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1. INTRODUCTION

In this talk we will present the main result of | | and sketch a proof. The theorem is a classification of the
irreducible admissible representations of GL,,(F') for F'/Q, a p-adic field with ring of integers & and residue field
k.

2. PRELIMINARIES

We will now give a mod p analog of the classical Satake isomorphism in characteristic 0 and define a notion of
supersingularity for representations of GL,,(F’).

2.1. Weights. Let G = GL,,(F). Recall that G has a maximal compact K = GL,, (&) and a distinguished pro-p
subgroup K; = I,, + Mat, (mp).

Lemma 2.1.1 (p-group Lemma). Let T be a nonzero smooth F,-representation of a pro-p group H. Then T has
an H-fixed vector.

Proof. Since Fp is an IF,-vector space, view H as an [Fj-representation. Pick a nonzero z € 7. By definition of
smoothness there is a an open normal subgroup U < H fixing 2. By compactness H/U is a p-group which acts
on F,[H/U] - x, which has some finite dimension d, so we get a map H — GL4(F,), whose image must live in a
p-Sylow. But for some basis, every p-Sylow subgroup is

1 x x
0 . %
0 0 1

so the image fixes the first basis vector. O
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So any nonzero smooth representation 7 of K has 7t # 0. But K; < K is a normal subgroup so 7% is a
subrepresentation of K. So if 7 is irreducible, 7 = 751, so 7 is really a representation of

K/K, = GL,(F,)

So irreducible Fp—representations of GL,,(k) are the same as irreducible smooth Fp—representations of K.
Definition 2.1.2. If 7 is a smooth representation of G, then V is a weight of 7w if V C 7|k.

Every nonzero smooth representation m of G contains a weight: to see this, note that the representation of GL,, (k)
generated by any nonzero vector in 751 is finite dimensional, so must contain an irreducible representation.

2.2. Hecke Algebras. If 7 is unramified, so that 7€ = 0, then the spherical Hecke algebra C.(K\G/K,F,) acts
on 75 But if not, then we can still define an action of a certain Hecke algebra which depends on the weight of
7. To see how this might work, note that a spherical representation is by definition one that has the trivial weight
as one of its weights, and

C.(K\G/K,F,) = {¢: G — F, compactly supported mod K | p(kgk') = ko(g)k’ for all k, k' € K}
= Hompg (1, c-Ind% (1)| k)
= Endg(c-Ind$ (1))

But then 7% = Hom (1, 7| x) = Homg (c-Ind%-(1), 7), and the Hecke action turns out to be the natural action
by precomposing by endomorphisms of Endg (c-Ind%-(1)).

This motivates the following definition:

Definition 2.2.1. Given a weight V', we define
He(V) = Endg(c-Ind% (V)

Then He (V) naturally acts (via Frobenius reciprocity) on Homg (V, 7|k ), and this is nontrivial if 7= has weight
V.

Remark 2.2.2. In fact, this definition works for any split' connected reductive group G defined over ¢ and any
compact open H C G. In particular if M < G is a standard Levi subgroup we can look at H (V) where V' is a
weight for the group M and this acts on Hom ;) (V, |ar(e)) for m a representation of M.

2.3. Satake. What does this Hecke algebra look like? Is it commutative?

Theorem 2.3.1 (] 1). For any standard parabolic P = M N, there are injective maps
Ha(V) = Hu(Vvw) = Hr(Vow) = Fp[X.(T))]

with image F,[X.(T)y], where N is the unipotent radical of the standard Borel in GL,(F,), and X.(T)+ =
{(a1 > -+ > an) € Z"} is the set of dominant coweights. In fact, the map

Ha(V) = Haur (V)

is the localization at a non-invertible A € X..(T)4 corresponding to the shape of M.

IFor a general connected reductive group, the whole classification is done in | ], but the methods are more involved, and
in particular one looks at a special maximal parahoric K instead of the maximal compact K.
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So for instance, if G = GL3 and we pick the Levi M = GLg x GL1, then we invert (a; = as > as).

Note admissibility of 7 implies that Homg (V,7x) < co. By the Satake isomorphism, Hq (V) is commutative
and so there is a decomposition into generalized eigenspaces

Homg (V,7|k) = @ Homg (V, 7|k )y
xHa (V)=
A system x : Hg (V) — T, appears in Homg (V, 7| k) if and only if there exists a nonzero map
-IndZ (V) @3gv)x Fp = T
which follows easily from Frobenius reciprocity.

2.4. Supersingularity. Supersingular representations are the building blocks of the representations we care about,
along with Steinberg representations.

If V is a weight for 7, then any system of eigenvalues ¢ : Hg(V) — F, appearing in Homg (V, 7| ) induces a
monoid homomorphism ¢’ : X,.(T)+ — F,, via Satake.

Definition 2.4.1. A representation 7 is supersingular if for every weight V' and system of Hq(V)-eigenvalues x
appearing in Hom g (V, 7|k ), the corresponding map ¢’ takes every non-invertible antidominant coweight to 0.

Why does this definition make sense? Supersingular representations should be the analog of supercuspidal repre-
sentations in the C-valued world. But supercuspidal representations are the ones which are not subquotients of
parabolic inductions.

Since Ha(V) — Hm (V) is, as we saw, a localization of F,[X,.(T)4] at certain non-invertible dominant

coweights which depend on the shape of M, we get the following.

Lemma 2.4.2. A representation 7 is supersingular if and only if any system x : Hg(V) — F, appearing in
Hompg (V, 7|k ) for any weight V' does not factor through

Ha(V) = Hu (Vi)
for any proper parabolic P = MN < G.
3. MAIN THEOREM
We will state the main theorem, but first we need to define generalized Steinberg representations.

3.1. Steinberg. Let P be a standard parabolic. Then

Ind{ 1
Spp = Hipc
> pcondgl
Theorem 3.1.1 (] ). The generalized Steinberg representations are irreducible and admissible, and pairwise

non-isomorphic.
3.2. Statement. With these ingredients in place, we can state the main theorem.

Theorem 3.2.1 (] , Theorem 1.1]). All irreducible admissible smooth representations of GL,(F) are
uniquely in the form Indggg(m ® -+ ® o.) where

(1) P is a standard parabolic with Levi [];_, GL,,,

(2) oy is an irreducible admissible GL,,, (F')-representation which is either supersingular (in this case n; > 1)

or isomorphic to Spg,, ®(n; o det) for some smooth character n; : F* — E): and some standard parabolic
Q. in GL,,, and
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(3) i # niy1 if oy and 0,41 are both twists of generalized Steinberg as in part (2).

3.3. Proof. First note that Indg preserves admissibility and smoothness. Then the proof splits into two parts:
irreducibility of the parabolic inductions, and the classification.

3.3.1. Irreducibility. Let m = Indggg o as in Theorem 3.2.1, where 0 := 01 ® - -+ ® 0.

First of all, it suffices to show that for any weight f : V < x|k, f(V) generates 7 as a G-representation: if
7/ C 7 is a nonzero proper subrepresentation then take a weight f : V — 7'|k, and note that 7 = (f(V)) C =/,
so ™ =7'. In fact it suffices to show this for f : V < 7|k which are Hg(V)-eigenvectors.
Now pick such a weight f € Homg (V, 7|k ). But by Frobenius reciprocity
G(F ~
Homp (V, IndPEFg olx) = Homg (V, Indf ) o) 2 Homps (o) (Viv (k) 0)

But Hg(V) acts on the right hand side via the localization Ha (V) — Hu (V). so x factors through
Hu (Vw))-

Thus by the above, we get a map
M =
c—IndM(ﬁ) VN(k) ®HA1(VN(K‘>)1X Fp — 0
which is surjective since ¢ is irreducible since each o; is irreducible. Now here comes the main ingredient:
Theorem 3.3.2 (“Parabolic and compact induction are compatible”, [ . Theorem 3.1]). Assuming V is
M —regu/ar2, we have a natural isomorphism

Indg(c—Ind%(ﬁ) VN(k) ®HM(VN(I€))>X Fp) = C—Ind?( 1% ®HG(V)7X Fp

So why is this useful? Well, exactness of parabolic induction combined with the theorem yields
cInd% V @y vy Fp » ImdSo =

But tracing through the definitions, one sees that this map is induced by the original Hecke eigenvector V' — 7.
But V generates the left hand side, so f(V') generates 7.

Then doing some group theory, an inductive argument shows that 7 always contains an M-regular weight: this is
the part that uses the assumption that n; # ;41 if 0; and 0,41 are twists of generalized Steinberg.

3.3.3. Classification. We now prove the classification theorem.

Remark 3.3.4 (Ordinary Parts). We'll need the following tool. Emerton defines a functor
Ordp : {smooth representations of G} — {smooth representations of M}
which is left exact and preserves admissibility. In particular this functor satisfies
Homg (Ind$ o, 7) = Hom (0, Ordp 7)
for 0 and 7 admissible representations: i.e. Ordp is right adjoint to Indg on the full subcategory of admissible
representations of G.
Now we give a rough-n-sketchy of the classification proof.

We'll proceed by induction. For n = 1 there's nothing to prove. So now let n > 1. Suppose 7 is an irreducible
admissible smooth representation of G. Pick a weight V for 7 and a system of Hecke eigenvalues x corresponding
to V. Then 7 is a quotient of c—Ind?{V ®%6(v),x Fp- Then the monoid homomorphism X' : X.(T); — F,

2this is a term that | haven't defined: it's a group theoretic condition, but since I'm bad at group theory I'll leave this out.
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determines a parabolic subgroup P = M N by looking which dominant coweights ' takes to 0. If V is M-regular,
then Theorem 3.3.2 tells us that

G M =
IndP(C—IndM(ﬁ)(VN(k)) ®HA4(VN(k))»X Fp) — T
Call the thing in parentheses mys . Then Emerton shows that the natural map is injective:
HOHIG (Indg T M, x> ’N) — HOHIM (7”\4,)(7 OI‘dP 7T)

So in particular Ordp 7 # 0. But since Ordp 7 is admissible smooth, we can find an irreducible admissible smooth
7 < Ordp 7, which by Frobenius reciprocity gives us a surjection

Indg T T
We can decompose 7 = 1 ® - - - ® 7,- over the Levi blocks, and then by induction we can decompose 7; = Indglji o;

into the desired form, so we get IndgT = Indgl o for some smaller parabolic P’ in the desired form, except that
the n; # m;11 condition is not necessarily satisfied: but in this case, Indga breaks into a bunch of irreducible
constituents which are all of the desired form, so one of them is isomorphic to .

On the other hand if V' is not M-regular, then we have our second main ingredient.

Theorem 3.3.5 (“Change of Weight", | , Theorem 6.10]). Under a group theoretic condition on x we have
C—Indf( \%4 OHe(V),x ﬁp = C—Ind?( Vv’ OHe (V)X Fp

with V' an M-regular weight.

If the group theoretic condition on x is satisfied, then we can change the weight and finish the proof.

If the group theoretic condition is not satisfied, then it turns out that V is the trivial weight and in fact we can
show that m = 1, or there exists a proper parabolic P such that Ordp m # 0. But note Ordp 7 is admissible, so
we can find a nonzero irreducible admissible smooth subrepresentation ¢ < Ordp 7, and by Frobenius reciprocity
this gives us a surjective map Indg o — 7 as before.

4. SUPERSINGULAR REPRESENTATIONS FOR GL2(Q))

For GL2(Q)) the result translates down to:

Theorem 4.0.1 (Barthel-Livné). The irreducible admissible smooth representations of G = GL2(Q,,) are
(1) Ind$ x1 ® x2 with x1 # X2,
(2) Spp ®(n ® det) for n a smooth character,
(3) n®det for n a smooth character
(

4) Supersingular representations.

The first three are easy enough to describe, because smooth characters of F'* are easy to understand, and we can
write down inductions and Steinberg representations.

What about supersingular representations? These were first classified by Breuil in [ ]

Theorem 4.0.2 (Breuil). The supersingular representations of GL2(Q,) are classified by
C-Indf{(V) ®HG(V)~,X Fp
with ' : F[X.(T)+] — T, taking all strictly dominant weights to 0.
Note that we already showed that if 7 is irreducible admissible, then it must be a quotient of the above. So

it suffices to show that the c—Ind%(V)@HG(VLX are themselves irreducible and admissible. This is what Breuil
proves. Note that this classification does not extend to GL,, for any n > 2.
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