$(\varphi, \Gamma)-M_{0} d d e s$
Reference for talk." Berger, "Galois repersentations and ($4, \Gamma$)-modules": Course at IMP from 2010.
§0. Motioning intuition
Let $\left.\mathbb{Q}_{p, \infty}=Q_{p}\left[\zeta_{p}\right]=U_{n 20} \mathbb{Q}_{p}\left(\varphi_{p}\right)^{1}\right)$.
Let $H=G_{N}\left(\overline{\mathbb{Q}}_{p} / Q_{p}\right), \quad G=G_{Q_{p}}=\operatorname{Gal}\left(\bar{Q}_{p} / Q_{p}\right), \quad \Gamma=G / H=G a l\left(Q_{p \infty} / Q_{p}\right)$.
Then we have in ex. see.

$$
1 \rightarrow M \rightarrow G_{a p} \rightarrow \Gamma \rightarrow 1
$$

Also, Let $X=x_{\text {eyes }}: G_{a p} \rightarrow \mathbb{Z}_{e}^{x}$, defined by

$$
g y_{\rho}=y_{p}^{x(g)}
$$

Then $M=\operatorname{Ker}(X)$ and $X ; \Gamma \simeq 2_{p}^{x}$ is an iso.
Fact Let $L_{\infty} / \mathbb{Q}_{\text {pe }}$ ll a fin, sta. Then

$$
\operatorname{Tr}\left(m_{L_{\infty}}\right)=m_{Q_{r a s}} .
$$

Rank From the point of vies of discriminants, this is saving "Finite xtn's of Ques are almost uncomified" So to study $G_{a, e}$ it should be enough to study Γ with some un ramified data, like a Frolenies φ.
The point of this talk is to mare this intuition precise.
\$1. The Rings in char p
Let \mathbb{C}_{p} be the completion of \mathbb{Q}_{p}, which is alg. closed, $\theta_{a_{e}}$ its closed unit ball.
Let $I \subseteq \theta_{c_{p}}$ be cony ideal containing all efts of valuation at least $\frac{1}{\rho-1}=v a l\left(\xi_{e}-1\right)$, which is not maximal.
Here are some rings. A tilde means the ring is perfect
 wise in the first description.)
If $x=\tilde{E}^{+}\left(x_{0}, x_{1}, \ldots\right) \in \tilde{\mathbb{E}}^{+}$, the number $\frac{1}{p^{i}}$ Val $\left(x_{i}\right)$ eventually stabilizes, and we write val (x) for its limit.
Then $\tilde{\mathbb{E}}^{+}$is a valued ring $w /$ residue field $\overline{\mathbb{F}}_{p}$. It is complete
(2) Let $\varepsilon=\left(1, y_{1}, y_{p_{2}}, \ldots\right) \in \mathbb{E}^{+}$, and $\operatorname{let} T=\varepsilon-1$. Then $\operatorname{val}(T)=\frac{p}{p-1}$, and

$$
\tilde{\mathbb{E}}:=\tilde{E}^{+}\left[\frac{1}{T}\right] \text { is a field. }
$$

Fact $\widetilde{\mathbb{E}}$ is alg closed.
(3) Next, let $\mathbb{E}_{i=1} \mathbb{F}_{p}((T)) \subseteq \tilde{\mathbb{E}}$
(4) Fondly, tate $\mathbb{E}^{\underline{G_{2}}}=\mathbb{E}_{Q_{1}}^{x_{1}} \subseteq \widetilde{\mathbb{E}}$.

Galois actions:
$G=G_{a r}$ acts continuously on O_{r}, hence on $\tilde{\mathbb{E}}^{+}$and $\tilde{\mathbb{E}}$
G acts on T by

$$
g T=g(\varepsilon-1)=\varepsilon^{x(g)}-1=(1+T)^{x(g)}-1 .
$$

We have $\left.G_{G_{i}} G \mathbb{E}=\mathbb{E}_{Q_{e}}^{5 y}=\mathbb{F}_{e}(T T)\right)^{s e}$, and hence we get $\left.6 y\right)$,

$$
H \rightarrow G \|\left(\mathbb{E} / \mathbb{E}_{Q_{1}}\right)
$$

Fact this is m iso: $M \cong G a\left(\mathbb{E} / \mathbb{E}_{Q_{1}}\right)$.
$T T_{i s}$ is nontrivial. Requires knowing $O_{\mathbb{C}_{p}} / I \xrightarrow{x+x x^{\prime}} O_{\mathrm{c}_{\mathrm{l}}} / I$ is surf, which, in turn, a quires studying ramification of $\mathbb{Q}_{1, \infty}$ carefully.
Rank The rings $\mathbb{E}_{Q_{p}}, \mathbb{E}_{1}, \ldots$ have a Fob. $\varphi: x_{1} \mapsto x^{?}$. Γ acts on $\mathbb{E}_{Q_{p}}$ (by the above forruval)
$\$ 2(\varphi, \Gamma)$-modules over $\mathbb{E}_{a_{s}}$.
Def $A(Y, \Gamma)$-module over $\mathbb{E}_{a_{p}}$ of dim is an $\mathbb{E}_{a_{9}}$-rector space D of rank d, with senilinew commuting actions of φ and Γ.
Senilined mems.

$$
\begin{aligned}
& \varphi(v+w)=\varphi(v)+\varphi((v), \quad v, w \in D \\
& \varphi(c v)=\varphi(c) \varphi(v), \quad c \in \mathbb{E}_{Q_{1}, v \in D} \\
& \quad\left(=c^{p} \varphi(v)\right)
\end{aligned}
$$

and similarly for $\gamma \in \Gamma$.
Write $\Phi \Gamma^{d}\left(\mathbb{E}_{Q_{1}}\right)$ for the cat. of these.
Thy There is an equivalence of cat's:

$$
\begin{aligned}
& \operatorname{Rep}_{F_{P}}^{\delta}\left(G_{Q}\right) \stackrel{\sim}{\sim} \Phi \Gamma^{d}\left(\mathbb{E}_{Q_{1}}\right) \\
& V \longmapsto D(V):=\left(\mathbb{E} \otimes_{\mathbb{F}_{\mathrm{F}}} V\right)^{H} \quad(H \text { acts on both factors) } \\
& \left.\left(E \otimes_{\Phi_{0}}\right)\right)^{\varphi=1}=V(D) \longleftrightarrow D
\end{aligned}
$$

Pf Berger, Ch. 18. Not too hard. The pint is to make use of Hilbert 90.
KS Lifting from \mathbb{F}_{p} to \mathbb{Z} and Que
We would like to define a ring $A_{a p}$ as the Witt vectors of \mathbb{E}_{Q}. But this is difficult since $\mathbb{E}_{a,}$ is not a perfect field. So we instead define A_{Q} as a cectinn subbing of $W(\widetilde{\mathbb{E}})$. But first.
Recall) (Witt vectors) If R is a perfect ring of dar p, \exists ! (up to iso) ring $W(R)$ st.
o ρ is a numerd divisor in W(R)

- $W(R) / \rho W(R) \equiv R$
- $W(\mathbb{R})$ is separated and complete for the pradic topology.

Also, if R^{\prime} is mother perfect ring in char p, and $\Psi: R \rightarrow R^{\prime}$ ring hum, then $\exists!$ tum $\left.W(\Psi): W(R) \rightarrow W \mid R^{\prime}\right)$ lifting φ.
Finally, \exists ! multiplicative map $[\cdot]: R \rightarrow W(R)$ st. $[r] \equiv r(\bmod \rho W R))$.
Eg $W\left(\mathbb{F}_{p}\right)=\mathbb{Z}_{p}$, and if $\alpha \in \mathbb{F}_{1}^{x}$, then $[\alpha]$ is the $(p-1)^{\text {th }}$ roost of 1 congruent to α and p.
So now let

$$
\begin{aligned}
& \tilde{A}=W(\tilde{\mathbb{E}}), \quad T=[\varepsilon]-1, \tilde{\mathbb{B}}=\tilde{\mathbb{A}}\left[\frac{1}{\rho}\right] \\
& \left.\mathbb{A}_{\mathbb{Q}_{p}}=\left(\mathbb{Z}_{p}[T]\left[\frac{1}{T}\right]\right)^{\wedge_{p}} \subseteq \tilde{\mathbb{A}}, \quad \mathbb{B}_{Q_{p}}=\mathbb{A}_{Q_{p}} \frac{1}{\dot{p}}\right]
\end{aligned}
$$

If $\mathbb{E}_{Q}^{\prime} / \mathbb{E}_{a}$ is fin separable, and $f(X) \in \mathbb{A}_{Q_{p}}[X]$ has a primitive celt of $\mathbb{E}_{Q_{e}}^{\prime}$ as a root mod ρ, then by Hansel and Kraser, \exists ! ext'n $\mathbb{B}_{Q_{1}}^{\prime}\left(B_{Q_{q}}\right.$ with $\mathbb{B}_{Q_{q}}^{\prime} / P_{Q_{R}}^{\prime}=\mathbb{E}_{Q_{q}}^{\prime}$ and $\left[B_{a_{1}}^{\prime} \cdot B_{Q_{l}}\right]=\left[\mathbb{E}_{Q_{1}}^{\prime} ; E_{Q_{1}}\right]$. (We say $B_{Q_{1}}^{\prime} / B_{Q_{1}}$ is unrminited)
Let $B=$ (union of all uncom. fin x tens B_{a}^{\prime} as above $)^{n p}$
let $\mathbb{A}=\boldsymbol{B} \cap \tilde{A}$. (Rings denoted B are \mathbb{Q}_{p}-a lg's, these denoted $A_{\text {are }} \mathbb{Z}_{p}$-alg's, and those dented \mathbb{E} we \mathbb{F}_{p}-d gs)
Then. $\cdot \mathbb{A} \rho \mathbb{A}=\mathbb{E}\left(=\mathbb{E}_{\mathbb{Q}_{p}}^{s p}\right)$

- B and A are stable under $\varphi=W\left(x \mapsto x^{\rho}\right)$
- B and \mathbb{A} are stable under the action of $G_{\text {ape, }}$ defined $(o n \tilde{A})$ as W of this action on $\tilde{\mathbb{E}}$.
- $\operatorname{Aut}\left(\mathbb{B} / B_{Q_{1}}\right)=\operatorname{Ga}\left(\mathbb{E} / \mathbb{E}_{Q_{p}}\right)=H$.
- $G_{Q e}$ acts through Γ on $\Gamma+1 \in \mathbb{A}_{\text {Qp }}$ as $X_{\text {ce. }}$

SM (1,1)-modules over Ala, Base.
Def $A(Y, \Gamma)$-module of $\operatorname{dim} d$ over $\mathbb{A}_{\text {ap }}\left(\right.$ resp $\left.B_{Q_{p}}\right)$ is a free A_{a} - nod. of rank δ (resp. a d-dim'l $B_{a_{p}}$-vs.) with commuting semilinear actions of φ and Γ, st.:

- $\varphi \in G L_{d}\left(A_{a_{p}}\right)\left(\operatorname{rcsp} . \quad \varphi \in G L_{j}\left(\mathbb{B}_{Q_{p}}\right)\right)$
- The action of Γ is cts for the wat topology on $A_{Q_{i}}$ (reese. B_{Q}).

The wat topology is obtained from giving $W(\tilde{\mathbb{E}})=\tilde{A}$ not only a p-adic topology, but also a topology coming from that on $\mathbb{\mathbb { E }}$. See Berger, chapter 16 and the end of chapter 17, for more details.
Write $\Phi \Gamma^{d}\left(A_{a_{1}}\right)$ (resp $\Phi \Gamma^{d}\left(B_{a_{0}}\right)$ for the cat's of such models.
Def $D \in \Phi \Gamma^{d}\left(\mathbb{B}_{Q_{1}}\right)$ is étade if \exists a basis of D wast. which $\varphi \in G L_{d}\left(\mathbb{A}_{Q_{1}}\right)$ (il, it it hus a φ-stable $A_{a_{p}}$-lattice). Write $\Phi \Gamma_{\text {sup }}^{d}\left(B_{a_{1}}\right)$ for these.

The There are equiv's of cat's':

$$
\begin{aligned}
& \operatorname{Rep}_{z_{p}}^{d}\left(G_{Q}\right) \stackrel{(1)}{\sim} \Gamma^{d}\left(A_{Q}\right) \\
& \operatorname{Rep}_{\theta_{p}}^{d}\left(G_{Q_{1}}\right) \simeq \Phi \Gamma_{\sigma_{d}+}^{d}\left(\mathbb{B}_{Q_{p}}\right) \\
& V \longmapsto D(V)=\left(A \otimes_{\alpha_{4}} V\right)^{H} \\
& \left(A \otimes_{A_{0}} D\right)^{\varphi=1}=: V(D) \longleftarrow D
\end{aligned}
$$

\$5 More Motivating remarks
Romps (0 o the vs of Γ)

- If X / \mathbb{F}_{p} is a sn prop curve, then it is useful to study $\pi_{1}(X)$ by splitting off $F_{\text {rob }}^{\hat{\imath}}$ from it via.

$$
\begin{array}{ll}
1 \rightarrow \pi_{1}\left(X_{F_{p}}\right) \rightarrow & \pi_{1}(X) \rightarrow \\
& \pi_{1}\left(\mathbb{F}_{p}\right) \rightarrow 1 \\
& \operatorname{Gad}\left(\mathbb{F}_{p} / \mathbb{F}_{p}\right)=\left\langle F_{0 b}\right)
\end{array}
$$

- If instead we want to study $\pi_{1}(F)$ w/F a march. local field of char O, we have instecst the sequence

$$
\begin{aligned}
& 1 \longrightarrow I_{\|} \longrightarrow\left(\operatorname{Fa}(\bar{F} / F) \longrightarrow \operatorname{Ga}\left(F_{\| r}^{u r} / F\right) \rightarrow 1\right. \\
& \text { Inertia } \\
& G_{\sigma} \|(\mathbb{K} / k)=\langle\text { prod }\rangle \quad(k=\text { residue field })
\end{aligned}
$$

The piece I_{F} is much easier to study if we are only asking for l-adic perperties of its and $l \neq c h a r k$.

- On the other had, Iurasua gives us a hint from the theory of number fields of what to do in order to study Gal(F/F) p-adically.
In fact, he viewed $\mathbb{Q}\left(Y_{p_{p}}\right) / \mathbb{Q}$ as madogas to the constant field $x t_{n} \overline{\mathbb{F}}_{P}(X) / \mathbb{F}_{P}(X)$ in char P.
(Indeed, the I wasama Man Conjecture was motivated in annoy with a thereren of Weill that says that (hardly $\left(\right.$ Fob $\left.\mid T_{e}\left(F_{a c}(X)\right)\right)$ can be written in terns of zeta functions)
The p-power torsion of Galas modules are easier to study up the cyclotomic tower, rather then l-torsion.

$$
1 \rightarrow H \rightarrow G_{a} \longrightarrow \Gamma \rightarrow 1
$$

Rant (on the tilt $\tilde{\mathbb{E}}^{+}$)
The chur $X_{\text {ace }}$ is defined as the action of Gap on

$$
\begin{aligned}
& T_{p}\left(\mu_{p}\right)= \\
&=\left\{\left(\zeta^{(1)}, \xi^{(2)}, \zeta^{(3)}, \ldots\right) \mid \xi^{(n)},\left(\frac{()^{p}}{} \rightarrow \mu_{p^{n}} \rightarrow \ldots\right)\right. \\
&\left.\mu_{p},\left(\zeta^{(n+1)}\right)^{p}=\xi^{(n)} \quad \forall n\right\} \ni \varepsilon .
\end{aligned}
$$

So tilting sp perches the most natural construction if you want the "cycutomic period" ε to appear.

Runt (0_{n} Colmez's functor)
The ring A_{a} is what comer calls O_{ε}. It was

$$
\begin{aligned}
\left(\mathbb{Z}_{p}[T T]\left[\frac{1}{T}\right]\right)^{n_{\rho}} & =\left\{\sum_{n \in \mathbb{Z}} a_{n} T^{n} \mid a_{n} \in \mathbb{Z}_{\rho} \quad \forall n, a_{n}=0\left(\bmod \rho^{i}\right) \forall n>n(i)>-\infty, \forall ;\right\} \\
& =\left\{\sum_{n \in \mathbb{Z}} a_{n} T^{n} \mid a_{n} \in \mathbb{Z}_{p} \quad \forall n, a_{n} \xrightarrow{n \rightarrow \infty} 0\right\}
\end{aligned}
$$

and $\mathbb{B}_{\text {ap }}$ is $\varepsilon=\operatorname{Frac}\left(\theta_{\varepsilon}\right)$.
These are rings of functions on p-adic domains, and thus the shift to modules our then is Needy a step in the right direction towards the p-adic automerphic side.
Come's p-adic load Langlonds core is
Mantićn oD.

