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1. Introduction

Let us remember what we’re trying to prove. Assume p ≥ 5 is a prime number and let G = GL2(Qp). Fix a finite
extension L/Qp with ring of integers O and residue field k. Let Z = Q×p be the center of G, and fix a central
character ζ : Z → O×. Let ε : GQp → O× denote the p-adic cyclotomic character.

Theorem 1.0.1. Colmez’s Montréal functor V induces a bijection between:

(1) absolutely irreducible admissible unitary non-ordinary L-Banach space representations of G with central
character ζ, and

(2) absolutely irreducible 2-dimensional L-representations of GQp with determinant ζε.

I want to talk about the the strategy of the proof on the Banach space representation side in this introduction,
and I want to do this by drawing a parallel with the Galois representation side.

If we start with a semisimple mod p representation ρ : GQp → GL2(k), then we can form the generic fiber of
its universal deformation space, which is Xρ = MaxSpec(Rρ[1/p]): the points in this space give rise to p-adic
Galois representations, valued in some finite extension of L. Furthermore, the formal spectrum of the local ring of
Spec(Rρ[1/p]) at a closed point corresponding to an absolutely irreducible representation recovers the universal
deformation space Xρ = MaxSpec(Rρ[1/p]). On the other hand you could start with ρ : GQp → GL2(L), pick a
lattice and reduce and semisimplify to get ρ, and then find ρ again in Xρ.

Remark 1.0.2. This is done properly in [EG19], where Emerton and Gee construct a moduli space of Galois
representations with Zp-coefficients, which puts all of the p-adic deformation spaces attached to every mod p
representation together into a global object called the Emerton-Gee stack.

Pas̆kūnas’s idea, and the central idea in the paper, is to try to reconstruct this setup on the Banach space side. The
idea is that via Breuil’s semisimple mod p Langlands correspondence, each semisimple mod p Galois representation
with fixed determinant ζε corresponds to a block in Modlfin

G,ζ(O). So morally what you want to do is deform this
block! So you set up a kind of non-commutative deformation theory in this categorical framework, and you get
deformation rings, etc.
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But then it turns out that Gabriel’s theory can also be used to compute these deformation rings! Suppose for a
moment that B is a supersingular block so it has one absolutely irreducible representation. If we let Modlfin

G,ζ(k)
denote the category of $-torsion objects, and take the duals C(O) and C(k), and take SB = π∨B and PB � SB

a projective envelope, then EB := EndC(O)(PB) is exactly the universal deformation ring of SB!

Unfortunately EB, which is an O-algebra, is not necessarily commutative anymore. But if we invert p we should
still expect this to say something about the p-adic representations which have a lattice reducing to πB.

Note we’re still in the supersingular case here, for simplicity.

Theorem 1.0.3. Assuming Z(EB) is Noetherian and EB is a finitely generated module over its center, then
there is a bijection between isomorphism classes of

(1) irreducible right EB[1/p]-modules which are finite dimensional over L, and

(2) irreducible Π ∈ Banadm,fl
G,ζ (L) such that πB occurs as a subquotient of Θ/$Θ for some open bounded

G-lattice Θ ⊆ Π.

In fact it doesn’t matter which lattice you take in part (2) of the theorem, since they’re all commensurable, and
furthermore Pas̆kūnas shows [Pas̆13, Corollary 5.37] that all irreducible subquotients are actually contained in B,
so in this case are isomorphic to πB. So another way to state this is that

Corollary 1.0.4. Banadm,fl
G,ζ (L)B is anti-equivalent to the category of irreducible right EB[1/p]-modules which are

finite dimensional over L.

If you’ve forgotten what this means, recall that we have two decompositions (which follows from last week’s
talk)

Modlfin
G,ζ(O) ∼=

∏
B

Modlfin
G,ζ(O)B

and Pol’s talk + Ashvni’s talk gives

Banadm
G,ζ (L) ∼=

∏
B

Banadm
G,ζ (L)B

The superscript B means to take the full subcategory of objects whose irreducible subquotients all live in B.

Even better, we get the following:

Theorem 1.0.5. The category Banadm,fl
G,ζ (L)B decomposes as:

Banadm,fl
G,ζ (L)B ∼=

⊕
m∈MaxSpec(Z(EB)[1/p])

Banadm,fl
G,ζ (L)Bm

where Banadm,fl
G,ζ (L)Bm is the dual of the category of right modules of finite length over the m-adic completion of

EB[1/p], or equivalently, the full subcategory of Banadm,fl
G,ζ (L)B consisting of objects which are killed by a power

of m.

Pas̆kūnas actually also shows that Banadm,fl
G,ζ (L)Bm contains a unique irreducible object Πm.

So right now we have a table of analogies.
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Galois “rings” Galois “spaces” Automorphic “rings” Automorphic “spaces”
ρ • each π ∈ B B

Rρ Spf Rρ EB Modladm
G,ζ (O)B

Rρ[1/p] Xρ = SpecRρ[1/p] EB[1/p] Banadm,fl
G,ζ (L)B

maximal mρ ⊆ Rρ[1/p] x ∈ Xρ maximal m ⊆ Z(EB[1/p]) unique irred. Πm ∈ Banadm,fl
G,ζ (L)Bm

Rρ = Rρ[1/p]∧mρ Spf Rρ EB[1/p]∧m Banadm,fl
G,ζ (L)Bm

The goal, then, is to turn this analogy into an actual correspondence. To do this, we use Colmez’s functor V,
which shows in particular the following result:

Theorem 1.0.6. The functor V induces an isomorphism
Z(EB) ∼−→ Rζεtr ρ

where Rζεtr ρ is the universal pseudodeformation ring of the trace of ρ with determinant ζε.

In fact in the supersingular case, the corresponding Galois representation is absolutely irreducible, so this pseudo-
deformation ring is actually just the deformation ring.

So really, the Banach space representations are parametrized by the p-adic Galois representations! And this is
what we wanted.

To prove the theorem, we go via deformation theory: if we have deformation theory set up on both sides then we
can just use Colmez’s functor to show that they match up with each other in an exact way.

2. Deformation Theory

2.1. Generalities. First, take any full abelian subcategory C ⊆ Modpro− aug
G (O) closed under direct products and

subquotients. Assume C∨ ⊆ Modlfin
G (O), which for GL2(Qp) is Modladm

G (O).

Now take S ∈ C an irreducible object with EndC(S) = k. Write P � S for its projective envelope and
E = EndC(P ).

Now assume there exists an object Q ∈ C of finite length such that the following conditions hold:

(1) HomC(Q,S′) = 0 for S′ ∈ C irreducible and S′ 6∼= S.

(2) S occurs as a subquotient of Q with multiplicity 1. Equivalently, dimk HomC(P,Q) = 1.

(3) Ext1
C(Q,S′) = 0 for S′ ∈ C irreducible and S′ 6∼= S.

(4) dimk Ext1
C(Q,S) <∞.

(5) Ext2
C(Q, radQ) = 0, where radQ is the maximal proper subobject of Q.

Remark 2.1.1.

(1) Assume Q = S. Then (H1) and (H2) are immediate, as well as (H5). So the only nontrivial thing is (H3)
and (H4). If these hold, then we want S = Q. If not, then we need a bigger Q, and I’ll discuss this in
the principal series case in a bit. For the supersingular case, this is fine.

(2) (H1) (H2) and (H3) actually characterize Q uniquely, up to nonunique isomorphism, so then you just
need to check that (H4) and (H5) hold.

We say that Q satisfies (H,C) if these axioms are satisfied.

A consequence of H1 and H2 is that HomC(Q,S) is 1-dimensional, and is spanned by a surjection f : Q � S.
But since P is a projective envelope, there exists a surjection θ : P � Q such that f ◦ θ is P � S.
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Assuming these axioms, one can prove, amongst other things:

Proposition 2.1.2. If M is a right pseudo-compact E-module, then the functor −⊗̂EP is exact, and preserves
torsion-freeness.

2.2. Deformation Theory. Now let C(O) and C(k) denote the duals of Modlfin
G,ζ(O) and the full subcategory of

$-torsion modules. Let S be an irreducible object in C(k), and suppose Q is an object in C(k) which satisfies
(H,C(k)). Let P � S be a projective envelope in C(k) as before, and let E = EndC(k)(P ), which is a local ring
with maximal ideal m.

Now we let P̃ � S denote the projective envelope in C(O) and let Ẽ := EndC(O)(P̃ ) which has a two-sided ideal
m̃. In fact note that if M ∈ C(k) then

HomC(O)(P̃ ,M) = HomC(k)(P̃ /$P̃ ),M

so P̃ /$P̃ is projective in C(k) and the map P̃ /$P̃ → S is essential, so P ∼= P̃ /$P̃ .

Lemma 2.2.1. The snake lemma implies that for A,B ∈ C(k), we have an exact sequence

0→ Ext1
C(k)(A,B)→ Ext1

C(O)(A,B)→ HomC(k)(A,B)

Now what about the deformation theory axioms? Since C(O) and C(k) have the same irreducible objects, H1 and
H2 for C(k) immediately imply H1 and H2 for C(O). One can use the lemma above along with H1 to show that
H3 and H4 for C(k) imply H3 and H4 for C(O). So what about H5?

Proposition 2.2.2. If HomC(O)(P̃ [$], radQ) = 0 then H5 for C(k) implies H5 for C(O).

For GL2(Qp), this will always hold.

Definition 2.2.3.

• Let A denote the category of finite local Artinian O-algebras (A,mA) such that the image of O under the
structure map O → A lies in Z(A), and the structure map induces

O/$O ∼−→ A/mA

• Let Â denote the category of local O-algebras (R,mR) such that R/mnRR ∈ A and R ∼= limnR/mRR.
Morphisms are given by

Hom
Â

(R,S) = lim←−
n

HomA(R/mnR, S/mnS)

If you’re used to commutative deformation theory, this looks pretty similar to the usual definition.

Definition 2.2.4. Let (A,mA) ∈ A. A deformation of Q to A is a pair (M,η, α) where M ∈ C(O) along with
a map η : A → EndC(O)(M) which makes M into a flat A-module, and α : k ⊗A M ∼= Q. We then define a
functor DQ : A→ Set taking

(A,mA) 7→ {deformations of Q} / ∼=

There is a similar definition for Â, and one particular deformation is given by P̃ . Recall that there is a surjection
θ : P̃ � Q, and in fact this induces

αuniv : k⊗̂
Ẽ
P̃ ∼= Q.

Also note that Ẽ = EndC(O)(P ), so this defines a deformation.
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We want to show that this functor is pro-represented by Ẽ. Given a ϕ ∈ Hom
Â

(Ẽ, A) we can construct a
deformation

(A⊗̂
Ẽ,ϕ

P̃ , αϕ)

where αϕ = αϕ ◦ (A⊗̂
Ẽ,ϕ

P̃ → k⊗̂
Ẽ,ϕ

P̃ ). Flatness of this deformation as an A-algebra follows from the H axioms
as well. This gives a map

Hom
Â

(Ẽ,−) ∼−→ DQ

Theorem 2.2.5. The above map induces a natural isomorphism
Hom

Â
(Ẽ, A)/A×-conjugacy ∼−→ DQ(A)

This result once again uses “flatness” of P̃ over Ẽ.

Remark 2.2.6. If we restrict this functor to abelian objects in A, the resulting functor is isomorphic to Hom
Â

(Ẽab,−).

2.3. Final Remark. Lastly, I just want to say that in the supersingular case, S = Q. In the generic principal
series case, i.e. the block

{
π1 = IndGB χ1 ⊗ χ2ω

−1, π2 = IndGB χ2 ⊗ χ1ω
−1

}
with χ1χ

−1
2 6= 1, ω±1, we end up

using S = π1 and Q = κ∨ where
0→ π1 → κ→ π2 → 0

is the unique nonsplit extension.
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