ZZ(VU0), we emphasize that the supports
above are subsets of Z. Note that the elements of ZM (VN0) supported on Z⊥

∆M
form

a subalgebra which maps isomorphically onto RM .

Our first main result in this chapter is:
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Theorem Let P = MN be a parabolic subgroup of G containing B. Then RM ⊗
indGK V is free over RM , where the tensor product is via the composite map ZG(V ) →
ZM (VN0) → RM .

The proof of that theorem is rather long (V.3 to V.11). We first treat the case where
P = G (V.3 Proposition). The proof then proceeds by comparing with situations with
a more regular weight (i.e. smaller ∆(V )). Using the change of weight results of
Chapter IV, we reduce the proof in general to a special case where, in particular, ∆M

is orthogonal to ∆−∆M (V.7). Finally we use a filtration argument (V.8 to V.11).

V.3. Proposition RG ⊗ indGK V is free over RG.

The proof in V.4 requires several lemmas. We use again the Kottwitz invariant map
wG and the map vG (III.16).

Lemma 1 Let z, z1, z2 in Z. If zz1z2 ∈ Kz1Kz2K, then wG(z) = 0.

Proof The Kottwitz invariant wG is a homomorphism of G into a commutative group;
the result follows from wG(K) = 0. �

Lemma 2 Let z1 ∈ Z+ normalizing ψ, and f ∈ HG(V ) with support in Kz1K. Then
SGZ (f) ∈ HZ(VU0) has support in (Z ∩KerwG)z1.

Proof That is immediate from (III.3.2), once we note that wG is trivial on U . �

Lemma 3 Let z1 ∈ Z+ normalizing ψ, and z2 ∈ Z. If f ∈ indGK V has support in
Kz2K, then τz1 ∗ f has support in K(Z ∩KerwG)z1z2K.

Proof By definition τz1 , as an element of HZ(VU0), has support Z0z1. From Lemma 2,
τz1 , as an element ofHG(V ), has support inK(Z∩KerwG)z1K. The result then follows
from the convolution formula in HG(V ) and Lemma 1. �

Lemma 4 Z⊥
∆ ∩KerwG = Z0.

Proof Let z ∈ KerwG. Then vG(z) = 0. If moreover z ∈ Z⊥
∆, then vZ(z) = 0 for the

analogous map vZ , cf. [HV1, 6.3 Remark 1]; from loc. cit. 6.2 Lemma, (ii) and (iii), it
follows that z ∈ Z0. Conversely Z0 ⊂ Z⊥

∆ ∩KerwG is clear. �

V.4. We prove V.3 Proposition. We decompose indGK V as ⊕I(x), x ∈ Z/(Z ∩
KerwG), where I(x) consists of the functions in indGK V with support in Kx(Z ∩
KerwG)K. For z in Z+ normalizing ψ, we have τz ∗ I(x) ⊂ I(zx) by V.3 Lemma 3,
with equality if z ∈ Z⊥

∆ since then τz has inverse τz−1 . For x ∈ Z/(Z ∩ KerwG), let

I+(x) be the sum of the subspaces τz ∗ I(y) of I(x), where z ∈ Z+ ∩ Zψ, z /∈ Z⊥
∆,

y ∈ Z/(Z ∩ KerwG) and zy = x in Z/(Z ∩ KerwG). By definition RG ⊗ indGK V is
the quotient of indGK V obtained by killing all the subspaces I+(x); thus it appears as
⊕x∈Z/(Z∩KerwG)(I(x)/I

+(x)). Let z ∈ Z⊥
∆ ∩ Zψ; then τz ∗ I(x) = I(zx), τz ∗ I

+(x) =

I+(zx) for x ∈ Z/(Z ∩KerwG), hence the corresponding element in RG, still written
τz, sends I(x)/I

+(x) isomorphically onto I(zx)/I+(zx). As Z⊥
∆ ∩KerwG = Z0 by V.3

Lemma 4, the image of Z⊥
∆∩Zψ in Z/(Z∩KerwG) acts by multiplication without fixed

points on Z/(Z∩KerwG); choosing a set of representatives Ω for the orbits, we deduce
that RG ⊗ indGK V is isomorphic to the free RG-module RG ⊗C (

⊕

x∈Ω
I(x)/I+(x)). �

For further use, we state a result proved in a similar manner.

Lemma Let z ∈ Z+ ∩ Zψ.

(i) If vG(z) 6= 0, τz − 1 acts injectively on indGK V ; if moreover z ∈ Z⊥
∆ then τz − 1

is not a divisor of 0 in RG.
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(ii) Let T ∈ ZG(V ); if vG(z) is linearly independent from vG(Supp(T )), then (τz −
1) indGK V ∩ T indGK V = (τz − 1)T indGK V .

Remark The condition vG(z) = 0 is equivalent to vZ(z)∈R∆∨⊂X∗(S)⊗ R.

Proof (i) Let f ∈ indGK V , and write as above f =
∑

fx, x ∈ Z/(Z ∩ KerwG),
fx ∈ I(x). Then for z ∈ Z+ ∩ Zψ, τz ∗ f =

∑

x τz ∗ fx with τz ∗ fx ∈ I(zx). The
equality τz ∗ f = f amounts to τz ∗ fx = fzx for all x ∈ Z/(Z ∩KerwG). If vG(z) 6= 0
then the image of z in Z/(Z ∩ KerwG) has infinite order; since fx = 0 for all but a
finite number of x’s, τz ∗ f = f implies f = 0, and τz− 1 acts injectively on indGK V ; in

particular, as ZG(V ) acts faithfully on indGK V , τz − 1 is not a divisor of 0 in ZG(V ).
If moreover z ∈ Z⊥

∆ then τz − 1 is not a divisor of 0 in the subalgebra of ZG(V ) which
maps isomorphically onto RG.

(ii) Let Γ be the subgroup of Z generated by the elements ξ with vG(ξ) in vG(SuppT ).

For y ∈ Z/Γ, let J(y) be the space of functions in indGK V with support in KyΓK;
then TJ(y) ⊂ J(y) and for z ∈ Z+ ∩ Zψ, τz ∗ J(y) ⊂ J(zy). Let f , f ′ in indGK V

with (τz − 1)f = f ′. We have indGK V = ⊕y∈Z/ΓJ(y) and decomposing accordingly

f =
∑

fy and f ′ =
∑

f ′y we get τz ∗ fy = fzy + f ′zy for y ∈ Z/Γ. Let f ′ ∈ T indGK V ;

then f ′y ∈ T indGK V for all y ∈ Z/Γ so if fy belongs to T indGK V , then so do τz ∗ fy and
fzy. The hypothesis on z in (ii) implies that its image in Z/Γ has infinite order, so
fz−ry is 0 for large r. So we get, using descending induction on r, that fy does indeed

belong to T indGK V . �

V.5. We now turn to the general case of V.2 Theorem. For each parabolic subgroup
P1 =M1N1 of G containing P , we let VP1

be the irreducible representation of K with
parameter (ψ,∆P1

∩∆(V )) – for P1 = G we have VG = V ; we choose a basis vector
for (VP1

)U0 .
For such a P1 consider the sequence of canonical (injective) intertwiners:

(V.5.1) indGK VP1
→ IndGP1

indM1

M0
1

(VP1
)N0

1
→ IndGP indMM0(VP1

)N0 → IndGB indZZ0(VP1
)U0 .

As (VP1
)N0

1
has the same parameter as VN0

1
, there is a unique isomorphism between

them that is compatible with the choice of basis vectors in (VP1
)U0 and VU0 ; it in-

duces an isomorphism of (VP1
)N0 onto VN0 . Using those isomorphisms we identify the

sequence (V.5.1) with

(V.5.2) indGK VP1
→ IndGP1

indM1

M0
1

VN0
1
→ IndGP indMM0 VN0 → IndGB indZZ0 ψ.

The sequence (V.5.1) is equivariant for the sequence of Hecke algebras

(V.5.3) HG(VP1
) → HM1

((VP1
)N0

1
) → HM((VP1

)N0) → HZ((VP1
)U0)

given by the (injective) Satake homomorphisms. The choice of basis vectors gives an
isomorphism HZ((VP1

)U0) ≃ HZ(ψ), actually independent of that choice, and inside
HZ(ψ) the Hecke algebras in (V.5.3) do not depend on P1; accordingly we write HG,
HM1

, HM , HZ , and similarly for the centres. The sequence (V.5.2) is then equivariant
for the sequence of algebras HG → HM1

→ HM → HZ .

As in Chapter IV we identify the spaces in (V.5.2) with their images in IndGB indZZ0 ψ,
and similarly HG, HM1

, HM with their images in HZ .

Notation For P1 as above containing P , we let πP1
be the ZM [G]-submodule ZM ⊗ZG

indGK VP1
of IndGP indMM0 VN0 (which is then πP ).



46 N. ABE, G. HENNIART, F. HERZIG, AND M.-F. VIGNÉRAS

Remark By III.14 Theorem, πP1
is also ZM ⊗ZM1

IndGP1
indM1

M0
1

VN0
1
, which we also see

as IndGP1
(ZM ⊗ZM1

indM1

M0
1

VN0
1
), cf. [HV2] Corollary 1.3.

For further use, let us recall the considerations around loc. cit. Let X be a locally
profinite space with a countable basis. Then the functor X 7→ C∞

c (X,A) is exact on
Z-modules A, C∞

c (X,Z) is free and C∞
c (X,Z) ⊗ A → C∞

c (X,A) is an isomorphism;
if A is a free module over some ring R, then so is C∞

c (X,A) and if R → R′ is a ring
homomorphism, then R′ ⊗R C

∞
c (X,A) → C∞

c (X,R′ ⊗R A) is an isomorphism of R′-
modules. If Y is an open subset of X, we have an exact sequence 0 → C∞

c (Y,Z) →
C∞
c (X,Z) → C∞

c (X − Y,Z) → 0 of free Z-modules. We are particularly interested in
the caseX = J\H whereH is a locally profinite second countable group, and J a closed
subgroup of H. If A is a smooth R[J ]-module for some ring R, choosing a continuous
section of H → J\H gives an isomorphism of R-modules C∞

c (J\H,A) ≃ indHJ A, so we

deduce that indHJ is an exact functor on smooth R[J ]-modules, that indHJ A is free over
R if A is, and that R′⊗R ind

H
J A→ indHJ (R

′⊗RA) is an isomorphism of R′[H]-modules
for any ring homomorphism R→ R′.

V.6. We gather consequences of the change of weight results of Chapter IV.

Proposition Let P1, P2 be parabolic subgroups of G containing P , with ∆P2
= ∆P1

⊔
{α}.

(i) πP2
⊂ πP1

with equality if α /∈ ∆(V ) or if ψ is not trivial on Z0 ∩M ′
α.

(ii) If α ∈ ∆(V ) and ψ is trivial on Z0 ∩M ′
α, then (τα − 1)πP1

⊂ πP2
(with τα as

in III.16 Notation). If moreover α is not orthogonal to ∆M , the inclusion πP2
⊂ πP1

induces an isomorphism RM ⊗ZM
πP2

∼
−→ RM ⊗ZM

πP1
.

Proof First remark that if α /∈ ∆(V ) then VP1
and VP2

are isomorphic, so πP2
= πP1

is
immediate. Assume α ∈ ∆(V ). We apply IV.1 Theorem to VP2

(in lieu of V ) and VP1

(in lieu of V ′). Choose z ∈ Zψ with |α|(z) < 1 and |β|(z) = 0 for β ∈ ∆, β 6= α; thus

τz is an invertible element of ZM . By loc. cit. (i), we have the inclusion τz ind
G
K VP2

⊂
indGK VP1

of subspaces of IndGB(ind
Z
Z0 ψ). As τz is invertible in ZM , we get πP2

⊂ πP1
.

If ψ is not trivial on Z0 ∩M ′
α then loc. cit. (ii) gives τz ind

G
K VP1

⊂ indGK VP2
hence

πP2
= πP1

. If ψ is trivial on Z0∩M ′
α, loc. cit. (ii) gives τz(1− τα) ind

G
K VP1

⊂ indGK VP2

so (τα− 1)πP1
⊂ πP2

. Now τα = τaα for aα ∈ Zψ with ν(aα) = rα∨ with some positive
rational number r (III.16 Proposition (i), IV.12 Example). If α is not orthogonal to
∆M , we have |β|(aα) < 1 for some β ∈ ∆M ; but τα is sent to 0 in RM . This implies
the last assertion. �

V.7. We deduce a reduction for the proof of V.2 Theorem. Let ∆1 = ∆M ∪ {α ∈
∆(V ), α⊥∆M , ψ(Z0 ∩M ′

α) = 1} and let P1 = M1N1 be the corresponding parabolic
subgroup of G. By V.6 Proposition, the inclusion πG ⊂ πP1

induces an isomorphism

RM ⊗ πG ≃ RM ⊗ πP1
. But RM ⊗ πP1

is the same as IndGP1
(RM ⊗ indM1

M0
1

VN0
1
) (V.5

Remark); if the RM -module inside the induction is free, then so is RM ⊗πP1
(loc. cit.).

As a consequence, it is enough to prove V.2 when ∆1 = ∆.

Assumption (until V.11): ∆ = ∆M ∪∆(V ), (∆ −∆M )⊥∆M and ψ(Z0 ∩M ′
α) = 1

for α ∈ ∆−∆M .

Notation We put σ = indMM0 VN0 , so πP = IndGP σ. We also put W (M) = {w ∈ W0,
w−1(∆M ) ⊂ Φ+}.

By V.3 Proposition, we know that RM ⊗σ is free over RM , and so is RM ⊗πP (V.5
Remark). We want to deduce the same for RM ⊗ πG. For that we filter πP according
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to the double cosets PwB for w ∈ W (M) (recall that G is the disjoint union of the
double cosets PwB, w ∈W (M)).

We consider upper sets in W (M), i.e. subsets A such that v ∈ A, v′ ∈ W (M) and
v′ ≥ v (in the Bruhat order) imply v′ ∈ A. For an upper set A, PAB =

⋃

v∈A PvB is

open in G and we let πP,A be the subspace of functions in πP = IndGP σ with support
in PAB; it is a ZM -submodule of πP .

Let A be non-empty upper set in W (M) and choose a minimal element w in A. Put
A′ = A− {w}; then A′ is an upper set in W (M) and we have the submodule πP,A′ of
πP,A.

Let Ā, Ā′ be the (open) images of PAB, PA′B in P\G. We have an exact sequence
of free Z-modules

0 −→ C∞
c (Ā′,Z) −→ C∞

c (Ā,Z) −→ C∞
c (Ā− Ā′,Z) −→ 0. (V.5 Remark)

Choosing a continuous section ofG→ P\G, and noting that Ā−Ā′ is the image of PwB
in P\G, we get from loc. cit. that evaluating functions on PwB gives an isomorphism
of πP,A/πP,A′ with the ZM -module of locally constant functions f : PwB → σ with
f(pg) = pf(g) for p ∈ P , g ∈ PwB, and with compact support in P\PwB; equivalently
evaluating on wU gives an isomorphism with the compactly induced representation
indUw−1Pw∩U

wσ.

Lemma The inclusion πP,A → πP induces an isomorphism of RM ⊗ πP,A onto the

subspace of RM ⊗ πP = IndGP (RM ⊗ σ) consisting of functions with support in PAB.
The sequence

0 −→ RM ⊗ πP,A′ −→ RM ⊗ πP,A −→ RM ⊗ (πP,A/πP,A′) −→ 0

is exact, and all three terms are free over RM .

Proof Choosing a continuous section of G → P\G, πP,A appears as C∞
c (Ā,Z) ⊗ σ,

RM ⊗ πP,A as C∞
c (Ā,Z) ⊗ (RM ⊗ σ), so the result follows from V.5 Remark via the

exact sequence 0 → C∞
c (Ā′,Z) → C∞

c (Ā,Z) → C∞
c (Ā− Ā′,Z) → 0. �

V.8. Let A, w, A′ be as in V.7, and let Q be a parabolic subgroup of G containing
P . Then πQ ⊂ πP and we let πQ,A = πP,A∩πQ, similarly for A′, so we get an inclusion
of ZM -modules

πQ,A/πQ,A′ →֒ πP,A/πP,A′ .

Notation Set cQ,w = Πα∈∆Q,w−1(α)<0(τα − 1) ∈ ZM .

Remarks 1) For α ∈ ∆, w−1(α) < 0 is equivalent to sαw < w and it implies α /∈ ∆M

since w ∈W (M). In particular for such an α we have vM (aα) 6= 0 by V.4 Remark.
2) By V.4 Lemma (i) (applied to M) cQ,w acts injectively on σ hence on πP,A/πP,A′ ;

moreover, cQ,w does not divide 0 in RM .

Proposition πQ,A/πQ,A′ = cQ,w(πP,A/πP,A′) inside πP,A/πP,A′ .

Before we give the proof, we derive consequences, in particular V.2 Theorem.

Corollary 1 RM⊗(πQ,A/πQ,A′) → RM⊗(πP,A/πP,A′) is injective, and RM⊗(πQ,A/πQ,A′)
is free over RM .

Proof By the proposition, multiplication by cQ,w induces maps

πP,A/πP,A′ ։ πQ,A/πQ,A′ →֒ πP,A/πP,A′ .

Tensoring with RM over ZM gives

RM ⊗ (πP,A/πP,A′) ։ RM ⊗ (πQ,A/πQ,A′) −→ RM ⊗ (πP,A/πP,A′)
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whose composite is multiplication by cQ,w. By the above remark 2) cQ,w does not divide
0 in RM ; since RM⊗(πP,A/πP,A′) is free over RM by V.7 Lemma, multiplication by cQ,w
is injective on it so we get an isomorphism RM ⊗ (πP,A/πP,A′) ≃ RM ⊗ (πQ,A/πQ,A′),
thus proving Corollary 1. �

Corollary 2 RM ⊗ πQ,A → RM ⊗ πP,A is injective (in particular, for A = W (M),
RM ⊗ πQ → RM ⊗ πP is injective).

Proof By induction on #A, RM ⊗ πQ,A′ → RM ⊗ πP,A′ is injective. By V.7 Lemma,
RM ⊗ πP,A′ → RM ⊗ πP,A is injective and by Corollary 1, RM ⊗ (πQ,A/πQ,A′) →
RM ⊗ (πP,A/πP,A′) is injective too. The result follows from the snake lemma applied
to the commutative diagram (with exact rows)

RM ⊗ πQ,A′ → RM ⊗ πQ,A → RM ⊗ (πQ,A/πQ,A′) → 0
↓ ↓ ↓

0 → RM ⊗ πP,A′ → RM ⊗ πP,A → RM ⊗ (πP,A/πP,A′) → 0 �

Corollary 3 RM ⊗ πQ,A′ → RM ⊗ πQ,A and RM ⊗ πQ,A → RM ⊗ πQ are injective,
and (RM ⊗ πQ,A)/(RM ⊗ πQ,A′) → RM ⊗ (πQ,A/πQ,A′) is an isomorphism.

Proof In the left hand square of the previous diagram, the two vertical maps and the
bottom horizontal one are injective, hence so is the top horizontal one, giving the first
assertion, which immediately implies the last one. The second one follows from the
first by descending induction on #A. �

Now V.2 Theorem follows from the corollaries. Indeed, by Corollary 1 and Corollary
3, RM ⊗ πQ is a successive extension of free modules. Therefore RM ⊗ πQ is free.

V.9. The proof of V.8 Proposition will involve an induction argument on dimG. For
this, a further corollary is necessary.

Corollary 4 Let z ∈ Z+M ∩ Zψ, and assume vM (z) 6= 0. Then πQ ∩ (τz − 1)πP =
(τz − 1)πQ.

The proof is given after a lemma. Let A, w, A′ be as in V.7, and use the notation
πP,A, πQ,A of V.7, V.8.

Lemma (τz − 1)πP,A = (τz − 1)πP ∩ πP,A.

Proof By descending induction on #A, the case A = W (M) being trivial. By V.4
Lemma (i), τz − 1 acts injectively on σ, hence also on πP,A/πP,A′ which is a direct
sum of copies of σ (V.5 Remark). By the snake lemma πP,A′/(τz − 1)πP,A′ injects into
πP,A/(τz−1)πP,A i.e. (τz−1)πP,A∩πP,A′ = (τz−1)πP,A′ . The assertion (τz−1)πP,A =
(τz − 1)πP ∩ πP,A then implies the similar assertion for A′. �

Proof of Corollary 4 Applying V.4 Lemma (ii) to T = cQ,w ∈ ZM whose support is
in Ker vM we get

(τz − 1)σ ∩ cQ,wσ = (τz − 1)cQ,wσ,

hence

(τz − 1)(πP,A/πP,A′) ∩ cQ,w(πP,A/πP,A′) = (τz − 1)cQ,w(πP,A/πP,A′).

But by V.8 Proposition cQ,w(πP,A/πP,A′) = πQ,A/πQ,A′ , so we obtain (τz − 1)πP,A ∩
πQ,A ⊂ (τz − 1)πQ,A + πP,A′ . By the lemma we get (τz − 1)πP ∩ πQ,A ⊂ [(τz − 1)πQ ∩
πP,A]+πP,A′ . As (τz− 1)πP ∩πQ contains (τz− 1)πQ, both give the same contribution
to πP,A/πP,A′ . Their equality now follows by induction on #A. �
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V.10. We now proceed to the proof of V.8 Proposition, keeping its notation. We
first deal with the (easier) statement that πQ,A/πQ,A′ contains cQ,w(πP,A/πP,A′).

Notation Let ∆w = {α ∈ ∆, w−1(α) > 0} and let Pw =MwNw be the corresponding
parabolic subgroup of G; it contains P , and w is in W (Mw).

Lemma Let A, w, A′ be as in V.7. Then πPw,A → πP,A/πP,A′ is surjective.

Assume that lemma for a moment. Since πQ∩Pw,A contains πPw,A, the map πQ∩Pw,A →
πP,A/πP,A′ is surjective as well. But by V.6 Proposition πQ contains cQ,w πQ∩Pw , so
the image of πQ,A in πP,A/πP,A′ contains cQ,w(πP,A/πP,A′), i.e. the quotient πQ,A/πQ,A′

contains cQ,w(πP,A/πP,A′).

Proof Let A≥w = {v ∈ W (M), v ≥ w} and A>w = {v ∈ W (M), v > w}. We
use the abbreviations πP,≥w = πP,A≥w

, πP,>w = πP,A>w . Then πP,A ⊃ πP,≥w and
πP,A′ ⊃ πP,>w; moreover πP,A′∩πP,≥w = πP,>w, so πP,≥w/πP,>w injects into πP,A/πP,A′ .
But evaluation on PwB identifies both quotients with the same space of functions, so
the injection is an isomorphism. Hence it is enough to prove the lemma for A = A≥w.

Sublemma (i) w−1Pw ∩ U = w−1Uw ∩ U = w−1Pww ∩ U .
(ii) PA≥wB = ⊔v∈W (Mw),v≥wPwvB.

Proof (i) The first equality comes from w ∈W (M), the second one from w ∈W (Mw).
(ii) By [Abe, Lemma 4.20], w ∈ W (M) implies WMA≥w = {v ∈ W0, v ≥ w} and

similarly w ∈ W (Mw) implies WMw{v ∈ W (Mw), v ≥ w} = {v ∈ W0, v ≥ w}. The
result follows on taking B-double cosets. �

To prove the lemma (for A = A≥w) we need to consider closely the inclusion πPw →֒
πP . Both are parabolically induced from Pw, and the inclusion comes from the injective
map Φ : ZM ⊗ZMw

indMw

M0
w
VN0

w
→ IndMw

P∩Mw
σ obtained from the canonical intertwiner

(III.13.1), so πPw is simply the subspace IndGPw
(ImΦ) of πP = IndGPw

(IndMw

P∩Mw
σ).

Seeing πP as induced from Pw, we let π
′
P,≥w be the subspace of functions with support

in
⋃

v∈W (Mw),v≥w PwvB, and similarly π′P,>w. An element f of πP = IndGP σ is seen

as the function f ′ in IndGPw
(IndMw

P∩Mw
σ) given by f ′(g) : m 7→ f(mg) for g ∈ G,

m ∈ Mw. Hence by (ii) of the sublemma πP,≥w = π′P,≥w and πP,>w ⊃ π′P,>w. By (i)

of the sublemma (and V.5 Remark), choosing a continuous section of U → w−1Uw ∩
U\U gives a ZM -linear isomorphism ι of π′P,≥w/π

′
P,>w with C∞

c (w−1Uw ∩ U\U,Z) ⊗

IndMw

P∩Mw
σ, a similar isomorphism of πP,≥w/πP,>w with C∞

c (w−1Uw ∩ U\U,Z) ⊗ σ,

and the quotient map π′P,≥w/π
′
P,>w ։ πP,≥w/πP,>w corresponds to evaluation at 1 :

IndMw

P∩Mw
σ → σ. But (πPw ∩ π′P,≥w)/(πPw ∩ π′P,≥w) is sent by ι to C∞

c (w−1Uw ∩

U\U,Z)⊗ ImΦ so to get the surjectivity of πPw ∩ π′P,≥w → πP,≥w/πP,>w it suffices to
see that evaluation at 1 : ImΦ → σ is surjective. But for x ∈ VN0

w
the function in

indMw

M0
w
VN0

w
with supportM0

w and value x at 1, is sent in IndMw

P∩Mw
σ to a function with

value at 1 the function in σ with support M0 and value at 1 the projection of x in
VN0 ; as those last functions, for varying x, generate σ as a representation of M , and
ImΦ → σ is M -equivariant, it is surjective. �

V.11. We turn to the inclusion πQ,A/πQ,A′ ⊂ cQ,w(πP,A/πP,A′) in V.8 Proposition.
We need auxiliary lemmas, where α ∈ ∆ − ∆M is fixed; we let Pα = MαNα be the
parabolic subgroup corresponding to ∆M ∪ {α} and we put σ̄ = σ/(τα − 1)σ. Note
that Hypothesis (H) of III.15 holds with the map ϕ : VN0 → σ → σ̄. We also note that
ϕτα = ταϕ = ϕ.
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Lemma 1 σ̄ extends to Pα, trivially on N .

Proof By II.7 it suffices to prove that σ̄ is trivial on Z ∩M ′
α. Since α is orthogonal

to ∆M and ψ is trivial on Z0 ∩M ′
α by assumption, that comes from the fact that τα

acts trivially on σ̄ (III.17). �

We write eσ̄ for the extension of σ̄ to Pα. Inside of πP/(τα−1)πP ≃ IndGP σ̄ we have

the subspace IndGPα
eσ̄, cf. III.22 Lemma 2.

Lemma 2 The image of πPα → πP → πP/(τα − 1)τP is contained in IndGPα
eσ̄.

Proof Since πPα → IndGP σ̄ is ZM [G]-equivariant and πPα is generated as a ZM [G]-
module by VPα it is enough to prove that the inclusion of HomK(VPα , IndGPα

eσ̄) into

HomK(VPα , IndGP σ̄) is an isomorphism. By Frobenius reciprocity, this means that

HomMα0((VPα)Nα0 , eσ̄) →֒ HomMα0((VPα)Nα0 , IndM
α

P∩Mα σ̄)

is an isomorphism. The quotient of IndM
α

P∩Mα σ̄ by eσ̄ is the representation eσ̄⊗StM
α

P∩Mα

and it is enough to show that (VPα)Nα0 is not a weight of that representation. But the
parameter for (VPα)Nα0 is (ψ, (∆M ∪ {α}) ∩∆(V )) and α ∈ ∆(V ) whereas by III.18
the weights of eσ̄ ⊗ StM

α

P∩Mα = I(P ∩Mα, σ̄, P ∩Mα) have parameters (ψ′, I) where
α /∈ I. �

Lemma 3 Let P1 =M1N1 and P2 =M2N2 be parabolic subgroups of G containing P ,
and assume ∆P2

= ∆P1
⊔{α}. Let A, w, A′ be as in V.7, and assume that w−1(β) < 0

for all β ∈ ∆P2
−∆M . Then

πP2,A ⊂ (τα − 1)πP1,A + πP,A′ .

Proof Let f ∈ πP2,A and let f̄ be its image in IndGP σ̄. As πP2
⊂ πPα, we get

f̄ ∈ IndGPα
eσ̄ by Lemma 2. If f̄ does not vanish on PwB, its support, being Pα

invariant, contains PsαwB. But w−1(α) < 0 means sαw < w and w being minimal
in A, that contradicts f ∈ πP,A. Hence f̄ vanishes on PwB and there exist f1 ∈ πP ,
f2 ∈ πP,A′ with f = (τα−1)f1+f2. The point is to prove that we can take f1 in πP1,A.

View πP1
as IndGP1

σ1 with σ1 = ZM ⊗ZM1
indM1

M0
1

VN0
1
and πP as IndGP1

IndM1

P∩M1
σ, the

inclusion πP1
→֒ πP being induced by the natural intertwiner indM1

M0
1

VN0
1
→ IndM1

P∩M1
σ.

Sublemma For v ∈ A′ we have P1wB ∩ PvB = ∅.

Proof Indeed if P1wB∩PvB 6= ∅ there exists v′ in WM1
with v′w = v. Since ∆−∆M

is orthogonal to ∆M ,WM1
is the direct product ofWM and the subgroupW1 generated

by the sβ for β ∈ ∆P1
− ∆M . For such a β we have sβw < w and it follows (using

[Deo] as in IV.9 Lemma 2), by induction on length, that v1w ≤ w for any v1 ∈ W1.
Writing v′ as v−1

2 v1 with v1 ∈ W1 and v2 ∈ WM we get v1w = v2v. But v2v ≥ v and
v1w ≤ w so v ≤ w contrary to the assumption v ∈ A′. �

Let us pursue the proof of Lemma 3.
Since f2 ∈ πP,A′ , it follows from the sublemma that, seen as an element of IndGP σ, it

vanishes on P1wB; but then, seen as an element of IndGP1
IndM1

P∩M1
σ, it also vanishes on

P1wB. So for any x ∈ P1wB, f(x) = (τα−1)f1(x) in IndM1

P∩M1
σ. Now dimP1 < dimG

so V.8 Proposition and all its corollaries are true for M1. As vM1
(aα) 6= 0 we conclude

from V.9 Corollary 4 that there exists y ∈ σ1 with (τα − 1)f1(x) = (τα − 1)y. But

τα−1 does not kill any element of IndM1

P∩M1
σ, by V.4 Lemma (i), so f1(x) = y belongs

to σ1. We can choose f ′1 in IndGP1
σ1 ∩ πP1,A with the same restriction as f1 on P1wB

(use V.5 Remark). Put f ′2 = f − (τα − 1)f ′1 = (τα − 1)(f1 − f ′1) + f2. Then f1 − f ′1
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vanishes on P1wB, f2 vanishes on PwB so f ′2 belongs to πP,A′ and f = (τα− 1)f ′1+ f ′2
belongs to (τα − 1)πP1,A + πP,A′. �

We now finish the proof of V.8 Proposition. Let R be the parabolic subgroup
between P and Q with ∆R − ∆M = {α ∈ ∆Q, w

−1(α) < 0}. Applying Lemma 3
successively we get πR,A ⊂ cR,wπP,A + πP,A′, hence the result since πQ,A ⊂ πR,A and
cR,w = cQ,w. �

We can get more out of that:

Lemma 4 Let A, w, A′ be as in V.7. Then πQ,A ⊂ cQ,wπPw,A + πQ,A′ .

Proof V.10 Lemma gives πP,A ⊂ πPw,A+πP,A′ so from V.8 Proposition we get πQ,A ⊂
cQ,wπPw,A + πP,A′. But πPw ⊂ πQ∩Pw and cQ,wπQ∩Pw ⊂ πQ by V.6 Proposition so
cQ,wπPw,A ⊂ πQ,A and the result follows. �

B) Filtration theorem for χ⊗ indGK V

V.12. We now turn to the filtration theorem (I.6). For that, as before, an irreducible
representation V of K is fixed, with parameter (ψ,∆(V )), but we also fix a character
χ of ZG = ZG(V ). We let P = MN be the parabolic subgroup with ∆P = ∆0(χ),
so P is the smallest parabolic subgroup of G containing B such that χ extends to a
character – still written χ – of ZM = ZM (VN0), and that character further factors
through ZM → RM .

Notation For a ZM -module W , we put W χ = χ⊗ZM
W .

Recall that for each parabolic subgroup Q of G containing P , VQ denotes the irre-
ducible representation of K of parameter (ψ,∆Q ∩∆(V )); we make the same identifi-

cations as in V.5. In particular we get a ZM [G]-submodule πQ of πP = IndGP σ – we

keep writing σ = indMM0 VN0 . Our main interest is in πχG, but its analysis goes through
the πχQ, in particular πχP .

As σχ satisfies property (H) of III.15, the maximal parabolic subgroup of G to which
σχ extends, trivially on N , has associated set of roots ∆M ⊔ Θmax where Θmax is the
set of α ∈ ∆−∆M , orthogonal to ∆M and such that ψ(Z0 ∩M ′

α) = 1 and χ(τα) = 1
(III.17 Corollary).

Notation We let Θ = Θmax ∩∆(V ), Pe = P∆M⊔Θ and write eσχ for the extension of
σχ to Pe, trivial on N . (Note that III.22 Lemma 2 gives an identification of πχP with

IndGPe
(eσχ ⊗ IndPe

P 1).)

Lemma The inclusion πG → πPe induces an isomorphism πχG → πχPe

Proof It suffices to show that for Pe ⊂ P1 ⊂ P2 with ∆P2
= ∆P1

⊔ {α}, the natural
map πχP2

→ πχP1
is an isomorphism. If α /∈ ∆(V ) or if ψ is not trivial on Z0 ∩M ′

α or

α not orthogonal to ∆M , then by V.6 we even have an isomorphism RM ⊗ZM
πP2

∼
−→

RM ⊗ZM
πP1

. Otherwise, χ(τα) 6= 1 and since (τα − 1)πP1
⊂ πP2

⊂ πP1
by V.6, we

have an isomorphism πχP2

∼
−→ πχP1

. �

V.13. Notation Let D be the set of parabolic subgroups of G between P and Pe.

• For Q, Q1 in D, Q ⊃ Q1, put cQ,Q1
=

∏

α∈∆Q−∆Q1

(τα − 1) (then cQ,Q1
πQ1

⊂ πQ by

V.6 Proposition).

• For Q ∈ D, let τQ be the image of πQ
cPe,Q−→ πPe → πχPe

(= πχG), and let ρQ be the

image of πQ →֒ πP → πχP .
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• For Q ∈ D, let Qc ∈ D be the parabolic subgroup such that ∆Qc−∆M = ∆Pe−∆Q,
and let ΦQ, ΨQ be the G-equivariant maps

ΦQ : τQ →֒ πχPe
−→ πχQc,

ΨQ : ρQ →֒ πχP
cQc,P
−→ πχQc.

Here the last map is obtained from πP
cQc,P
−→ πQc by tensoring by χ.

• Let IQ the submodule IndGPe
(eσχ ⊗ IndPe

Q 1) of πχP . In particular, IP = ρP = πχP .

Note also that τPe = πχPe
.

Remark 1 The maps πQ
cPe,Q−→ πPe →֒ πQc and πQ →֒ πP

cQc,P
−→ πQc are equal because

cQc,P = cPe,Q. Therefore ImΦQ = ImΨQ.

Remark 2 For Q, Q1 in D, Q ⊃ Q1, we have τQ1
⊂ τQ and ρQ1

⊃ ρQ.

Our second main result in this chapter is:

Theorem Let Q ∈ D.
(i) ρQ = IQ.
(ii) Ker ΨQ =

∑

Q1∈D,Q1!Q
ρQ1

.

(iii) KerΦQ =
∑

Q1∈D,Q1 Q
τQ1

.

(iv) Let P ⊂ D; then τQ ∩
∑

Q1∈P
τQ1

=
∑

Q1∈P
τQ∩Q1

.

It implies I.6 Theorem 6:

Corollary 1 For Q ∈ D, τQ/
∑

Q1∈D,Q1 Q
τQ1

is isomorphic to Ie(P, σ
χ, Q).

Proof By Remark 1 we have that τQ/KerΦQ is isomorphic to ρQ/Ker ΨQ. But
ρQ = IQ by (i) so we get by (ii) and (iii) a G-isomorphism between τQ/

∑

Q1∈D,Q1 Q
τQ1

and IQ/
∑

Q1∈D,Q1!Q
IQ1

which is Ie(P, σ
χ, Q). �

Corollary 2 Enumerate the parabolic subgroups in D as P = Q1, . . . , Qr = Pe, so
that i ≤ j if Qi ⊂ Qj. For i = 0, . . . , r, put Ii =

∑

1≤j≤i
τQj

. Then for i = 1, . . . , r,

Ii/Ii−1 ≃ Ie(P, σ
χ, Qi).

Proof For i = 1, . . . , r Ii/Ii−1 = τQi
/(τQi

∩
∑

1≤j<i
τQj

) is also τQi
/

∑

1≤j<i
τQi∩Qj

by (iv).

The assertion follows from Corollary 1. �

Remark 3 The proofs below are in fact valid more generally: it would suffice, for
a given parabolic subgroup P = MN of G containing B, to tensor indGK V with the
quotient of RM in which all τα − 1 for α ∈ Θ are killed.

Since we consider only parabolic subgroups in D, and all the representations we
consider are parabolically induced from analogously defined representations of the
Levi quotient of Pe, it is enough to prove the theorem when Pe = G, i.e. ∆ = ∆M ⊔Θ,
which we assume from now on.
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V.14. Under that assumption ∆ = ∆M ⊔Θ, we prove V.13 Theorem in a succession
of lemmas.

We fix Q ∈ D and let MQ be its Levi subgroup containing M .

Lemma 1 ρQ ⊂ IQ.

Proof Equality is clear when Q = P , so we assume Q ! P . For each α ∈ ∆Q−∆P , let
Pα be as in V.11. By V.11 Lemma 2, ρPα is included in IPα so a fortiori ρQ ⊂ IPα . But
the subgroup of G generated by the Pα’s for α ∈ ∆Q−∆P is Q, so ∩α∈∆Q−∆P

IPα = IQ,
and ρQ ⊂ IQ. �

To prove equality in Lemma 1, we resort to filtration arguments. In the following
A, w, A′ are as in V.7 and πP,A, πQ,A as in V.7, V.8.

Remark 1 We can also filter πχP by support yielding (πχP )A ⊂ πχP . But from V.7
Lemma we get, after tensoring with χ : RM → C, that πP,A → πχP induces an isomor-
phism (πP,A)

χ ≃ (πχP )A. We let πχP,A denote (πχP )A.

We put ρQ,A = ρQ ∩ πχP,A, IQ,A = IQ ∩ πχP,A, so ρQ,A = ρQ ∩ IQ,A.

Remark 2 By V.8 Corollary 2 and Corollary 3,

0 → RM ⊗ πQ,A → RM ⊗ πQ → RM ⊗ (πQ/πQ,A) → 0

is an exact sequence of free RM -modules (an extension of free RM -modules is free and
by induction RM ⊗ πQ,A and RM ⊗ πQ are free RM -modules). Therefore the map
(πQ,A)

χ → πχQ is injective.

Lemma 2 (i) If w /∈W (MQ) then IQ,A = IQ,A′, and ρQ,A = ρQ,A′.
(ii) If w ∈W (MQ) the maps πQ → ρQ → IQ → πχP induces isomorphisms

(πQ,A)
χ/(πQ,A′)χ ≃ ρQ,A/ρQ,A′ ≃ IQ,A/IQ,A′ ≃ πχP,A/π

χ
P,A′ .

(iii) ρQ,A is the image of πQ,A in πχP .

Note w ∈ W (MQ) means that for α ∈ ∆Q, w
−1(α) > 0; it is equivalent to cQ,w = 1

(V.8).

Proof (i) Let f ∈ IQ,A − IQ,A′; then f is not identically 0 on PwB, but its support is
left Q-equivariant, so for any v ∈WMQ

, f is not identically 0 on PvwB. If w /∈W (MQ)
we can choose v ∈ WMQ

so that vw < w. That implies vw /∈ A by minimality of w, a
contradiction. So IQ,A = IQ,A′ and ρQ,A = ρQ,A′ follows by intersecting with ρQ.

(ii) Let w ∈ W (MQ). Then cQ,w = 1 and V.8 Proposition gives that the map
πQ,A → πP,A induces an isomorphism πQ,A/πQ,A′ ≃ πP,A/πP,A′ . Tensoring with χ
gives an isomorphism of (πQ,A)

χ/(πQ,A′)χ onto (πP,A)
χ/(πP,A′)χ which is πχP,A/π

χ
P,A′

by Remark 1; since the image of that isomorphism is contained in ρQ,A/ρQ,A′ , itself
contained in IQ,A/IQ,A′ , we get (ii).

(iii) We prove it by descending induction on #A, the case A = W (M) being true
by definition of ρQ. We assume that the result is true for A and prove it for A′. By
V.11 Lemma 4 we have

πQ,A ⊂ cQ,wπPw,A + πQ,A′.

If w /∈ W (MQ) then χ(cQ,w) = 0. Hence πQ,A and πQ,A′ have the same image in πχP ,
which is ρQ,A by induction and ρQ,A′ by (i). If w ∈ W (MQ) we use the isomorphism
(πQ,A)

χ/(πQ,A′)χ ≃ ρQ,A/ρQ,A′ in (ii). Since (πQ,A)
χ → ρQ,A is surjective by induction,

(πQ,A′)χ → ρQ,A′ has to be surjective too. �

Lemma 3 ρQ = IQ.
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Proof By induction on #A: if ρQ,A′ = IQ,A′ , then Lemma 2 (i), (ii), and Lemma 1
give ρQ,A = IQ,A. �

Lemma 4 For Q1 ∈ D, Q1 ! Q, Ker ΨQ contains ρQ1
.

Proof It enough to show that the composite map πχQ1
→ πχQ → ρQ

ΨQ
−→ πχQc is 0. But

it factors as πχQ1
→ πχQ

cG,Q
−→ πχG → πχQc since cQc,P = cG,Q. From cG,Q = cQ1,QcG,Q1

we

get cG,Qπ
χ
Q1

= cQ1,QcG,Q1
πχQ1

⊂ cQ1,Qπ
χ
G which is 0 since χ(cQ1,Q) = 0. �

Lemma 5 Ker ΨQ ⊂
∑

Q1∈D,Q1!Q
ρQ1

.

Proof We show by induction on #A that

(∗) Ker ΨQ ∩ πχP,A ⊂
∑

Q1∈D,Q1!Q

ρQ1
.

We assume that (∗) is true for A′ and prove it for A. Note that Ker ΨQ ⊂ ρQ ⊂ πχP
so Ker ΨQ ∩ πχP,A = Ker ΨQ ∩ ρQ,A. If w /∈ W (MQ) then ρQ,A = ρQ,A′ by Lemma 2

(i), so the result is immediate. Assume w ∈ W (MQ). On ρQ,A/ρQ,A′ , ΨQ induces

Ψ̄Q : ρQ,A/ρQ,A′ → πχP,A/π
χ
P,A′

cQc,P
−→ (πQc,A)

χ/(πQc,A′)χ. By Lemma 2(ii), the first

map is an isomorphism, so we focus on the second map.

Notation Put dQw =
∏

α∈∆−∆Q,w−1(α)>0

(τα − 1), so that cQc,P = dQwcQc,w because ∆ −

∆Q = ∆Qc −∆M .

By V.8 Proposition and the remark before it, cQc,w gives an isomorphism πP,A/πP,A′
∼
−→

πQc,A/πQc,A′ . If dQw = 1 then Ψ̄Q is injective and Ker ΨQ ∩ πχP,A = Ker ΨQ ∩ πχP,A′

so (∗) follows from the induction hypothesis. Let dQw 6= 1, choose α ∈ ∆ − ∆Q with
w−1(α) > 0 and let Qα be the parabolic subgroup of G corresponding to ∆Q ∪ {α}.
Then w ∈W (MQα) and Lemma 2 (ii) gives the isomorphism

ρQα,A/ρQα,A′
∼
−→ πχP,A/π

χ
P,A′.

Let f ∈ Ker ΨQ ∩ πχP,A, and choose f ′ ∈ ρQα,A with f − f ′ ∈ πχP,A′ . As f ′ ∈ Ker ΨQ

by Lemma 4, f − f ′ ∈ Ker ΨQ so f − f ′ belongs to
∑

Q1∈D,Q1!Q
ρQ1

by induction; as f ′

also belongs to that space, the result follows. �

V.15. We have proved (i) and (ii) in V.13 Theorem, and now we turn to part (iii).
Describing KerΦQ is analogous to describing Ker ΨQ. We let A, w, A′ be as before, and

let τQ,A ⊂ τQ be the image of πQ,A (or (πQ,A)
χ) in πχG = τG, via the map πχQ

cG,Q
−→ πχG.

We observe that τQ,A′ ⊂ τQ,A and τQ1,A ⊂ τQ,A if Q1 ⊂ Q in D. We note also that by
V.14 Remark 2 we have (πG,A)

χ = τG,A ⊂ πχG.

Lemma 6 (i) If for some α ∈ ∆−∆Q, w
−1(α) > 0 then τQ,A = τQ,A′. Otherwise the

natural maps (πQ,A)
χ/(πQ,A′)χ ։ τQ,A/τQ,A′ → τG,A/τG,A′ are isomorphisms.

(ii) τQ,A = τG,A ∩ τQ.

Proof (i) Let φ ∈ πQ,A. With Pw as in V.10, V.11 Lemma 4 implies that we can

write φ = cQ,wφw + φ′ with φw ∈ πPw,A and φ′ ∈ πQ,A′. Since dQwcG,w = cG,QcQ,w we

get cG,Qφ = dQw(cG,wφw) + cG,Qφ
′. But cG,w = cG,Pw so cG,wφw belongs to πG by V.6

Proposition. In the first case of (i), χ(dQw) = 0, so φ has the same image as φ′ in τQ;
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this implies τQ,A = τQ,A′. Let us assume we are in the second case of (i), so dQw = 1.
Consider the natural inclusions

πG,A/πG,A′ →֒ πQ,A/πQ,A′ →֒ πP,A/πP,A′ .

By V.8 Proposition, the first space is cG,w(πP,A/πP,A′) and the second is cQ,w(πP,A/πP,A′).

Consequently cG,Q(πQ,A/πQ,A′) = πG,A/πG,A′ since dQw = 1. Thus cG,Q induces a sur-
jective map of πQ,A/πQ,A′ onto πG,A/πG,A′ . But by V.4 Lemma (i) (applied toM) cG,Q
acts injectively on σ hence on πP,A/πP,A′ , so we actually get an isomorphism. Tensor-
ing with χ we get an isomorphism (πQ,A)

χ/(πQ,A′)χ → τG,A/τG,A′ ; but this factors as
in the statement of (i), so (i) follows again.

(ii) We proceed by descending induction on #A, the case A =W (M) being obvious.
The containment τQ,A′ ⊂ τG,A′∩τQ is clear, and we have τQ,A = τG,A∩τQ by induction.
In the first case of (i) τQ,A′ = τQ,A = τG,A ∩ τQ ⊃ τG,A′ ∩ τQ so τQ,A′ = τG,A′ ∩ τQ.
In the second case of (i), τQ,A/τQ,A′ → τG,A/τG,A′ is an isomorphism; as moreover
τG,A′ ∩ τQ ⊂ τQ,A by induction, the result follows. �

Lemma 7 For Q1 ∈ D, Q1  Q, then τQ1
⊂ KerΦQ.

Proof Let P1 be the parabolic subgroup corresponding to ∆Q1
⊔(∆−∆Q) = ∆Q1

∪∆Qc.
Since Q1  Q, we get P1  G. We have cP1,Q1

πQ1
⊂ πP1

⊂ πQc so cG,Q1
πQ1

⊂

cG,P1
πQc . As χ(cG,P1

) = 0 the image of πQ1

cQc,Q1−→ πQc → πχQc is 0; but that image is

ΦQ(τQ1
). �

Lemma 8 KerΦQ ⊂
∑

Q1∈D,Q1 Q
τQ1

.

Proof We prove that Ker ΦQ ∩ τG,A is contained in the right-hand side, by induction
on #A. In the first case of Lemma 6 (i), τQ,A = τQ,A′, so τG,A∩ τQ = τG,A′ ∩ τQ by loc.
cit. (ii). Consequently Ker ΦQ∩τG,A = KerΦQ∩τG,A′ and we are done. So we assume
that for all α ∈ ∆−∆Q = ∆Qc −∆P we have w−1(α) < 0. On τQ,A/τQ,A′ , ΦQ induces

Φ̄Q : τQ,A/τQ,A′ → (πG,A)
χ/(πG,A′)χ−→(πQc,A)

χ/(πQc,A′)χ, where the first map is an
isomorphism by Lemma 6 (i), and the second comes, upon tensoring with χ, from
the inclusion of πG,A/πG,A′ into πQc,A/πQc,A′ . By V.8 Proposition, we have, inside
πP,A/πP,A′ , πG,A/πG,A′ = cG,w(πP,A/πP,A′), and πQc,A/πQc,A′ = cQc,w(πP,A/πP,A′). If
for all α ∈ ∆ − ∆Qc we have w−1(α) > 0, then cG,w = cQc,w, and πG,A/πG,A′ =
πQc,A/πQc,A′ ; thus Ker ΦQ ∩ τG,A = KerΦQ ∩ τG,A′ , so we conclude by induction.
In the opposite case, choose α ∈ ∆ − ∆Qc = ∆Q − ∆P with w−1(α) < 0, and let
Qα correspond to ∆Q − {α}. Then τQα,A/τQα,A′ → τG,A/τG,A′ is an isomorphism by
Lemma 6 (i). If f ∈ KerΦQ∩τQ,A, there is f

′ ∈ τQα,A with f−f ′ ∈ τG,A′ . As τQα ⊂ τQ
we have f − f ′ ∈ τG,A′ ∩ τQ = τQ,A′ by loc. cit. (ii). Lemma 7 gives ΦQ(f

′) = 0, so
ΦQ(f − f ′) = 0 and by induction f − f ′ belongs to the right-hand side of Lemma 8;
since f ′ ∈ τQα also belongs to that space, so does f . �

V.16. It remains to prove (iv) of V.13 Theorem.

Lemma 9 Let P ⊂ D. Then
(

∑

Q1∈P
τQ1

)

∩ τG,A =
∑

Q1∈P
τQ1,A.

Proof The containment ⊃ is clear; we prove the other direction by descending in-
duction on #A. Let P− = {Q1 ∈ P | w−1(α) < 0 for any α ∈ ∆ − ∆Q1

}. If P− is
empty then τQ1,A = τQ1,A′ for any Q1 ∈ P (Lemma 6, (i)), and we have nothing to
prove. Assume P− is not empty, and put Q∩ =

⋂

Q1∈P−

Q1. Then for α ∈ ∆ − ∆Q∩

we have w−1(α) < 0 so by loc. cit. the map τQ∩,A → τG,A/τG,A′ is surjective. For
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Q1 ∈ P let fQ1
∈ τQ1

be chosen so that
∑

Q1∈P
fQ1

∈ τG,A′; by the inductive hy-

pothesis we may assume that all fQ1
∈ τQ1,A. For Q1 ∈ P − P−, we even have

fQ1
∈ τQ1,A′ by loc. cit. Fix Q2 ∈ P−; for Q1 ∈ P−, Q1 6= Q2 choose f ′Q1

∈ τQ∩,A with

fQ1
− f ′Q1

∈ τG,A′. Since τQ∩,A ⊂ τQ1,A, fQ1
− f ′Q1

belongs to τG,A′ ∩ τQ1
= τQ1,A′ .

So
∑

Q1∈P
fQ1

appears as fQ2
+

∑

Q1∈P−,Q1 6=Q2

f ′Q1
plus terms in

∑

Q1∈P
τQ1,A′ . But for

Q1 ∈ P−, Q1 6= Q2, f
′
Q1

belongs to τQ∩,A ⊂ τQ2,A so fQ2
+

∑

Q1∈P−,Q1 6=Q2

f ′Q1
belongs

to τQ2
∩ τG,A′ = τQ2,A′ ⊂

∑

Q1∈P
τQ1,A′ . �

We finally prove (iv) of V.13 Theorem. Fix Q ∈ D and let P ⊂ D. It is clear that
(

∑

Q1∈P

τQ1

)

∩ τQ ⊃
∑

Q1∈P

(τQ1
∩ τQ) ⊃

∑

Q1∈P

τQ1∩Q.

We prove now
(

∑

Q1∈P

τQ1

)

∩ τQ,A ⊂
∑

Q1∈P

τQ1∩Q by induction on #A.

If there is α ∈ ∆−∆Q with w−1(α) > 0 then τQ,A = τQ,A′ (Lemma 6 (i)) and there is
nothing to prove, so we assume the contrary. By Lemma 9

(

∑

Q1∈P

τQ1

)

∩ τQ,A =
(

∑

Q1∈P

τQ1,A

)

∩ τQ,A.

Let P− ⊂ P be the same subset as in the proof of Lemma 9. If P− is empty, then
τQ1,A = τQ1,A′ for any Q1 in P. Hence

(

∑

Q1∈P

τQ1

)

∩ τQ,A =
(

∑

Q1∈P

τQ1,A′

)

∩ τQ,A =
(

∑

Q1∈P

τQ1,A′

)

∩ τQ,A′ ,

and the result follows from Lemma 9 and the induction hypothesis. Now assume
P− 6= ∅, and write Q∩ = Q ∩

⋂

Q1∈P−

Q1; then for α ∈ ∆ − ∆Q∩, w
−1(α) < 0 and

again τQ∩,A → τG,A/τG,A′ is surjective. For Q1 ∈ P let fQ1
∈ τQ1

be chosen so that
∑

Q1∈P
fQ1

∈ τQ,A. By Lemma 9 we may assume fQ1
∈ τQ,A. For Q1 ∈ P−, choose

f ′Q1
∈ τQ∩,A with fQ1

− f ′Q1
∈ τG,A′ (then fQ1

− f ′Q1
∈ τQ1,A′). Write

∑

Q1∈P

fQ1
=

∑

Q1∈P−

(fQ1
− f ′Q1

) +
∑

Q1∈P−P−

fQ1
+

∑

Q1∈P−

f ′Q1
.

We examine the right hand side. The last term belongs to τQ∩,A ⊂ τQ,A, so the sum of
the first two belongs to τQ. As each summand in those two terms indexed by Q1 is in
τQ1,A′ , their sum belongs to (

∑

Q1∈P
τQ1,A′)∩τQ, which is in

∑

Q1∈P
τQ1∩Q by the induction

hypothesis. But for Q1 ∈ P−, f ′Q1
∈ τQ∩,A, and τQ∩ ⊂ τQ1∩Q since Q∩ ⊂ Q1 ∩ Q.

Thus the third term also belongs to
∑

Q1∈P−

τQ1∩Q. �

VI. Consequences of the classification

VI.1. The representation theory of irreducible admissible representation of G over a
field of characteristic p is very different from the theory over a field of characteristic
ℓ 6= p. The following proposition is a new example of these differences.
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Proposition Any irreducible representation π of G is a subquotient of IndGB σ for some
representation σ of Z.

Proof The smoothness of π implies that π has a weight V . The irreducibility of
π implies that π is a quotient of indGK V . The representation indGK V embeds in

IndGB(ind
Z
Z0 VU0) by the intertwiner I of III.13. �

We recall from I.3 that a representation of G is supercuspidal if it is irreducible,
admissible, and does not appear as a subquotient of a parabolically induced repre-
sentation IndGP σ, where P is a proper parabolic subgroup of G and σ an irreducible
admissible representation of the Levi quotient of P .

It is well known [BL1, Br] that there exist supercuspidal representations when G =
GL2(Qp), therefore the proposition shows that we cannot drop the condition that σ
is irreducible admissible in the definition of supercuspidality, unlike over a field of
characteristic ℓ 6= p.

VI.2. We derive the desired consequences of I.5 Theorem 4. Mostly we follow the
pattern of [He2].

We now prove I.5 Theorem 5, which we recall.

Theorem Let π be an irreducible admissible representation of G. Then π is supercus-
pidal if and only if π is supersingular.

As noticed in the introduction, this theorem shows that the notion of supersingu-
larity, for an irreducible admissible representation of G, is independent of the choices
of S,B,K.

Proof Let π be supercuspidal. By I.5 Theorem 4, there is a supersingular B-triple
(P, σ,Q) such that π ≃ I(P, σ,Q). By III.24 Proposition, I(P, σ,Q) is a component of
IndGP σ, so P = G and π ≃ σ is supersingular.

Let π be supersingular. Assume it occurs as a subquotient of IndGP σ for a parabolic
subgroup P of G and an irreducible admissible representation σ of the Levi quotientM
of P ; we may and do assume that P contains B. By I.5 Theorem 4, III.24 Proposition,
and transitivity of parabolic induction, we may assume that σ is supersingular. By
III.24 Proposition, π is isomorphic to some I(P, σ,Q) and I.5 Theorem 4 implies that
P = G, so that π is indeed supercuspidal. �

Theorems 1 to 3 in Section I.3 are now rather immediate. They follow from I.5
Theorem 4 and the following elementary observations:

(i) Any triple is G-conjugate to a B-triple.
(ii) A B-triple is supersingular if and only if it is supercuspidal (by the theorem).
(iii) I(P, σ,Q) ≃ I(P ′, σ′, Q′) if the triples (P, σ,Q), (P ′, σ′, Q′) are G-conjugate.

VI.3. We also have the desired consequence about supercuspidal support.

Proposition Let π be an irreducible admissible representation of G. Then there is a
parabolic subgroup P of G and a supercuspidal representation σ of the Levi quotient of
P such that π is a subquotient of IndGP σ. If P1 is a parabolic subgroup of G and σ1
a supercuspidal representation of the Levi quotient of P1 such that π is a subquotient
of IndGP1

σ1, then there is g in G such that P1 = gPg−1 and that σ1 is equivalent to

x 7→ σ(g−1xg).

Proof By I.3 Theorem 3, π has the form I(P, σ,Q) for some supercuspidal triple
(P, σ,Q) and the first assertion comes from III.24 Proposition. The uniqueness asser-
tion is derived in the same way from I.3 Theorem 2. �
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We say that the supercuspidal support of π is the class of (P, σ) for the equiva-
lence relation appearing in the proposition.

VI.4. We give one more consequence mentioned in the introduction.

Proposition Let (P, σ,Q) be a B-triple. Assume that σ is a supercuspidal (or equiv-
alently, supersingular) representation of M . Then I(P, σ,Q) is finite-dimensional if
and only if P = B and Q = G.

Proof As Z is compact mod centre, any irreducible representation τ of Z is finite di-
mensional [Hn, Vig2] and consequently supercuspidal. If P (τ) = G then I(B, τ,G) =
eτ is finite dimensional. Conversely, let π be a finite-dimensional irreducible represen-
tation of G. Then its kernel is an open normal subgroup of G. Considering ι : Gis → G
as in Chapter II, Ker(σ ◦ ι) is an open normal subgroup of Gis which by II.3 Propo-
sition has to be Gis itself. Thus π is trivial on G′ and since G = ZG′, π restricts to
an irreducible (supercuspidal) representation τ of Z; we have P (τ) = G and eτ = π,
π = I(B, τ,G). �

VI.5. It is worth noting that our results recover the classifications obtained previ-
ously in special cases. Keep the notation of Chapter III. When G is split, then for
α ∈ ∆, Z ∩M ′

α is simply the image in Z = S of the coroot α∨, so our classification
is the same as that of [Abe]; it also gives the classification of [He2] for G = GLn.
Other special cases are worth mentioning: groups of semisimple rank 1 and inner
forms of GLn. Of course if G has relative rank 0, all irreducible representations of
G are finite dimensional and supercuspidal, and our classification theorem says noth-
ing. If G has relative semisimple rank 1, the classification is rather simple (see also
[BL1, BL2, Abd, Che, Ko, Ly2]). An irreducible admissible representation π of G falls
into one (and only one) of the following cases:

1) π is supercuspidal (hence infinite dimensional), i.e. π ≃ I(G,π,G).
2) π is finite dimensional; it is then trivial on G′ and restricts to an irreducible repre-
sentation τ of Z, trivial on Z ∩G′, and π ≃ I(B, τ,G).
3) π ≃ σ ⊗ StGB where σ is as in 2), i.e. π ≃ I(B,σ|Z , B).
4) π ≃ I(B, τ,B) where τ is an irreducible representation of Z (hence finite dimensional
and supercuspidal) which is not trivial on Z ∩G′.

VI.6. Let us briefly consider the case of inner forms of general linear groups. Thus
G = GLn/D where D is a central division algebra of finite degree over F . We take for

S the diagonal subgroup (F×)n (so that Z is the diagonal subgroup (D×)n), and for
B the upper triangular subgroup. We can take K = GLn(OD) where OD is the ring
of integers of D; all other special parahoric subgroups of G are conjugate to K.

A parabolic subgroup P of G containing B is an upper triangular block subgroup,
and the corresponding Levi subgroupM is the block diagonal subgroup. If the succes-
sive blocks down the diagonal have size n1, . . . , nr, then M appears as M1 × · · · ×Mr,
Mi = GLni

(D) and an irreducible admissible representation of M factors as a tensor
product π1 ⊗ · · · ⊗ πr, where πi is an irreducible admissible representation of Mi for
i = 1, . . . , r determined up to isomorphism. (Conversely such a tensor product is an
irreducible admissible representation of M : the reader can devise a proof as suggested
in [He2], perhaps using [HV2, 7.10 Lemma].) Note that the group G′ is the kernel
of the non-commutative determinant det : G → F×. Parameters for the irreducible
admissible representations of G can then be described in a way entirely parallel to the
case D = F obtained in [He2]. (The cases of GLn(D) where n ≤ 3 are treated in T.
Ly’s Ph.D. thesis [Ly2], [Ly3, Chapter 3].)
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We simply state the results, leaving to the reader the translation from our classifi-
cation in this paper.

For i = 1, . . . , r let πi be a representation of Mi which is either supercuspidal or of
the form χi ◦ det for some character χi : F

× → C×; if for two consecutive indices i,
i+ 1 we have πi = χi ◦ det and πi+1 = χi+1 ◦ det, assume χi 6= χi+1.

For each index i such that πi = χi◦det, choose an upper (block) triangular parabolic

subgroup Qi of Mi, and put σi = (χi ◦ det) ⊗ StMi

Qi
; for other indices i put σi = πi.

Then IndGP (σ1 ⊗ · · · ⊗ σr) is irreducible and admissible. Conversely any irreducible
admissible representation of G has such a shape, where the integers n1, . . . , nr, the
parabolic subgroups Qi of Mi = GLni

(D), and the isomorphism classes of the πi, are
determined.
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[Vig4] M.-F. Vignéras. The pro-p-Iwahori Hecke algebra of a reductive p-adic group I, preprint

(2013).
[Ze] A. Zelevinsky. Induced representations of reductive p-adic groups. II. On irreducible repre-

sentations of GL(n), Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), no. 2, 165–210.

(N. Abe) Creative Research Institution (CRIS), Hokkaido University, N21, W10, Kita-
ku, Sapporo, Hokkaido 001-0021, Japan

E-mail address: abenori@math.sci.hokudai.ac.jp
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