p-ADIC MODULAR FORMS

BENJAMIN SCHRAEN

Notes taken by Ashwin $Iyengar^1$ and have not been checked by the speaker. Any errors are due to me.

Contents

1. Talk I	1
1.1. Geometric Modular Forms	1
1.2. <i>p</i> -adic modular forms	3
1.3. Modular Forms are <i>p</i> -adic modular forms	4
2. Talk II	5
2.1. From Yesterday	5
2.2. Hecke Operators	8
2.3. Ordinary <i>p</i> -adic modular forms	8
3. Talk III	9
3.1. Ordinary Projector	9
3.2. Hida Families	11
4. Talk IV	12
4.1. Cohomological Methods	12
4.2. Completed Cohomology	12
5. Talk V	15
5.1. <i>p</i> -adic Jacquet functor	15
5.2. Classicality Result	17
5.3. Galois representations	18
References	19

1. Talk I

This course is about p-adic modular forms. We will talk about:

- (1) Ordinary *p*-adic forms, and ordinary families of modular forms.
- (2) Overconvergent *p*-adic modular forms, and the theory of Coleman and Mazur's eigencurve (but we explain using Emerton's completed cohomology)
- (3) Applications to the infinite fern of Gouvea-Mazur.

1.1. Geometric Modular Forms. First we define the modular curve over \mathbf{Z}_p . Throughout the course, p is a fixed prime, and $N \geq 5$ prime to p is an integer (the "base level" or "tame level"). Then the modular curve $Y_1(N)/\mathbf{Z}_p$ is a scheme representing the functor $\mathsf{Sch}_{\mathbf{Z}_p} \to \mathsf{Set}$ taking

 $S\mapsto \{(E/S \text{ elliptic curve},\, \alpha: \mu_N \hookrightarrow E[N])\}\,/\text{isomorphism}$

Here recall that:

Date: March 20, 2019.

¹ashwin.iyengar@kcl.ac.uk

(1) an elliptic curve $E \to S$ is a proper and smooth morphism with geometrically connected fibers, along with a zero section $S \to E$, and

(2)
$$\mu_N = \ker(\mathbf{G}_m \xrightarrow{N} \mathbf{G}_m) \text{ and } E[N] = \ker(E \xrightarrow{N} E)$$

This functor is representable by $Y_1(N)$, and is a smooth affine curve over \mathbf{Z}_p with geometrically connected fibers.

Why do we call this a modular curve? If we fix an embedding $\mathbf{Z}_p \hookrightarrow \mathbf{C}$ and $\zeta_n \in \mu_N(\mathbf{C})$, then the usual complex uniformization of elliptic curves says that

$$Y_1(N)(\mathbf{C}) \cong \Gamma_1(N) \backslash \mathbf{H}$$

where as usual,

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod N \right\}.$$

We have a finite flat map $Y_1(N) \to \mathbf{A}_{\mathbf{Z}_p}^1$, taking $(E, \alpha) \mapsto j(E)$ (the *j*-invariant), of degree $[\mathrm{SL}_2(\mathbf{Z}) : \Gamma_1(N)]$. Furthermore, this map is étale outside the locus j - 1728 = 0, and thus $Y_1(N)$ is normal outside this locus. So to compactify the modular curve, we take the normalization of $\mathbf{P}_{\mathbf{Z}_p}^1$ in $Y_1(N)$ (see Section 8.6 of [KM85] for the details, or [Sta19, Tag 0BAK]), and get:

Then $X_1(N) \to \mathbb{Z}_p$ is a proper smooth curve. On the other hand, you can't immediately extend the universal family of elliptic curves $E \to Y_1(N)$ to $X_1(N)$. But for each $M \ge 1$, we have $E[M] = \ker(E \xrightarrow{M} E)$, which is a finite flat group scheme over $Y_1(N)$ (not necessarily étale because M is not necessarily prime to p). But there is a unique extension of E[M] to a finite flat group scheme over $X_1(N)$ such that (letting $D = X_1(N) \setminus Y_1(N)$) on $\widehat{X_1(N)}_D$, we have an extension

$$0 \to \mu_M \to E[M] \to \mathbf{Z}/M\mathbf{Z}_{\mathbf{X}_{\mathsf{T}}(N)} \to 0,$$

where $\underline{\mathbf{Z}}/M\underline{\mathbf{Z}}_{X_1(N)}$ is the constant group scheme.

Now we want to define a coherent sheaf on $X_1(N)$, in order to define our forms.

Fact 1.1.1. There exists a coherent sheaf $\omega = \omega_{E/Y_1(N)}$ on $X_1(N)$ which restricts to $\pi_*\Omega_{E/Y_1(N)}$ over $Y_1(N)$ and around the cusps you have to compare the restriction of the elliptic curve to the Tate curve $Tate(q^n)$ and construct some sheaf there (still need to work this out).

Definition 1.1.1. Now if $k \in \mathbb{Z}$ and A is some \mathbb{Z}_p -algebra, then a modular form of weight k, level N and coefficients in A is an element of

$$M_k(N,A) := H^0(X_1(N)_A, \omega^{\otimes k})$$

Remark 1.1.1.

- (1) If $A = \mathbf{C}$ (for some map $\mathbf{Z}_p \hookrightarrow \mathbf{C}$), this recovers the usual **C**-vector space of modular forms.
- (2) If $k \ge 2$, and $A \to B$, then we have base change:

$$M_k(N,B) \cong M_k(N,A) \otimes_A B.$$

 $\mathbf{2}$

1.2. *p*-adic modular forms. The usual construction, originally due to Serre, is to reduce *q*-expansions mod p^n and take an inverse limit, but we want to do something more geometric.

For $m \geq 1$, we let

$$X_1(N)_m = X_1(N) \times_{\operatorname{Spec} \mathbf{Z}_n} \operatorname{Spec} \mathbf{Z}/p^m \mathbf{Z}$$

be the reduction mod p^m of the modular curve, and we let

$$X_1(N)_m^\circ = X_1(N)_m \setminus \{ \text{supersingular closed points} \},\$$

where we say a closed point (E, α) is supersingular if $E \otimes_{\mathbf{Z}_p} \mathbf{F}_p$ is a supersingular elliptic curve: this forms a finite set of points. Then $X_1(M)_m^{\circ}$ is an open and affine subscheme of $X_1(N)_m$.

Using these, we can construct the Igusa tower. Note $E[p^r]$ is a finite flat group scheme, and we have a Frobenius (defined over $X_1(N)_1$)

$$F: E[p^r] \to E[p^r]^{(p)}.$$

We can iterate this Frobenius:

$$F^r: E[p^r] \to E[p^r]^{(p)} \to \dots \to E[p^r]^{(p^r)}.$$

This is a finite flat morphism, and we let $V^r = (F^r)^D$ denote the Verschiebung, where here D denotes the Cartier dual and F^r is the Frobenius on $E[p^r]^D$. If $E_0/\overline{\mathbf{F}_p}$ is an elliptic curve, then E_0 is ordinary (non-supersingular) if and only if ker V is étale, if and only if ker V^r is étale. So therefore, ker $(V^r : E[p^r]^{(p^r)} \to E[p^r])$ is a finite étale group scheme of $X_1(N)_1^\circ \subseteq X_1(N)_1$, essentially because we removed the supersingular points.

Then ker (V^r) specialized at a geometric point of $X_1(N)_1^\circ$ is $\mathbf{Z}/p^r\mathbf{Z}$, so ker (V^r) is a finite étale group scheme of geometric fiber $\mathbf{Z}/p^r\mathbf{Z}$.

Definition 1.2.1. We define $X_1(Np^r)_1^{\circ}$ to be the finite étale covering of $X_1(N)_1^{\circ}$ parametrizing isomorphisms

$$\ker(V^r) \cong (\mathbf{Z}/p^r\mathbf{Z}).$$

In other words, for S/\mathbf{F}_p ,

$$X_1(Np^r)_1^{\circ}(S) \cong \left\{ (S \to X_1(N)_1^{\circ}, \alpha) \mid \alpha : \ker(V^r) \times_{X_1(N)_1^{\circ}} S \cong \underline{\mathbf{Z}/p^r \mathbf{Z}}_S \right\}.$$

Note this is surjective because $\ker(V^r)$ is étale-locally trivial.

Using Cartier duality, an isomorphism $\ker(V^r) \cong \mathbf{Z}/p^r \mathbf{Z}$ is the same as

$$\mu_{p^n} \cong \ker(F^r)$$

which is the same as an injection $\mu_{p^n} \hookrightarrow E[p^r]$.

Now what if we vary $m \ge 1$? The reduction maps $\mathbb{Z}/p^m \mathbb{Z} \to \mathbb{F}_p$ induce closed immersions $X_1(N)_1^\circ \hookrightarrow X_1(N)_m^\circ$ which are nilpotent thickenings. Since a nilpotent thickening $X \to Y$ is an isomorphism of topology spaces, it induces an equivalence of categories (see [Sta19, Tag 039R]) $\operatorname{Et}(X) \to \operatorname{Et}(Y)$, so we can form a diagram

$$\begin{array}{ccc} X_1(Np^n)_1^{\circ} & \xrightarrow{\text{etale}} & X_1(N)_1^{\circ} \\ & & & & \downarrow \\ X_1(Np^r)_m^{\circ} & \xrightarrow{\text{étale}} & X_1(N)_m^{\circ} \end{array}$$

In fact $X_1(Np^r)_m^{\circ}$ is an affine smooth \mathbb{Z}/p^m -scheme. So $V_{m,r} = \mathscr{O}(X_1(Np^r)_m^{\circ})$ is a smooth \mathbb{Z}/p^m -algebra. We let

$$V_{m,\infty} = \varinjlim_r V_{m,r} = \mathscr{O}(\varprojlim_r X_1(Np^r)_m^\circ)$$

Then $V_{m,\infty}$ is a \mathbf{Z}/p^m -algebra with a smooth (why?) action of $\mathbf{Z}_p^{\times} = \lim_{r \to \infty} (\mathbf{Z}/p^r)^{\times}$. We can recover:

$$V_{m,r} = V_{m,\infty}^{\ker(\mathbf{Z}_p^{\times} \to \mathbf{Z}/p^r)}$$

Furthermore we have the compatibility between thickenings:

$$V_{m+1,\infty} \otimes_{\mathbf{Z}/p^{m+1}} \mathbf{Z}/p^m \cong V_{m,\infty}$$

Therefore we can take the limit again to obtain

$$V_{\mathbf{Z}_p}(N) := \varprojlim_m V_{m,\infty}$$

which is a complete (by construction), torsion-free \mathbf{Z}_p -module, with a continuous \mathbf{Z}_p -linear action of \mathbf{Z}_p^{\times} .

Moreover, $V_{\mathbf{Z}_p}$ contains no *p*-divisible elements, so $V_{\mathbf{Z}_p} \hookrightarrow V_{\mathbf{Q}_p} := V_{\mathbf{Z}_p} \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$. In fact, $V_{\mathbf{Z}_p}$ is the closed unit ball of the unique *p*-adic norm on $V_{\mathbf{Q}_p}$: note $V_{\mathbf{Q}_p}$ is complete for that norm (this is the Gauss norm: roughly, locally taking the colimit over *r* means that you're extracting some roots of the elements of $V_{m,1}$. Then taking the limit over *m* means that you're allowing yourself power series whose coefficients go to 0... I think? I don't understand the algebra structure completely).

The action of \mathbf{Z}_p^{\times} preserves $V_{\mathbf{Z}_p}$, hence the norm as well. So $V_{\mathbf{Q}_p}$ is a unitary representation of the *p*-adic Lie group \mathbf{Z}_p^{\times} .

Elements of $V_{\mathbf{Q}_p}(N)$ are called *p*-adic modular functions of tame level N.

Definition 1.2.2. If K/\mathbf{Q}_p is a finite extension, a weight of \mathbf{Z}_p^{\times} with values in K is a continuous group homomorphism

$$\chi: \mathbf{Z}_p^{\times} \to K^{\times}$$

Definition 1.2.3. If $\chi : \mathbf{Z}_p^{\times} \to K^{\times}$ is a weight, we can define

$$V_K[\chi] = \left\{ f \in V_K = V_{\mathbf{Q}_p} \otimes_{\mathbf{Q}_p} K \mid \text{ for all } a \in \mathbf{Z}_p^{\times}, a \cdot f = \chi(a)f \right\}.$$

Then $V_K[\chi]$ are *p*-adic modular forms of weight χ (with coefficients in *K*).

If $k \in \mathbf{Z}$, then $\chi_k(a) = a^k$ is a weight (and we abuse notation thus).

1.3. Modular Forms are *p*-adic modular forms. The key observation is that under

$$X_1(Np^m)^{\circ}_m \to X_1(N)^{\circ}_m$$

the pullback of the line bundle ω is trivial.

On $X_1(N)_1^\circ$, recall we have the connected-étale sequence

$$0 \to \ker(F^m) \to E[p^m] \to \ker(V^m) \to 0$$

and ker $(F^m) \cong \text{ker}(V^m)^D$. Then, again using the fact that the étale site behaves well with respect to nilpotent thickenings, ker (V^m) extends uniquely to some finite étale group scheme H_m^D over $X_1(N)_m^\circ$. On $X_1(N)_m^\circ$, we have

$$0 \to H_m \to E[p^m] \to H_m^D \to 0.$$

Here $H_m := (H_m^D)^D$ is the canonical subgroup.

Fact 1.3.1. $\omega_{E/X_1(N)_m^{\circ}} \xrightarrow{\sim} \omega_{E[p^m]/X_1(N)_m^{\circ}} \xrightarrow{\sim} \omega_{H_m/X_1(N)_m^{\circ}}$

Sketch of Proof. The first isomorphism follows from the fact that $[a] : G \to G$ (where G is any group scheme) induces the multiplication by a map on tangent spaces, so the induced map of tangent bundles $\Omega_{E/X_1(N)_m^{\circ}} \to [p^m]_* \Omega_{E/X_1(N)_m^{\circ}}$ is zero since we're working mod p^m .

The second isomorphism follows from the fact that H_m^D is étale.

There is a Hodge-Tate map

$$\operatorname{HT}: H_m^D \to \omega$$

of sheaves on the étale site. Note

$$H_m^D = \operatorname{Hom}(H_m, \mathbf{G}_m) = \operatorname{Hom}(H_m, \mu_{p^m})$$

so we define $HT(f) = f^*(dx/x)$. Since dx/x is an invariant differential and HT is a group homomorphism, we get an isomorphism

$$H_m^D \otimes_{\underline{\mathbf{Z}/p^m \mathbf{Z}}_{X_1(N)_m^\circ}} \mathscr{O}_{X_1(N)_m^\circ} \xrightarrow{\sim} \omega_{H_m}.$$

2. Talk II

2.1. From Yesterday. For $N \ge 5$ and $p \nmid n$, we defined a tower of curves and their thickenings which fit into Cartesian diagrams:

Recall each composition $X_1(Np^r)^{\circ}_m \to X_1(N)^{\circ}_m$ is étale with covering group $\mathbf{Z}/p^r\mathbf{Z}$.

From this, we constructed $V_{m,\infty} = \mathscr{O}(\varprojlim_r X_1(Np^r)^{\circ}_m)$, and taking the limit over the mod p^m coefficients, we took

$$V_{\mathbf{Z}_p}(N) = \varprojlim_m V_{m,\infty}$$

and rationally we have

$$V_{\mathbf{Q}_p} = V_{\mathbf{Q}_p}(N) = V_{\mathbf{Z}_p} \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$$

which is a *p*-adic Banach space and carries a continuous action of \mathbf{Z}_{p}^{\times} .

Given a weight $\chi: \mathbf{Z}_p^{\times} \to K^{\times}$ we can take the eigenspace

$$V_K[\chi] = \{ f \in V_K \mid a \cdot f = \chi(a)f \}$$

Then given the universal elliptic curve $E \to Y_1(N)_m^\circ$ we have for all r an exact sequence

$$0 \to H_r \to E[p^r] \to H_r^D \to 0$$

and H_r^D is étale.

Some notation: if G/S is a group scheme, we write

$$\omega_G = e^* \Omega^1_{G/S} \cong \pi_* \Omega^1_{G/S}$$

where $e: S \to G$ is the identity section.

We showed there are isomorphisms

$$\omega_{E/X_1(N)_m^\circ} \xrightarrow{\sim} \omega_{E[p^r]} \xrightarrow{\sim} \omega_{H_r}$$

We also had existence of the Hodge-Tate map $HT: H_r^D \to \omega_{H_r}$. This is a map of sheaves on the étale site, and

$$H_r^D = \operatorname{Hom}(H_r, \mathbf{G}_m) \cong \operatorname{Hom}(H_r, \mu_{p^r})$$

Then $HT(f) = f^* \frac{dx}{x}$. We can extend it to a map

$$H_r^D \otimes_{\mathbf{Z}/p^r} \mathscr{O}_{X_1(N)_m^\circ} \xrightarrow{HT} \omega_{H_r}.$$

Proposition 2.1.1. HT is an isomorphism.

Proof. By étale descent for coherent sheaves we can check this after étale base change. So we base change to $X_1(Np^r)_m^{\circ}$, because over this étale cover H_r^D becomes isomorphic to $\mathbf{Z}/p^r\mathbf{Z}_{X_1(Np^r)_m^{\circ}}$. Then you just need to check that HT is surjective, which comes from the fact that dx/x generates $\omega_{\mu_p r} \cong \omega_{H_r}$. \Box

So on $X_1(Np^r)_m^{\circ}$ (for $r \ge m$) we get an isomorphism

$$\gamma_{m,r}:\omega\xrightarrow{\sim}\omega_{H^r}\cong H^D_r\otimes_{\mathbf{Z}/p^r\mathbf{Z}}\mathscr{O}_{X_1(Np^r)_m^\circ}\cong\mathscr{O}_{X_1(Np^r)_m^\circ}$$

By construction, the $\gamma_{m,r}$ are compatible in both m and r. This allows us to construct a map from modular forms to p-adic modular forms. Again recall that we defined

$$M_k(N, \mathbf{Z}/p^r \mathbf{Z}) = H^0(X_1(N)_m^\circ, \omega^{\otimes k}).$$

But we can restrict to some layer of the Igusa tower:

$$H^{0}(X_{1}(N)_{m}^{\circ},\omega^{\otimes k}) \hookrightarrow H^{0}(X_{1}(Np^{r})_{m}^{\circ},\omega^{\otimes k}) \xrightarrow{\gamma_{m,r}} \mathscr{O}(X_{1}(Np^{r})_{m}^{\circ}) = V_{m,r} \hookrightarrow V_{m,\infty}$$

This map doesn't depend on r and is compatible in m, i.e.

so after taking the limit we get a map $M_k(N, \mathbf{Z}_p) \to V_{\mathbf{Z}_p}(N)$, and by tensoring with \mathbf{Q}_p we get

$$\iota_k: M_k(N, \mathbf{Q}_p) \hookrightarrow V_{\mathbf{Q}_p}(N).$$

Fact 2.1.1. Letting $\chi_k(a) = a^k$, we have

$$\operatorname{im}(\iota_k) \subseteq V_{\mathbf{Q}_p}(N)[\chi_k]$$

In other words, "modular forms of weight k are p-adic modular forms of weight k".

Sketch of Proof. There is an action of \mathbf{Z}_p^{\times} on each $Y_1(Np^r)_m^{\circ}$: if we take $a \in \mathbf{Z}_p^{\times}$, then

$$u \cdot (E/S, \alpha_N : \mu_N \hookrightarrow E[N], \alpha_{p^r} : \mu_{p^r} \hookrightarrow E[p^r]) = (E/S, \alpha_N, \alpha_{p^r} \circ \gamma_a)$$

where $\gamma_a(z) = z^a$ (this is an isomorphism since $a \in \mathbf{Z}_p^{\times}$).

Then letting $\lambda_{\text{can}} := \text{HT}(1) \in H^0(X_1(Np^r)_m^\circ, \omega)$, we check that

$$a^*\lambda_{\operatorname{can}} = a^{-1}\lambda_{\operatorname{can}}.$$

Remark 2.1.1.

(1) We also have $M_k(Np^r, \mathbf{Q}_p) \hookrightarrow V_{\mathbf{Q}_p}(N)$. To see this, let $Y_1(Np^r)'_{\mathbf{Z}_p}$ be the scheme representing the functor

$$S \mapsto (E/S, \mu_{Np^r} \hookrightarrow E).$$

To have such an embedding, we must have E ordinary, so $Y_1(Np^r)' \otimes \mathbb{Z}/p^m \mathbb{Z} \cong Y_1(Np^r)_m^{\circ}$. Consider the normalization $X_1(Np^r)_{\mathbb{Z}_p}$ of $\mathbb{P}^1_{\mathbb{Z}_p}$ in $Y_1(Np^r)'_{\mathbb{Z}_p}$. This is proper but not smooth because we have level at p, but we can define

$$M_k(Np^r, \mathbf{Q}_p) = H^0(X_1(Np^r)_{\mathbf{Q}_p}, \omega^{\otimes k}).$$

The target receives a map from

$$H^0(X_1(Np^r)_{\mathbf{Z}_n},\omega^{\otimes k})$$

Reduce mod *m* to get a map $H^0(X_1(Np^r)_m, \omega^{\otimes k}) \to H^0(X_1(Np^r)_m^{\circ}, \omega^{\otimes k}) \hookrightarrow V_{m,\infty}$. Finally, we get a map

$$H^0(X_1(Np^r)_{\mathbf{Z}_p}, \omega^{\otimes k}) \to V_{\mathbf{Z}_p}(N)$$

and

$$H^0(X_1(Np^r)_{\mathbf{Q}_p}, \omega^{\otimes k}) \to V_{\mathbf{Q}_p}(N)$$

But careful, because $M_k(Np^r, \mathbf{Q}_p) \not\subset V_{\mathbf{Q}_p}(N)[\chi_k]$. If we fix a nebentypus $\epsilon : (\mathbf{Z}/p^r \mathbf{Z})^{\times} \to K^{\times}$, then we get an injection

$$M_k(Np^r, \epsilon, K) \hookrightarrow V_{\mathbf{Q}_p}(N)[\chi_k \epsilon]$$

So "modular forms of weight k and level Np^r are p-adic modular forms of tame level N".

(2) Other properties:

(a)

$$\bigoplus_{k>0} M_k(N, \mathbf{Q}_p) \subseteq V_{\mathbf{Q}_p}(N)$$

is a dense subspace.

(b) Igusa proved that each $X_1(Np^r)_1$ is connected. So the map

$$\pi_1(X_1(N)_1^\circ) \to (\mathbf{Z}/p^r\mathbf{Z})^{\times}$$

is surjective. Therefore, $V_{1,\infty}^{1+p\mathbf{Z}_p} = \sum_{k\geq 0} \operatorname{im}(\iota_k)$ where $\iota_k : M_k(N, \mathbf{F}_p) \to V_{1,\infty}$. Also $\omega^{\otimes (p-1)}$ is trivialized by the Hasse invariant on $X_1(N)_1^{\circ}$. Multiplication by the Hasse invariant induces

$$\iota_k(M_k(N, \mathbf{F}_p)) \subseteq \iota_{k+(p-1)}(M_{k+p-1}(N, \mathbf{F}_p)).$$

so we have

$$\bigcup_{n\geq 0} M_{a+n(p-1)}(N, \mathbf{F}_p) \subseteq V_{1,\infty}$$

and we call this $M(n, a, \mathbf{F}_p)$ for $0 \le a \le p - 2$, and

$$V_{1,\infty}^{1+p\mathbf{Z}_p} = \bigoplus_{a=0}^{p-2} M(N, a, \mathbf{F}_p).$$

2.2. Hecke Operators. We will do this via correspondences. Fix $\ell \neq p$. Define $Y_1(Np^r; \ell)_m^{\circ}$ to be the scheme representing the functor

 $S \mapsto \{(E/S, \alpha : \mu_{Np^r} \hookrightarrow E, H \subseteq E[\ell] \text{ finite flat gp. scheme of order } \ell, H \cap \operatorname{im}(\alpha) = 0)\}$

There is a correspondence

$$Y_1(Np^r)^{\circ}_m \leftarrow Y_1(Np^r, \ell) \rightarrow Y_1(Np^r)^{\circ}_m$$

The left map takes $(E, \alpha, H) \mapsto (E, \alpha)$ and the right map takes $(E, \alpha, H) \mapsto (E/H, \mu_{Np^r} \xrightarrow{\alpha} E \to E/H)$. This correspondence defines $T(\ell) \in \text{End}(V_{m,r})$ as follows:

$$T(\ell) = \frac{1}{\ell} \operatorname{tr}(\pi_1) \circ \pi_2^*.$$

These are compatible in m, r, so we get $T(\ell) \in \operatorname{End}(V_{\mathbf{Q}_p}(N))$ and $|T(\ell)| \leq 1$. This is compatible with the Hecke operator $T_k(\ell) \in \operatorname{End}(M_k(N, \mathbf{Q}_p))$ under the embedding $M_k(N, \mathbf{Q}_p) \hookrightarrow V_{\mathbf{Q}_p}(N)$.

The tricky part is when $\ell = p$. The Frobenius $Y_1(N)_1^{\circ} \xrightarrow{\text{Frob}} Y_1(N)_1^{\circ}$ takes $(E, \alpha) \mapsto (E/H_1, \pi_{H_1} \circ \alpha)$. There exists a lift of Frob to the thickenings $Y_1(N)_m^{\circ}$. In fact, we can define

$$Y_1(N)^\circ_m \to Y_1(N)^\circ_m$$

taking $(E, \alpha) \mapsto (E/H_1, \pi_{H_1} \circ \alpha)$. On the Igusa tower we can lower the level:

$$Y_1(Np^r)_m^{\circ} \to Y_1(Np^{r-1})_m^{\circ}$$

taking $(E, \alpha, \mu_{p^r} \hookrightarrow E[p^r]) \mapsto (E/H_1, \alpha, \pi_{H_1} \circ \alpha_{p^r})$. These maps induces some algebra endomorphism $F : V_{\mathbf{Z}_p}(N) \to V_{\mathbf{Z}_p}(N)$

which is finite flat of degree p.

Define $U = 1/p \operatorname{tr}(F)$. Since F is finite flat of degree p,

$$\operatorname{tr}(F)(V_{\mathbf{Z}_p}) \subseteq pV_{\mathbf{Z}_p}$$

This is compatible with the classical Hecke operator, in the sense that if $r \ge 1$,

If r = 0, then $U \equiv T_k(p) \mod p$ on $M_k(N, \mathbf{Z}_p)$.

2.3. Ordinary *p*-adic modular forms. First, take $\Gamma = 1 + p\mathbf{Z}_p$. If p = 2, take $1 + 4\mathbf{Z}_2$. Recall the Iwasawa algebra $\Lambda = \mathbf{Z}_p[[\Gamma]]$ the completed algebra of Γ , i.e.

$$\Lambda = \varprojlim_n \mathbf{Z}_p[\Gamma/\Gamma^{p^m}]$$

Then $\Lambda \cong \mathbf{Z}_p[[x]]$ by sending $1 + p \mapsto 1 + x$. Since \mathbf{Z}_p^{\times} acts on $V_{\mathbf{Q}_p}(N)$ continuously, $V_{\mathbf{Q}_p}(N)$ turns into a Λ -module.

Let $\mathcal{V}_{\mathbf{Q}_p} = \operatorname{Hom}_{\operatorname{cts}}(V_{\mathbf{Q}_p}, \mathbf{Q}_p)$. We put the weak topology on $\mathcal{V}_{\mathbf{Q}_p}$, i.e. the coarsest topology for which all of the evaluation maps are continuous. More concretely, we have a lattice $\mathcal{V}_{\mathbf{Z}_p} = \operatorname{Hom}(V_{\mathbf{Z}_p}, \mathbf{Z}_p) = \varprojlim_m \operatorname{Hom}(V_{\mathbf{Z}_p} \otimes \mathbf{Z}/p^m, \mathbf{Z}/p^m)$, which we claim is compact. The action Γ on $V \otimes \mathbf{Z}/p^m$ is smooth, and for the weak topology, the spaces $\operatorname{Hom}(V_{\mathbf{Z}_p} \otimes \mathbf{Z}/p^m, \mathbf{Z}/p^m)$ are compact \mathbf{Z}_p -modules. Why? $V_{\mathbf{Z}_p} \otimes \mathbf{Z}/p^m = \varinjlim_W \operatorname{finite submodules} W$, and

$$\operatorname{Hom}(V_{\mathbf{Z}_p} \otimes \mathbf{Z}/p^m, \mathbf{Z}/p^m) = \varprojlim_W \operatorname{Hom}(W, \mathbf{Z}/p^m)$$

which is then compact, so $\mathcal{V}_{\mathbf{Z}_p}$ is a compact \mathbf{Z}_p -module, and so is a compact Λ -module.

Why are we doing this? The problem is that $\mathcal{V}_{\mathbf{Z}_p}$ is not typically a finite type Λ -module. When $\mathcal{V}_{\mathbf{Z}_p}$ is a finite type Λ -module, we say that $V_{\mathbf{Q}_p}$ is an **admissible representation** of \mathbf{Z}_p^{\times} .

3. Talk III

Yesterday, we had this space $V_{\mathbf{Q}_p}(N)$ of *p*-adic modular forms, with a continuous action of \mathbf{Z}_p^{\times} .

More generally, if V is a p-adic Banach space with a continuous action of \mathbf{Z}_p^{\times} , then V gives rise to a Λ -module, where $\Lambda := \mathbf{Z}_p[[\Gamma]]$ is the Iwasawa algebra for $\Gamma = 1 + p\mathbf{Z}_p$. We consider the dual $V' = \operatorname{Hom}_{\operatorname{cts}}(V, \mathbf{Q}_p)$ with its weak topology, which induces on the \mathbf{Z}_p -lattice $V'_{\mathbf{Z}_p} = \operatorname{Hom}(V_{\mathbf{Z}_p}, \mathbf{Z}_p)$ the inverse limit topology coming from

$$V'_{\mathbf{Z}_p} = \varprojlim_{m} \varprojlim_{W \subseteq V_{\mathbf{Z}_p} \otimes \mathbf{Z}/p^m \text{ finite}} \operatorname{Hom}(W, \mathbf{Z}/p^m).$$

and obtain a compact Λ -module.

Now if we let $\Lambda_{\mathbf{F}_p} = \Lambda \otimes \mathbf{F}_p = \mathbf{F}_p[[x]]$, then

$$(V_{\mathbf{Z}_p} \otimes_{\mathbf{Z}_p} \mathbf{F}_p)^{\Gamma} = (V_{\mathbf{Z}_p} \otimes_{\mathbf{Z}_p} \mathbf{F}_p)[x] \ (x ext{-torsion})$$

and

$$V_{\mathbf{Z}_p} = \operatorname{Hom}_{\operatorname{cts}}(V'_{\mathbf{Z}_p}, \mathbf{Z}_p)$$

 \mathbf{SO}

$$(V_{\mathbf{Z}_p} \otimes_{\mathbf{Z}_p} \mathbf{F}_p)^{\Gamma} = \operatorname{Hom}_{\operatorname{cts}}(V'_{\mathbf{Z}_p} \otimes_{\mathbf{Z}_p} \mathbf{F}_p, \mathbf{F}_p)$$

and

$$(V_{\mathbf{Z}_p} \otimes_{\mathbf{Z}_p} \mathbf{F}_p[x])' = V'_{\mathbf{Z}_p} \otimes_{\Lambda} \mathbf{F}_p.$$

So by using a topological version of Nakayama's lemma, we see that $V'_{\mathbf{Z}_p}$ is a module of finite type if and only if $\dim_{\mathbf{F}_p} (V_{\mathbf{Z}_p} \otimes_{\mathbf{Z}_p} \mathbf{F}_p)^{\Gamma} < \infty$. When these conditions are satisfied, we say that V is an **admissible** \mathbf{Z}_p^{\times} -module.

If we apply this to $V_{\mathbf{Q}_p}(N) \supseteq V_{\mathbf{Z}_p(N)}$, we get

$$(V_{\mathbf{Z}_p}(N) \otimes_{\mathbf{Z}_p} \mathbf{F}_p)^{\Gamma} = V_{1,1} = \mathscr{O}(X_1(Np)_1^{\circ})$$

But this is the space of functions on an affine curve, so it is not finite dimensional. There is a construction of Hida that lets us get around this.

3.1. Ordinary Projector. This is due to Hida.

$$\bigoplus_k M_k(N, \mathbf{Q}_p) \longleftrightarrow \bigoplus_k M_k(Np, \mathbf{Q}_p) \xleftarrow{\text{dense}} V_{\mathbf{Q}_p}(N)$$

These have actions of U. Then $V_{\mathbf{Z}_p}(N) \otimes \mathbf{Z}/p^m$ is an increasing union of finite submodules stable under U. Which?

$$\left(\bigoplus_{k=0}^{j} M_k(Np, \mathbf{Q}_p) \cap V_{\mathbf{Z}_p}\right) \otimes \mathbf{Z}/p^m$$

Fact 3.1.1. If $v \in V_{\mathbf{Z}_p}(N)$, then $(U^{n!}v)_{n\geq 0}$ converges to some vector $e_{\text{ord}}v$. Furthermore e_{ord} is a continuous projector in $\text{End}(V_{\mathbf{Z}_p}(N))$.

We call the ordinary projector.

If W is an object "coming from $V_{\mathbf{Z}_p}(N)$ " (for example, could be $V_{\mathbf{Z}_p} \otimes \mathbf{Z}/p^m$ or $V_{\mathbf{Q}_p}$ or $\mathcal{V}_{\mathbf{Z}_p}$) then e_{ord} acts on W and we let

$$W^{\mathrm{ord}} = e_{\mathrm{ord}}W$$

Theorem 3.1.1 (Hida). Take p > 2. Then $\mathcal{V}_{\mathbf{Z}_p}^{\text{ord}}$ is a finite free Λ -module. This implies that $V_{\mathbf{Q}_p}^{\text{ord}}(N)$ is an admissible \mathbf{Z}_p^{\times} -representation.

If $k \geq 3$, then we have an inclusion

$$V_{\mathbf{Q}_p}(N)[\chi_k] \supseteq M_k(N, \mathbf{Q}_p)$$

and in fact

 $V_{\mathbf{Q}_p}^{\mathrm{ord}}(N)[\chi_k] \supseteq M_k(N, \mathbf{Q}_p)^{\mathrm{ord}}.$

Let $V_{\mathbf{Q}_p, \mathrm{cusp}}(N) = \{ f \in V_{\mathbf{Q}_p}(N) \mid f \text{ vanishes along } X_1(Np^r)^{\circ} \setminus Y_1(Np^r)^{\circ} \}$. Similarly, we have (still $k \geq 3$)

$$V_{\mathbf{Q}_p,\mathrm{cusp}}^{\mathrm{ord}}(N)[\chi_k] \supseteq S_k(N,\mathbf{Q}_p)^{\mathrm{ord}}$$

and $\mathcal{V}_{\mathbf{Z}_{p},\mathrm{cusp}}^{\mathrm{ord}}$ is finite free over Λ .

Theorem 3.1.2 (Hida).

- (1) For $k \ge 3$, $\dim_{\mathbf{Q}_p} M_k(N, \mathbf{Q}_p)^{\text{ord}}$ depends only on the class of $k \mod p 1$. (same result for cuspidal spaces).
- (2) If $\epsilon : (\mathbf{Z}/p^r \mathbf{Z})^{\times} \to K^{\times}$ is a Dirichlet character of conductor p^r $(r \ge 1)$ and $k \ge 2$, then

$$\dim_{\mathbf{Q}_p} S_k(Np^r, \epsilon, K)$$

depends only on the class of $k \mod p-1$.

Proof of Theorem 3.1.1. We show how Theorem 3.1.2 implies Theorem 3.1.1. First we need to show that $\mathcal{V}_{\mathbf{Z}_p}^{\mathrm{ord}}$ is finitely generated as a Λ -module. By the above discussion, this is true iff $\dim_{\mathbf{F}_p}((V_{\mathbf{Z}_p} \otimes \mathbf{F}_p)^{\Gamma})^{\mathrm{ord}} < \infty$. But

$$((V_{\mathbf{Z}_p} \otimes \mathbf{F}_p)^{\Gamma})^{\mathrm{ord}} = V_{1,1}^{\mathrm{ord}} = \bigoplus_{a \in \mathbf{Z}/p} M(N, a, \mathbf{F}_p)^{\mathrm{ord}}$$

But remember that $M(N, a, \mathbf{F}_p)^{\text{ord}} = \bigcup_{n \ge 0} M_{a+n(p-1)}(N, \mathbf{F}_p)^{\text{ord}}$, and that

$$\dim_{\mathbf{F}_p} M_k(N, \mathbf{F}_p)^{\mathrm{ord}} = \dim_{\mathbf{Q}_p} M_k(N, \mathbf{Q}_p)^{\mathrm{ord}},$$

so Theorem 3.1.2 tells you that this infinite union stabilizes and thus

$$\bigoplus_{a \in \mathbf{Z}/p} M(N, a, \mathbf{F}_p)^{\text{ord}} = \bigoplus_{a \in \mathbf{Z}/p} M_{j(a)}(N, \mathbf{F}_p)^{\text{ord}}$$

for large enough $j(a) \equiv a$ for each a.

So $\mathcal{V}_{\mathbf{Z}_p}^{\text{ord}}$ is finite over Λ , and we need to show that it's actually free. Note $\mathbf{Z}_p^{\times} \cong \Delta \times \Gamma$: if $a \in \mathbf{Z}/p - 1$, let $\chi_a : \Delta \to \mathbf{Z}_p^{\times}$ be the character defined by raising to the power a. Then we get a decomposition into eigenspaces

$$V_{\mathbf{Z}_p} = \bigoplus_{a \in \mathbf{Z}/p-1} V_{\mathbf{Z}_p, a}$$

where $V_{\mathbf{Z}_p,a} = V_{\mathbf{Z}_p}[\chi_a]$. Letting $\mathcal{V}_{\mathbf{Z}_p,a} = \operatorname{Hom}_{\operatorname{cts}}(V_{\mathbf{Z}_p,a}, \mathbf{Z}_p)$, we have

$$\mathcal{V}_{\mathbf{Z}_p,a}^{\mathrm{ord}}\otimes_{\Lambda}\mathbf{F}_p\cong\mathbf{F}_p^{r(a)}$$

where $r(a) = \dim_{\mathbf{Q}_p} M_{j(a)}(N, \mathbf{Q}_p)^{\text{ord}}$ (now we let $j(a) \equiv a \mod p - 1$). Pick some surjection $\Lambda^{r(a)} \twoheadrightarrow \mathcal{V}_{\mathbf{Z}_p, a}^{\text{ord}}$ and let $P_{j(a)} = ((1+x) - (1+p)^{j(a)}) = \ker(\Lambda \xrightarrow{\chi_{j(a)}} \mathbf{Z}_p)$. Using the co-torsion-free inclusion

$$M_{j(a)}(N, \mathbf{Z}_p)^{\text{ord}} \subseteq V_{\mathbf{Z}_p}^{\text{ord}}(N)[\chi_{j(a)}]$$

we extend the surjection to

$$\Lambda^{r(a)} \twoheadrightarrow \mathcal{V}_{\mathbf{Z}_p,a}^{\mathrm{ord}} \twoheadrightarrow \mathrm{Hom}(M_{j(a)}(N, \mathbf{Z}_p), \mathbf{Z}_p)$$

These maps factor through the quotient by the ideal $P_{i(a)}$:

$$\Lambda^{r(a)}/P_{j(a)} \twoheadrightarrow \mathcal{V}_{\mathbf{Z}_p,a}^{\mathrm{ord}}/P_{j(a)} \twoheadrightarrow \mathrm{Hom}(M_{j(a)}(N, \mathbf{Z}_p), \mathbf{Z}_p)$$

So we have

$$(\Lambda/P_{j(a)})^{r(a)} \twoheadrightarrow \mathcal{V}_{\mathbf{Z}_p,a}^{\mathrm{ord}}/P_{j(a)} \twoheadrightarrow \mathrm{Hom}(M_{j(a)}(N, \mathbf{Z}_p), \mathbf{Z}_p)$$

But the source and target are $\mathbf{Z}_{p}^{r(a)}$, so this is an isomorphism, and

$$\ker(\Lambda^{r(a)} \twoheadrightarrow \mathcal{V}^{\mathrm{ord}}_{\mathbf{Z}_p,a}) \subseteq P_{j(a)}(\Lambda)^{r(a)}$$

so ker = 0.

3.2. Hida Families. We have $\bigoplus_k M_k(Np, \mathbf{Q}_p) \subseteq V_{\mathbf{Q}_p}(N)$. There is a big endomorphism $\bigoplus_k T_k(\ell)$ acting on the first sum. For $\ell \neq p$ there is a $T(\ell)$ acting on $V_{\mathbf{Q}_p}(N)$ compatibly. But we also have $\bigoplus_k T_k(\ell, \ell) = \bigoplus_k \ell^{k-2} \langle \ell \rangle_{Np}$ acting, which corresponds to $\ell^{-1} \langle \ell \rangle_{Np}$: this operator $\langle \ell \rangle_{Np}$ acts on each $V_{m,r}$ by

$$\langle \ell \rangle_{N_p} \left(E/S, \alpha_{Np^r} \cdot \mu_{Np^r} \hookrightarrow E \right) = \left(E/S, \alpha_{Np^r} \circ \gamma_\ell \right)$$

We let

$$\mathcal{H}(N) =$$
 weak closure of $\mathbf{Z}_p[T(\ell), \ell^{-2} \langle \ell \rangle_{N_p}, U, \ell \neq p]$ in $\mathrm{End}(V_{\mathbf{Z}_p}(N))$

For $j \geq 0$ let $\mathcal{H}^{j}(N)$ be the \mathbb{Z}_{p} -algebra $\operatorname{End}(\bigoplus_{k=0}^{j} M_{k})$ and we have

$$\mathcal{H}(N) = \varprojlim_{j} \mathcal{H}^{j}(N).$$

By construction, for all k, we have

$$\mathcal{H}(N) \twoheadrightarrow \mathcal{H}_k(Np)$$

With this weak topology, $\mathcal{H}(N)$ is a compact \mathbf{Z}_p -algebra, which call the "big Hecke algebra".

We have $\mathcal{H}(N) \subseteq \operatorname{End}(V_{\mathbf{Z}_p}(N))$ and $\Lambda \subseteq \operatorname{End}(V_{\mathbf{Z}_p}(N))$. In fact, the action of Λ factors through $\mathcal{H}(N)$. Why? Take some $\ell \equiv 1 \mod pN$. If $\delta_{\ell} \in \mathbf{Z}[\Gamma] \subseteq \Lambda$, then $\ell^{-2}\delta_{\ell}$ acts like $\bigoplus T_k(\ell, \ell)$ on $\bigoplus_k M_k(Np, \mathbf{Z}_p)$. This implies that $\delta_{\ell} \in \Lambda$ are in $\mathcal{H}(N)$. By density of such $\ell, \Lambda \subseteq \mathcal{H}(N)$.

There are other variants if $\mathcal{H}(N)$. We know that $e_{\text{ord}} \in \mathcal{H}(N)$, so we can define the ordinary part $\mathcal{H}^{\text{ord}} = e_{\text{ord}}\mathcal{H}(N)$. There is also a cuspidal version $h(N) = \operatorname{im}(\mathcal{H}(N) \to \operatorname{End}(V_{\operatorname{cusp}}(N))$. Can do $h(N)^{\text{ord}}$...

Theorem 3.2.1 (Hida). Fix $\epsilon : (\mathbf{Z}/p^r \mathbf{Z})^{\times} \to K^{\times}$ a Dirichlet character. Then for $k \geq 2$, let $P_{k,\epsilon} = \ker(\Lambda \xrightarrow{\chi_k \epsilon} \mathbf{Z}_p)$. Then $\mathcal{H}(N)^{\text{ord}}$ and $h(N)^{\text{ord}}$ are finite free Λ -modules.

If we fix $a \in \mathbf{Z}/p - 1$ let

$$\mathcal{H}(N, a) = \operatorname{im}(\mathcal{H}(N) \to \operatorname{End}(V_{\mathbf{Z}_p, a})).$$
$$h(N, a) = \operatorname{im}(h(N) \to \operatorname{End}(V_{\mathbf{Z}_p, \operatorname{cusp}, a})).$$

Then $\mathcal{H}(N) = \bigoplus_{a \in \mathbb{Z}/p-1} \mathcal{H}(N, a)$. For $k \geq 3$,

$$\mathcal{H}(N,a)^{\mathrm{ord}}/P_{k,1} \xrightarrow{\sim} \mathcal{H}_k(Np,\omega^{a-k})^{\mathrm{ord}}$$

Now for $k \geq 2$,

$$h(N,a)^{\mathrm{ord}}/P_{k,\epsilon} \xrightarrow{\sim} h_k(Np^r,\omega^{a-k})^{\mathrm{ord}}$$

Sketch of Proof. Using q-expansions, prove first that $\mathcal{V}_{\mathbf{Z}_p, \operatorname{cusp}} \cong h(N)$ as an h(N)-module. Then

$$\dim \mathcal{H}(Np^r, \epsilon)_{\mathbf{Q}_n} = \dim_{\mathbf{Q}_n} M_k(Np^r, \epsilon).$$

and prove the same thing in the cuspidal case (do this using some perfect duality).

You know that $\mathcal{V}_{\mathbf{Z}_p, \text{cusp}}$ is finite free over Λ is h(N) is as well. Then use Theorem 2 and the above dimension equality to conclude.

By the Theorem $h(N)^{\text{ord}}$ is a finite free Λ -algebra, and thus is a semilocal algebra, i.e. has finitely many maximal ideals, so we can decompose it as

$$h(N)^{\operatorname{ord}} = \bigoplus_{\mathfrak{m} \subseteq h(N)} h(N)_{\mathfrak{m}}^{\operatorname{ord}}$$

Then the rigid analytic spectrum of this Hecke algebra maps to weight space: $\mathcal{E}_m = (\text{Spf } h(N)_m^{\text{ord}})^{\text{rig}}) \xrightarrow{\pi} (\text{Spf } \Lambda)^{\text{rig}} =: \mathcal{W}$. A closed point of this family is called a **Hida family**, and corresponds to a morphism $h(N, a)^{\text{ord}} \to K(/\mathbf{Q}_p)$ which is a system of eigenvalues of h(N) acting on $V_{\mathbf{Q}_p(N)}^{\text{ord}}$. Theorem 3 implies that if we consider some $y = \chi_k \epsilon$ (for $k \ge 2$) in the weight space \mathcal{W} , then $\pi^{-1}(y)$ contains only classical points.

4. TALK IV

Recall: we fix $N \ge 5$ and $p \nmid 2N$. We had the following theorem:

Theorem 4.0.1. Fix $r \ge 1$ and $\chi : \mathbf{Z}_p^{\times} \to K^{\times}$ with open kernel $1 + p^n \mathbf{Z}_p$ for some K/\mathbf{Q}_p finite and $k \ge 2$. Then

$$\dim_K S_k(\Gamma_1(Np^r), \chi, K)^{\text{ord}}$$

depends only on the the class of k mod p-1 and $\chi|_{\Delta}$, where

$$\mathbf{Z}_p^{\times} \cong \Delta \times \Gamma.$$

To prove this theorem we want to give a proof using completed cohomology.

4.1. Cohomological Methods. Let $Y_1(Np^r) = \Gamma_1(Np^r) \setminus \mathbf{H}$, and for $k \ge 2$ we denote $V_k = \text{Sym}^{k-2}(\mathbf{Z}^2)$ with its usual action of $\text{SL}_2(\mathbf{Z})$. This gives rise to a local system on $Y_1(Np^r)$.

Then we define the parabolic cohomology

$$H^1_{\text{par}}(Y_1(Np^r), \mathcal{V}_k) := \operatorname{im}(H^1_c(Y_1(Np^r), \mathcal{V}_k) \to H^1(Y_1(Np^r), \mathcal{V}_k)).$$

Then the Eichler-Shimura isomorphism is a Hecke-equivariant isomorphism

$$H^1_{\mathrm{par}}(Y_1(Np^r), \mathcal{V}_k) \otimes_{\mathbf{Z}} \mathbf{C} \cong S_k(\Gamma_1(Np^r)) \oplus \overline{S_k(\Gamma_1(Np^r))}.$$

So if we consider the image of the abstract Hecke algebra $h_k(\Gamma_1(Np^r))/\subseteq \operatorname{End}(S_k(\Gamma_1(Np^r)))$, this matches the image in $\operatorname{End}(H^1_{\operatorname{par}}(Y_1(Np^r), \mathcal{V}_k))$.

Then the space $\operatorname{Hom}_{\mathbf{Q}_p}(H^1_{\operatorname{par}}(Y_1(Np^r), \mathcal{V}_k \otimes_{\mathbf{Z}} \mathbf{Q}_p), \mathbf{Q}_p)$ is free of rank 2 over $h_k(\Gamma_1(Np^r))_{\mathbf{Q}_p}$. We have to prove that

 $\dim_K H^1_{\mathrm{par}}(Y_1(Np^r), \chi, \mathcal{V}_k \otimes K)^{\mathrm{ord}}$

depends only on $k \mod p - 1$ and $\chi|_{\Delta}$.

4.2. Completed Cohomology. If $K \subseteq \operatorname{GL}_2(\mathbf{Q}_p)$ is a compact open subgroup, then let

$$Y_K = \operatorname{GL}_2(\mathbf{Q}) \setminus (\mathcal{H}^{\pm} \times \operatorname{GL}_2(\mathbf{A}^{\infty})/K).$$

We work at level $K = K^p \times K_p$ where

$$K^{p} = \left\{ g \in \operatorname{GL}_{2}(\widehat{Z}^{p}) \mid g \equiv \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \mod N \right\}$$

Then write $Y_{K_p} := Y_{K^p K_p}$. Note

$$Y_{\mathrm{GL}_2(\mathbf{Z}_p)} = Y_1(N) = Y(\Gamma_1(N)).$$

Increasing level at p, we have

$$Y_1(Np^r) = Y_{K_1(p^r)}$$

where
$$K_1(p^r) = \left\{ \begin{pmatrix} \mathbf{Z}_p^{\times} & \mathbf{Z}_p \\ p^r \mathbf{Z}_p & 1 + p^r \mathbf{Z}_p \end{pmatrix} \right\}$$

We first take a limit:

$$H^{1}_{\mathbf{Z}_{p}} = \varinjlim_{K_{p} \subseteq \overrightarrow{\operatorname{GL}}_{2}(\mathbf{Q}_{p})} H^{1}(Y_{K_{p}}, \mathbf{Z}_{p})$$

This becomes a \mathbf{Z}_p -module. Then define the **completed cohomology** to be $\hat{H}^1_{\mathbf{Z}_p}$, the *p*-adic completion, which is now a *p*-adic Banach space. Finally we let

$$\widehat{H}^1(N) = \widehat{H}^1 = \widehat{H}^1_{\mathbf{Z}_p} \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$$

This naturally has an action of $GL_2(\mathbf{Q}_p)$, which is unitary and continuous representation of $GL_2(\mathbf{Q}_p)$.

There is alternative characterization given by

$$\widehat{H}^1_{\mathbf{Z}_p} \cong \widetilde{H}^1_{\mathbf{Z}_p} := \varprojlim_n (\varprojlim_{K_p \subseteq \operatorname{GL}_2(\mathbf{Q}_p)} H^1(Y_{K_p}, \mathbf{Z}/p^n \mathbf{Z}))$$

which is the same because we're working with curves. In general these won't be the same, but in general this is the better definition of completed cohomology.

Theorem 4.2.1 (Emerton). \hat{H}^1 is an admissible continuous representation of $GL_2(\mathbf{Q}_p)$.

One should compare this to $V_{\mathbf{Q}_p}$ with its \mathbf{Z}_p^{\times} -action: but this is far from being admissible.

For $k \geq 2$, consider the map

If K'_p is small enough, then $\mathcal{V}_k \otimes_{\mathbf{Z}_p} \mathbf{Z}/p^n$ is trivial on $Y_{K'_p}$. In other words, for small enough K'_p ,

 $H^1(Y_{K'_p}, \mathcal{V}_k \otimes_{\mathbf{Z}} \mathbf{Z}/p^n) \cong H_1(Y_{K'_p}, \mathbf{Z}/p^n) \otimes_{\mathbf{Z}} V_k.$

This gives us a map

$$H^1(Y_{K_p}, \mathcal{V}_k \otimes_{\mathbf{Z}} \mathbf{Z}_p) \to ((V_k \otimes_{\mathbf{Z}} \mathbf{Z}_p) \otimes \widehat{H}^1(N))^{K_p}$$

So here $V_k \otimes_{\mathbf{Z}} \mathbf{Z}_p$ is an algebraic representation of $\operatorname{GL}_2(\mathbf{Q}_p)$, and we tensor it with the huge unitary representation $\widehat{H}^1(N)$.

Theorem 4.2.2 (Emerton). The map

$$H^1(Y_{K_p}, \mathcal{V}_k \otimes_{\mathbf{Z}} \mathbf{Q}_p) \to \operatorname{Hom}_{K_p}((V_{k,\mathbf{Q}_p})', \widehat{H}^1)$$

is a Hecke-equivariant isomorphism.

For more general Shimura varieties, you have a spectral sequence instead of an isomorphism.

Remark 4.2.1. If we do this for each k and put them together,

$$\bigoplus_k H^1(Y_1(N), \mathcal{V}_k) \otimes V'_{k, \mathbf{Q}_p} \hookrightarrow \widehat{H}^1$$

with dense image. Therefore, if you construct a "big" Hecke algebra using completed cohomology, you don't get anything new. If we let $\mathbf{T}^{\mathrm{sph}}$ be the weak completion of $\mathbf{Z}_p[T(\ell), T(\ell, \ell) \mid \ell \nmid Np] \subseteq \mathrm{End}(\widehat{H}^1)$, then actually $\mathbf{T}^{\mathrm{sph}} \subseteq h(N) \subseteq \mathrm{End}(V_{\mathbf{Q}_p, \mathrm{cusp}})$ (note this is not an equality because we left out the U_p -operator).

Fact 4.2.1. The spherical Hecke algebra $T^{\rm sph}$ is a semi-local Z_p -algebra, so decomposes as a finite product

$$\mathbf{\Gamma}^{\mathrm{sph}} = \prod_{\mathfrak{m}} \mathbf{T}_{\mathfrak{m}}$$

As a consequence, we get a decomposition $\widehat{H}^1 \cong \bigoplus_{\mathfrak{m}} \widehat{H}^1_{\mathfrak{m}}$.

Now fix some $\mathfrak{m} \subseteq \mathbf{T}$ which is non-Eisenstein. This means that the associated Galois representation $\overline{\rho}_{\mathfrak{m}}$: $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\overline{\mathbf{F}}_p)$ is irreducible. This is useful because

$$H^1(Y_1(N), \mathcal{V}_k)_{\mathfrak{m}} = H^1_{\mathrm{par}}(Y_1(N), \mathcal{V}_k)_{\mathfrak{m}}.$$

Theorem 4.2.3 (Emerton). The $\operatorname{GL}_2(\mathbf{Z}_p)$ -representation $\widehat{H}^1_{\mathbf{Z}_p,\mathfrak{m}}$ is isomorphic to a direct factor of $\mathcal{C}(\operatorname{GL}_2(\mathbf{Z}_p),\mathbf{Z}_p)^{\oplus s}$, for some $s \geq 0$.

Now we will give a proof of Hida's vertical control theorem, as stated at the beginning of the talk.

Proof. We have an isomorphism

$$H^1(Y_1(Np^r), \mathcal{V}_{k, \mathbf{Q}_p})^{\mathrm{ord}}_{\mathfrak{m}} \xrightarrow{\sim} \mathrm{Hom}_{K_1(p^r)}(V'_{k, \mathbf{Q}_p}, \widehat{H}^1_{\mathfrak{m}}).$$

We have a U_p -operator acting on the left, and on the right, we do as well. This is defined as follows: if π is any representation of $\operatorname{GL}_2(\mathbf{Q}_p)$ and $H \subseteq \operatorname{GL}_2(\mathbf{Q}_p)$ is a compact subgroup, then we define

$$U_p: \pi^H \xrightarrow{\operatorname{diag}(p,1)} \pi^{H \cap \operatorname{diag}(p,1)H \operatorname{diag}(p,1)^{-1}} \xrightarrow{\operatorname{tr}} \pi^H$$

In fact the map above is then equivariant for these actions.

Now we have an injection

$$\operatorname{Hom}_{K_1(p^r)}(V'_{k,\mathbf{Q}_p},\widehat{H}^1_{\mathfrak{m}}) \hookrightarrow \operatorname{Hom}_{\begin{pmatrix} \mathbf{Z}_p^{\times} & \mathbf{Z}_p \\ 0 & 1+p^r\mathbf{Z}_p \end{pmatrix}} (V'_{k,\mathbf{Q}_p},\widehat{H}^1_{\mathfrak{m}}),$$

But

$$\left. egin{array}{cc} V_{k,\mathbf{Q}_{p}}^{\prime} & \mathbf{Q}_{p} \ 0 & \mathbf{Q}_{p}^{ imes} \ 0 & \mathbf{Q}_{p}^{ imes} \end{array}
ight.$$

contains a weight $1 \otimes \chi_{k-i}^{-1}$, where

$$1 \otimes \chi_k^{-1} : (a, b, 0, d) \mapsto d^{-(k-i)}$$

and

$$\operatorname{Hom}_{\mathbf{Z}_{p}^{\times}\times(1+p^{r}\mathbf{Z}_{p})}(1\otimes\chi_{k-2}^{-1},(\widehat{H}_{\mathfrak{m}}^{1})^{N(\mathbf{Z}_{p}),\operatorname{ord}})$$

But

$$N(\mathbf{Z}_p) \subseteq K_1(p^r)$$

But then putting ord everywhere we get isomorphisms. $N(\mathbf{Z}_p)/(N(\mathbf{Z}_p) \cap \operatorname{diag}(p,1)N(\mathbf{Z}_p)\operatorname{diag}(p,1)^{-1}) \xrightarrow{\sim} K_1(p^r)/K_1(p^r) \cap \operatorname{diag}(p,1)K_1(p^r)\operatorname{diag}(p,1)^{-1}$.

Definition 4.2.1. Take π some continuous unitary admissible representation $\operatorname{GL}_2(\mathbf{Q}_p)$ and define $\operatorname{ord}(\pi) = e_{\operatorname{ord}}\pi^{N(\mathbf{Z}_p)}$. Here we use the fact that $(U_p^{n!}) \to e_{\operatorname{ord}}$. This is a particular case of Emerton's ordinary functor

In summary, $H^1(Y_1(Np^r), \mathcal{V}_{k,\mathbf{Q}_p})^{\mathrm{ord}} \xrightarrow{\sim} \mathrm{Hom}_{\mathbf{Z}_p^{\times} \times (1+p^r\mathbf{Z}_p)}(1 \otimes_{k=1}^{-1}, \mathrm{ord}(\widehat{H}^1_\mathfrak{m})).$

Given a character $\chi: \mathbf{Z}_p^{\times} \to K^{\times}$ as above, we want to understand

$$H^1(Y_1(Np^r), \mathcal{V}_k, \epsilon)^{\mathrm{ord}} \xrightarrow{\sim} \mathrm{Hom}_{T(\mathbf{Z}_p)}(1 \otimes \chi_{k-2}^{-1} \epsilon^{-1}, \mathrm{ord}(\widehat{H}^1_{\mathfrak{m}}))$$

In summary, we started with $\widehat{H}^1_{\mathfrak{m}}$, constructed $(\widehat{H}^1_{\mathfrak{m}})^{N(\mathbf{Z}_p)}$ with a U_p -operator, and took $e_{\mathrm{ord}}(\widehat{H}^1_{\mathfrak{m}})^{N(\mathbf{Z}_p)}$, which is a representation of $T(\mathbf{Z}_p)$. Now we want to control $\mathrm{ord}(\widehat{H}^1_{\mathfrak{m}})[1 \otimes \chi_{k-2}\epsilon]$.

Theorem 4.2.4 (Hida). Assume π is a unitary admissible continuous representation of $\operatorname{GL}_2(\mathbf{Q}_p)$. Then $\operatorname{ord}(\pi)$ is an admissible representation of $T(\mathbf{Z}_p)$. If $\pi|_{\operatorname{GL}_2(\mathbf{Z}_p)}$ is a direct summand of $\mathcal{C}(\operatorname{GL}_2(\mathbf{Z}_p), \mathbf{Z}_p)^{\oplus s}$. Then

 $\operatorname{ord}(\pi)$

is a direct summand of

$$\mathcal{C}(T(\mathbf{Z}_p), \mathbf{Z}_p)^{\oplus s}$$

Theorem 4.2.5 (Hecke). If $\pi = \widehat{H}^1_{\mathfrak{m}}$, then

$$\mathrm{ord}(\widehat{H}_\mathfrak{m}^1) = \bigoplus_{\psi: T(\mathbf{Z}_p) \to \overline{\mathbf{F}}_p^{\times}} \mathrm{ord}(\widehat{H}_\mathfrak{m}^1)_\psi$$

where

$$\operatorname{ord}(\widehat{H}^1_{\mathfrak{m}})_{\psi} \cong \mathcal{C}(\Gamma, \mathbf{Z}_p)^{\oplus i}$$

where $\Gamma \cong (1 + p\mathbf{Z}_p)^2$.

Then if $\chi: T(\mathbf{Z}_p) \to \mathscr{O}_K^{\times}$, then

$$\dim \operatorname{ord}(\widehat{H}^1_{\mathfrak{m}})[\chi] = t_{\psi}$$

where $\chi \equiv \psi \mod \varpi_K$. We used:

Fact 4.2.2. If π is a representation of $T(\mathbf{Z}_p)$, then $\pi \cong \bigoplus_{\psi} \pi[\psi]$.

5. Talk V

Today we'll talk about finite slope stuff.

5.1. *p*-adic Jacquet functor. Start with a locally analytic representation π of $\operatorname{GL}_2(\mathbf{Q}_p)$. Let $N_0 = \begin{pmatrix} 1 & \mathbf{Z}_p \\ 0 & 1 \end{pmatrix}$, and take π^{N_0} , which has an action of

$$T_{+} = \{(\alpha, \beta) \in T(\mathbf{Q}_{p}) \mid v_{p}(\alpha) \geq v_{p}(\beta)\}$$

via

$$t \cdot v = \sum_{x \in N_0/N_0 \cap t N_0 t^{-1}} x t v.$$

If we choose $(p, 1) \in T(\mathbf{Q}_p)$, this will act as

$$U_p = \sum_{i=0}^{p-1} \begin{pmatrix} p & i \\ 0 & 1 \end{pmatrix}$$

However, π^{N_0} will not in general be an admissible representation of $T(\mathbf{Q}_p)$.

Remark 5.1.1. The distribution algebra $D(T(\mathbf{Z}_p), \mathbf{Q}_p)$ is a Fréchet-Stein algebra, isomorphic to $\widehat{\mathcal{O}(T(\mathbf{Z}_p))},$

i.e. the rigid analytic space parametrizing characters of $T(\mathbf{Z}_p)$, i.e. the weight space, i.e.

$$\widetilde{T(\mathbf{Z}_p)} \cong (\mathbf{Z}_p^{\times})^2.$$

(hats here mean associated rigid space)

15

Now take $\widehat{T(\mathbf{Q}_p)} \cong \widehat{T(\mathbf{Z}_p)} \times (\mathbf{G}_m^{\mathrm{rig}})^2$, which is the space of "locally analytic characters of $T(\mathbf{Q}_p)$ ", and this is a Fréchet-Stein space. So $\mathscr{O}(\widehat{T(\mathbf{Q}_p)})$ is Fréchet-Stein. In fact

$$D(T(\mathbf{Q}_p), \mathbf{Q}_p) \hookrightarrow \mathscr{O}(\overline{T}(\mathbf{Q}_p))$$

is a dense subspace. Let $\mathcal{T} = \widehat{T(\mathbf{Q}_p)}$.

Definition 5.1.1. We define the **Jacquet module of** π to be

$$J_B(\pi) = \mathcal{L}_{T^+}^b(\mathscr{O}(\mathcal{T}), \pi^{N_0})$$

These are linear functions for the strong topology, which are T_+ -equivariant. Or,

$$J_B(\pi)' = \mathscr{O}(\mathcal{T})\widehat{\otimes}_{\mathbf{Q}_p[T_+]}(\pi^{N_0})$$

Theorem 5.1.1 (Emerton). If π is a locally analytic representation of $\operatorname{GL}_2(\mathbf{Q}_p)$ which is admissible, then $J_B(\pi)$ is a locally analytic representation of $T(\mathbf{Q}_p)$ such that $J_B(\pi)'$ is coadmissible as an $\mathscr{O}(\mathcal{T})$ -module.

A consequence of this theorem is that

 $\{\text{coadmissible } \mathcal{O}(\mathcal{T})\text{-modules}\}\cong\{\text{coherent sheaves over }\mathcal{T}\}$

where we send $\mathcal{M} \mapsto \mathcal{M}(\mathcal{T})$. Thus we obtain \mathcal{M}_{π} a coherent sheaf on $\mathcal{T} = T(\mathbf{Q}_p)$, which is the dual of the Jacquet module.

So let's try to understand this sheaf. Take a closed point $x \in \mathcal{T}$, i.e. a map $\chi_x : T(\mathbf{Q}_p) \to \overline{\mathbf{Q}_p}^{\times}$. Then

$$\mathcal{M}_{\pi} \otimes_{\mathscr{O}(\mathcal{T})} \kappa(x) \cong \operatorname{Hom}_{T_{+}}(\chi_{x}, \pi^{N_{0}}) \cong (\pi^{N_{0}}[\chi_{x}])'.$$

So in some sense, this coherent sheaf is the family of eigenspaces, for each character.

Now we try to apply this construction to

$$\pi = \widehat{H}^1(N)^{\mathrm{an}}$$

which is an admissible representation of $\operatorname{GL}_2(\mathbf{Q}_p)$. As before, fix a non-Eisenstein maximal ideal \mathfrak{m} of the Hecke algebra, which corresponds to some irreducible Galois representation

$$\overline{\rho}: G_{\overline{\mathbf{O}}} \to \mathrm{GL}_2(\mathbf{F}_p).$$

Then $J_B(\widehat{H}^1_{\mathfrak{m}}(N)^{\mathrm{an}})' \cong \Gamma(\mathcal{T}, \mathcal{M}_{\overline{\rho}})$ for some $\mathcal{M}_{\overline{\rho}}$ coherent on \mathcal{T} .

Theorem 5.1.2. If π is an admissible locally analytic representation of $\operatorname{GL}_2(\mathbf{Q}_p)$, then $\pi|_{\operatorname{GL}_2(\mathbf{Z}_p)}$ is a direct factor of

$$\mathcal{C}^{\mathrm{an}}(\mathrm{GL}_2(\mathbf{Z}_p),\mathbf{Q}_p)^{\oplus s}$$

Then the map

$$\kappa : \operatorname{supp} \mathcal{M}_{\pi} \subseteq \mathcal{T} \to \mathcal{W} := \widehat{T(\mathbf{Z}_p)} \cong (\widehat{\mathbf{Z}_p})^2$$

has discrete fibers. Furthermore, locally on supp \mathcal{M} , \mathcal{M} is a finite free $\mathscr{O}_{\mathcal{W}}$ -module.

Now $\mathbf{T}_{\overline{\rho}}^{\mathrm{sph}} \subseteq \mathrm{End}(\widehat{H}_{\overline{\rho}}^{1})$, and by functoriality of "an", we have

$$\psi: \mathbf{T}^{\mathrm{sph}}_{\overline{\rho}} \to \mathrm{End}(\widehat{H}^{1,\mathrm{an}}_{\overline{\rho}}) \to \mathrm{End}(\mathcal{M}_{\overline{\rho}}).$$

So now we can define $\mathcal{A}_{\overline{\rho}}$, the $\mathcal{O}_{\mathcal{W}}$ -subalgebra of $\mathcal{E} \setminus [(M_{\overline{\rho}})]$ generated by $\operatorname{im} \psi$.

Then the eigenvariety $\mathcal{E}_{\overline{\rho}} = \operatorname{Sp} \mathcal{A}_{\overline{\rho}}$, i.e. the relative rigid analytic spectrum over $\operatorname{supp} \mathcal{M}_{\overline{\rho}}$. Thus, we get a rigid analytic variety $\mathcal{E}_{\overline{\rho}} \xrightarrow{\kappa} \mathcal{W}$ quasi-finite with discrete fibers. This is locally finite on $\mathcal{E}_{\overline{\rho}}$, and it's finite surjective on every irreducible component.

So what are the points of $\mathcal{E}_{\overline{\rho}}$? If we fix a closed point $x \in \mathcal{E}_{\overline{\rho}}$, we obtain a character

$$\lambda: \mathbf{T}^{\mathrm{sph}}_{\overline{\rho}} \to \overline{\mathbf{Q}}$$

by definition, and the image in the weight space gives a character $\delta: T(\mathbf{Q}_p) \to \overline{\mathbf{Q}}_p$.

Then points of $\mathcal{E}_{\overline{\rho}}(\overline{\mathbf{Q}}_p)$ are pairs $(\lambda, \delta) \in \operatorname{Spm}(\mathbf{T}^{\operatorname{sph}}[1/p]) \times \widehat{T(\mathbf{Q}_p)}$ such that

$$\operatorname{Hom}_{T(\mathbf{Q}_p)}(\delta, J_B(\widehat{H}^{1,\operatorname{an}}[\lambda])) \neq 0.$$

Then $\widehat{H}^{1}_{\overline{\rho}}[\lambda] \subseteq \widehat{H}^{1}_{\overline{\rho}}$ is a closed subspace.

Definition 5.1.2. A point $x = (\lambda, \delta)$ is called **classical** if λ is classical, i.e. there exists W some algebraic representation of $\operatorname{GL}_2(\mathbf{Q}_p)$ and some open subgroup $K_p \subseteq \operatorname{GL}_2(\mathbf{Q}_p)$ such that

$$H^1(Y_{K_p}, \mathcal{V}_{W^{\vee}})[\lambda] \cong \operatorname{Hom}_{K_p}(W, \widehat{H}^1[\lambda]) \neq 0.$$

For example, the λ associated to $f \in S_k(\Gamma_1(Np^r))$ (for $k \ge 2$) is classical by letting $W = (\text{Sym}^{k-2} \mathbf{Q}_p^2)'$.

Now we want to show that classical points are dense.

5.2. Classicality Result. Start with $\delta \in T(\mathbf{Q}_p) = \text{Hom}(T(\mathbf{Q}_p), \overline{\mathbf{Q}_p}^{\times})$ and assume δ is locally algebraic, which means that

$$\delta = \delta^{\mathrm{alg}} \cdot \delta^{\mathrm{sm}},$$

where $\delta^{\text{alg}}(a,d) = a^{k_1} d^{k_2}$ for some $k_1, k_2 \in \mathbb{Z}$, and δ^{sm} is a smooth character, i.e. locally constant.

Let B, T be the Borel and torus as usual, and write \overline{B} for the opposite Borel. Write $\mathfrak{b} = \text{Lie}(B)$. We let

$$M(\delta^{\mathrm{alg}}) = U(gl_2) \otimes_{U(\overline{\mathfrak{b}})} \delta^{\mathrm{alg}} \in \mathcal{O}_{\mathrm{alg}}^{\mathfrak{b}}.$$

But given $M \in \mathcal{O}_{alg}^{\overline{\mathfrak{b}}}$, we can construct the Orlik-Strauch $\operatorname{GL}_2(\mathbf{Q}_p)$ -representation

$$\mathcal{F}_{\overline{B}}^{\mathrm{GL}_2}(M,\delta^{\mathrm{sm}})$$

Theorem 5.2.1 (Emerton, Breuil). If π is a unitary p-adic Banach representation of $\operatorname{GL}_2(\mathbf{Q}_p)$ and $\delta = \delta^{\operatorname{alg}} \delta^{\operatorname{sm}} \in \widehat{T(\mathbf{Q}_p)}$, then

$$\operatorname{Hom}_{T(\mathbf{Q}_p)}(\delta, J_B(\pi^{\operatorname{an}})) \cong \operatorname{Hom}_{\operatorname{GL}_2(\mathbf{Q}_p)}(\mathcal{F}_{\overline{B}(\mathbf{Q}_p)}^{\operatorname{GL}_2(\mathbf{Q}_p)}((M(\delta^{\operatorname{alg}})^{-1})^{\vee}, \delta^{\operatorname{sm}}), \pi^{\operatorname{an}})$$

What is $\mathcal{F}(\delta)$? If $k_1 < k_2$

$$M((\delta^{\mathrm{alg}})^{-1})^{\vee}$$

is simple, so it's isomorphic to its dual, then

$$\mathcal{F}(\delta) = \left(\operatorname{Ind}_{\overline{B(\mathbf{Q}_p)}}^{\operatorname{GL}_2(\mathbf{Q}_p)} \delta \right)^{\operatorname{an}}$$

and this is topologically irreducible. If $k_1 \ge k_2$, then

$$0 \to M((\delta')^{-1}) \to M((\delta^{\mathrm{alg}})^{-1}) \to L((\delta^{\mathrm{alg}})^{-1}) \to 0$$

The quotient is finite dimensional, and $\delta' = \delta_{k_2-1,k_1+1}$. Now apply duality, we have

$$0 \to \operatorname{Ind}_{\overline{B}}^{\operatorname{GL}_2(\mathbf{Q}_p)}(\delta'\delta^{\operatorname{sm}}) \to \mathcal{F}(\delta) \to L(\delta^{\operatorname{alg}}) \otimes (\operatorname{Ind}_{\overline{B}}^{\operatorname{GL}_2}\delta^{\operatorname{sm}})^{\operatorname{an}} \to 0$$

and we've essentially changed the order of the Jordan-Hölder filtration. Note $L(\delta^{\text{alg}}) \cong \text{Sym}^{k-2} \mathbf{Q}_p^2 \otimes \det^{k-2}$.

Theorem 5.2.2 (Coleman, Emerton). Assume $k_1 \ge k_2$, so we're in the second case. Take $x = (\lambda, \delta) \in \mathcal{E}_{\overline{\rho}}(\overline{\mathbb{Q}_p})$ and take $\delta = \delta^{\mathrm{alg}} \delta^{\mathrm{sm}} = \delta_{k_1,k_2} \delta^{\mathrm{sm}}$. Then if $v_p(\delta^{\mathrm{sm}}(p,1)) < -k_2 + 1$, then λ is classical.

Proof. If $x = (\lambda, \delta) \in \mathcal{E}_{\overline{\rho}}(\overline{\mathbf{Q}_p})$, then

 $\operatorname{Hom}(\delta, J_B(\widehat{H}^{1,\operatorname{an}}_{\overline{\rho}}[\lambda])) \neq 0$

By the reciprocity, there is a nonzero map $\mathcal{F}(\delta) \to \widehat{H}^{1}_{\overline{\rho}}[\lambda]$. But there is a quotient $L(\delta^{\text{alg}}) \otimes (\text{Ind } \delta^{\text{sm}})^{\text{sm}}$, and we want the first map to factor through the second.

Now it's sufficient to to prove that there is no map

$$(\operatorname{Ind}_{\overline{B}}^{\operatorname{GL}_2(\mathbf{Q}_p)} \delta' \delta^{\operatorname{sm}})^{\operatorname{an}} \to \widehat{H}_{\overline{\rho}}^1$$

but the target is a unitary representation of $\operatorname{GL}_2(\mathbf{Q}_p)$, so this map is injective (something about invariant norms?).

So it suffices to show that there is no $\operatorname{GL}_2(\mathbf{Q}_p)$ -invariant norm on $(\operatorname{Ind}_{\overline{B}}^{\operatorname{GL}_2(\mathbf{Q}_p)} \delta_{k_2-1,k_1+1} \delta^{\operatorname{sm}})^{\operatorname{an}} = \pi$. If so then the U_p -action on π^{N_0} has norm $||U_p|| \leq 1$ for some invariant norm. So we define $f \in \pi$ by: if $b \in \overline{B}(\mathbf{Q}_p)$ and $\mu \in I$ (iwahori) then define

f(b(0,1,1,0)u) = 0

and

$$f(b(1, x, 0, 1)) = \delta(b)$$

for $x \in \mathbf{Z}_p$ via $\operatorname{GL}_2(\mathbf{Q}_p) = \overline{B}I \sqcup \overline{B}(0, 1, 1, 0)I$. Then one checks that f is N_0 -invariant, and

$$U_p(f) = \delta(p, 0, 0, 1)f,$$

so $||\widetilde{\delta}(p,0,0,1)|| \le 1$, so $v_p(\delta^{sm}(p,0,0,1)) \ge -k_2 + 1$.

Example 5.2.1. If $f \in S_k(N)$ is an eigenform and $\overline{\rho}_f \cong \overline{\rho}$. If α is a root of the Hecke polynomial of f at p. Then a local-global compatibility result says that $(\lambda_f, \delta) \in \mathcal{E}_{\overline{\rho}}$ where

$$\delta = \delta_{0,2-k}(\omega_{\alpha},\omega_{\alpha^{-1}}|\cdot|^{2-k})$$

Conversely, if $(\lambda, \delta) \in \mathcal{E}_{\overline{\rho}}$ and we assume that $\delta = \delta_{0,2-k} \delta^{sm}$, where

$$\delta^{\mathrm{sm}} = \omega_{\alpha} \otimes \omega_{\alpha^{-1}} |\cdot|^{2-k}.$$

So if we assume that $v_p(\alpha) < k-1$ then λ is classical and comes from a modular eigenform f.

Corollary 5.2.1. The classical points are Zariski dense in $\mathcal{E}_{\overline{\rho}}$.

So $\mathcal{E}_{\overline{\rho}} \hookrightarrow (\operatorname{Spf} \mathbf{T}_{\overline{\rho}}^{\operatorname{sph}})^{\operatorname{rig}} \times \widehat{T(\mathbf{Q}_p)}$ is the Zariski closure of the pairs (λ, δ) with λ classical (unramified at p) and δ locally algebraic dominant, with unramified smooth part. So $\mathcal{E}_{\overline{\rho}}$ is a rigid analytic space whose closed points are systems of Hecke eigenvalues interpolating the classical systems.

5.3. Galois representations. Say $x = (\lambda, \delta) \in \mathcal{E}_{\overline{\rho}}$ is a classical point, then there exists a unique $\rho_x : G_{\overline{\mathbf{Q}}} \to \operatorname{GL}_2(\overline{\mathbf{Q}_p})$ unramified outside Np such that for all $\ell \nmid Np$, $\operatorname{tr}(\rho_x(\operatorname{Frob}_\ell)) = \lambda(T(\ell))$. From the density result plus some techniques of the theory of pseudo-representations, we can construct for all $x \in \mathcal{E}_{\overline{\rho}}$ some ρ_x as in the classical case satisfying the same properties.

Now fix $x = (\lambda, \delta) \in \mathcal{E}_{\overline{\rho}}$. Then ρ_x is determined by λ . Can we read δ on ρ_x ?

Example 5.3.1. Look at (λ, δ) with λ classical and assume that $\delta = \delta_{k_1,k_2} \delta^{\text{sm}}$ with δ^{sm} unramified. By local-global compatibility, ρ_x is semistable, and trianguline, i.e. $D_{\text{rig}}(\rho_x|_{G_{\mathbf{Q}_p}})$ is an extension of rank one (φ, Γ) -modules, which are associated to two characters δ_1, δ_2 , and these are the two components of δ (possibly need to twist δ_2).

Theorem 5.3.1 (Kisin). Take $x = (\lambda, \delta) \in \mathcal{E}_{\overline{\rho}}$ then $\rho_x|_{G_{\mathbf{Q}_p}}$ is trianguline, and there exists a nonzero morphism $\mathcal{R}(\delta_1) \hookrightarrow D_{\mathrm{rig}}(\rho_x)$.

18

p-ADIC MODULAR FORMS

References

- [KM85] Nicholas M. Katz and Barry Mazur. Arithmetic moduli of elliptic curves, volume 108 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1985.
- [Sta19] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2019.