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1. TaLK 1

1.1. Introduction. We want to study Gx := Gal(K®P/K) and for all cases of interest for us, K will be
a finite extension of Q, or K/F,((t)). In particular, we want to study representations on finitely gener-
ated:

(1) Fp-vector spaces,
(2) Zp-modules, and
(3) Qp-vector spaces.

We will appeal to a general strategy of Fontaine, which is to study representations of Gal(K®P/K) using
very large period rings that are typically labeled by “B” with varying decorations.
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More precisely, let G be a group and L a field. Then we want to study representations of G on finite
dimensional L-vector spaces. Fontaine’s idea is to find an L-algebra B (say an integral domain) equipped
with a G-action that is trivial on L: these are called “period rings”. Then G acts on the finite free B-module
V ®1, B so we can look at
Dp(V) = (V&L B)°,

the BY-module of G-invariants. We have a canonical G-equivariant map
(1) Dp(V)®pe B—V ®L B
In good situations, this will be an isomorphism, and we can hopefully recover V.
Definition 1.1.1. An L-algebra B is called G-regular if

(1) B is an integral domain

(2) BY = Frac(B)“

(3) For any nonzero b € B such that L -b is G-stable, then b € B*.

In particular, they implies that E := B¢ is a field, and one can prove that dimg Dp(V) < dimy V and that
the map is injective. If the dimensions agree, then is an isomorphism. In this case, we say that V is
B-admissible.

To see that the map is injective, call C' = Frac(B) and let E := BY and note we have a diagram

Dp(V)®g B —— V QL B

I l

De(B)®@pC —— VLl

So it suffices to show that the bottom is injective. In other words, it suffices to check that an FE-linearly
independent set of vectors in D¢ (V) is C-linearly independent. So suppose X C D¢ (V) is an E-linearly
independent set of vectors, and suppose there is a nontrivial C-linear dependence z,, = Y ¢;x; of minimal
length, where each x; € X. Then for any o € G,

Z CiV; = Ty = 0(Tyy) = Z o(c;)v;.

<m <m

<m

By minimality of m, we must have ¢; = o(c;), or in other words, ¢; € C¢ = E. But then we have a nontrivial
FE-linear dependence between x1, ..., Z,,, which is a contradiction.

Remark 1.1.2.

(1) Given p : G — GL(V) for V an L-vector space, if we choose a basis of V' then p is a cocycle (for
the trivial action on GL,, (L)), i.e. p € H'(G,GL,(L)). Then (p, V) is B-admissible if and only if its
image under the map of pointed cohomology sets

HY(G,GL,(L)) = H'(G,GLn(B))
(induced by the G-equivariant map L — B) is trivial.

(2) If G is a topological group and B is a topological L-algebra with continuous G-action and we consider
only continuous p, then the above statement is still true if we replace H' with H.,, i.e. continuous
Galois cohomology.

Note that in practice, B comes with additional structures. For example, this could be an endomorphism, or
a filtration, depending on its purpose: in any case, this extra structure will be “compatible with G”, which
means different things depending on the context. Given V' this extra structure induces additional structure
on Dp(V), and the hope is that we can recover a B-admissible representation from Dp(V).
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1.2. g-modules and (¢, I')-modules. Let’s give perhaps the simplest case of the above phenomenon. Let
F be a local field of characteristic p (i.e. F4((¢))). Let G = Gr = Gal(F*P/F) and now let L = F,,, so we
work with mod p coefficients.

Let B = F*°P. This is clearly Gp-regular, and by definition of G we get BYF = F.

Lemma 1.2.1. Every continuous G p-representation on a finite dimensional F,,-vector space is F>°P-admissible.

Proof. By the remark, p : Gp <= GL,(F) defines a class in H'(Gp,GL,(F)), and we look at its class in
H'(Gp,GL,(F*P)), and Hilbert’s theorem 90 exactly says that this is 0. O

Since we're in characteristic p we get the extra structure of Frobenius for free: this is the endomorphism
@ F5°P — F5°P gending x — xP, which commutes with the G-action. Then starting with a representation
(p, V), we get an induced map

O : D(V) = (V @r, F*P)0r 1928 (1 gy Foep)@r
which makes D(V') into a ¢-module over F.

Definition 1.2.2. Let A be a ring and let ¢ : A — A be any endomorphism. Then a p-module over A is
a finitely generated A-module D together with a map ® : D — D which is semi-linear with respect to ¢, i.e.
®(ad) = p(a)®(d) such that

¢*D=D®s,A—D
sending d ® 1 — ¢(d) is an isomorphism.
In the above example, the linearization of ® is injective because ¢ is, but D(V) is finite-dimensional over F,
so @ is an isomorphism.
Corollary 1.2.3. The functor

) continuous representations of Gp
on finite dimensional Fy-vector spaces

} — MOdap,F
18 fully faithful.
Theorem 1.2.4 (Fontaine). D is an equivalence of categories with quasi-inverse given by

D V(D) := (D ®@p F*P)#=!

Proof. Regarding fully faithfulness, we check that V is a quasi-inverse on the essential image. Given V', we
have an isomorphism

D(V)®@p F*® =V ®p, F°P
which is clearly G p-equivariant, but also @-invariant, and (F5eP)#=1 = F,. Hence
(V @p, F5P)#=1 = V.

For essential surjectivity, one reduces to showing that if D a ¢-module over F, then dimg, V(D) = dimg D.
O

Remark 1.2.5. Note it’s hard to actually write down representations, so this gives us a way to actually
explicitly construct continuous representations of G with mod p coefficients, just using linear algebra.
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1.3. Torsion coefficients and Q,-coefficients. Suppose F is a field of characteristic p, so that we have
access to Frobenius.

Definition 1.3.1. Say (O¢, ) is a Cohen ring for F if 0¢ is a complete discrete valuation ring with
uniformizer p, residue field F', and a lift ¢ of Frobenius.

Example 1.3.2. If F' = F,((t)), then we can take O¢ = W(F,)((t))"*, and we can set ¢ to be the Witt
vector Frobenius on W(F,) and either take t — t? or t — (1 4+ ¢)? — 1.

Given a Cohen ring O¢ we can set € = Og[1/p]. We let £™* be the maximal unramified extension of £ with ring
of integers Ogur, and we can take the p-adic completion ﬁgur and by inverting p we get £ Then £ /€ is
Galois with Galois group G g, and we have an extension of ¢ and the G g-action to Ogur, E™* ﬁgur gur,

Lemma 1.3.3. The natural map Og — Oguw induces an isomorphism
O¢ =5 (Opur)CF
Furthermore Z,, = (Ogw )¢=1, and
H'(Gr, GLy(Ogw)) = {x}

Proof. Use successive approximation. Filter ﬁgul» (resp. GLn(ﬁgm)) so that the graded pieces look like F*°P
(resp. Mat,, (F5P)). O

Definition 1.3.4. A ¢-module (D, ®) over £ is called étale if there exists a p module (D', ') over O¢ such
that

(D, ) = (D', ) @0, £
Not every ®-module over £ has an integral model, so we need this definition. These form a category Modii £

Corollary 1.3.5.

(1) Let A be a finitely generated Z,,-module with continuous p : Gp — GL(A) a continuous representation.
Then D(A) := (A @z, Ogw)®F is a p-module over O and

D(A) ®ﬁ£ ﬁgur — A@Zp é)\gur
is a (GF,p)-equivariant isomorphism.

(2) We get an equivalence of categories

continuous G g-representations 2} Mod
on finitely generated Z,-modules $.0¢
with quasi-inverse V : D s (D ®g, Ogu)?=".
(3) The functor
continuous G g -representations D
{ on finite dimensional Qp-vector spaces — Modg¢

taking V — (V ®q, éA’“r)GF is fully faithful with essential image Modztyg.

Thus from (3) we see that if Gp — GL(V) is a continuous representation, then there exists A C V a G p-stable
Z,-lattice.
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1.4. Local fields in mixed characteristic. Let K/Q, be a finite extension, and let Gx = Gal(K/K).
Then we ask the same questions as before: we want to describe continuous representations of Gk on finitely
generated

(1) F,-vector spaces,
(2) Z,-modules, or
(3) Qp-vector spaces.

The idea is to find a big extension K,/K, which should be an infinite and deeply ramified Galois extension,
and we write I' for its Galois group. But for this to be useful, I' should be as simple as possible, and we want
Gal(K/K) = Gal(F*? /F) where F is a local field in characteristic p. Then we want the G __-action on

Ogur to extend to a continuous G g-action commuting with .

In this case, we get a continuous I'-action on (ﬁAgur)GKoo = O¢ commuting with .

Definition 1.4.1. A (¢,I')-module over ¢ (resp. £) is a g-module over O (resp. &) with a semi-linear
[-action commuting with ¢. A (,T')-module over £ is called étale if its underlying p-module is étale.

Ok we haven’t actually found K., yet, but assume we have this setup.

Theorem 1.4.2.

(1) There is an equivalence of categories

{ continuous G g -representations

on finitely generated Z,-modules } = Mod(er) o
sending A — (A @z, 5gur)GK°° with quasi-inverse given by

D (D R oe ﬁgllr)¢:1.

(2) There is an equivalence of categories

continuous G -representations
on finite dimensional Qp-vector spaces

} = Mod{{. 1 e
sending V — (V ®q, éA"”)GKoc with quasi-inverse given by
D (D ®g E)9=1,
So how do we actually define this K7 Classically, this was done using the theory of “norm fields”, due

to Fontaine-Wintenberger. A more general perspective is the tilting equivalence for perfectoid fields, due to
Scholze, which we discuss next time.

2. TALK II

2.1. Perfectoid fields and tilting.

Definition 2.1.1. A perfectoid field K is a complete non-archimedean field of residue characteristic p,
which is complete with respect to a valuation vg (resp. norm | - |) such that

1) vk is non-discrete, i.e. the corresponding valuation ring 0k with maximal ideal mg satisfies m% =
g g K
mg.

P

(2) The map Frob : Ok /p —— Ok /p is surjective.
Example 2.1.2.
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(1) For example, we can look at the field F,((x)). Unfortunately Frobenius is not surjective here, so

instead we take N

Fo((@/77)) = | [J Fo((=""))

n>0
Then this is a perfectoid field: note we had to adjoin all the p-power roots of x so that Frobenius is
surjective, and then we need to complete with respect to some norm, and we choose the z-adic norm.

(2) We could also add a lot more and take
m/\w
This is the other main characteristic p example.
(3) We could take Q;\p, otherwise known as C,,.
(4) Start with F//Q, finite and = € F' a uniformizer. Then I can take
F<7T1/p°° )\

(5) Let F/Q, is finite, fix ¢, a compatible system of p-power roots of 1. Then look at F(e, | n > 1)"».

Remark 2.1.3. If K is a complete non-archimedean field of characteristic p with a nondiscrete valuation
with respect to which K is complete, then perfectoid is the same as perfect.

Definition 2.1.4. Let K be a perfectoid field with ring of integers &k and a pseudo-uniformizer w € O,
i.e. some element w € Ok such that |p| < |w| < 1. Then we define

Or = lim Ok /w.

TP
Choose @’ = (@}, @}, @5, ...) € Ok such that ) # 0. Then the tilt of K is
K’ = O [1/w"]

Lemma 2.1.5.
(1) Ogv has a valuation defined by

(w0, 21,...) = lim o (T

n— oo

for some choice of x,, € Ok lifting x,,.

(2) Ok» is complete with respect to this valuation, and O» does not depend of the choice of w, and the
topology defined above does not depend on the valuation on K.

(3) K’ is a characteristic p perfectoid field: it’s complete by the remark above, non-discrete by construc-

tion, and we forced Frobenius to be an isomorphism. Note K doesn’t depend on w”.

Remark 2.1.6. If K already has characteristic p, then tilting does nothing. In general
ﬁKb = m ﬁK/w: @ ﬁK

TP TP
is an isomorphism of multiplicative monoids. If we’re in characteristic p, this commutes with addition, but
in characteristic 0 not quite. In general if (z(™), (y(™)) € @IHIP Ok, then the addition is given by

((x(n)) + (y(n)))(n) - mlgnoo(x(wrm) + y(n+m))p’”
Note that in characteristic p this simplifies to usual addition.
Theorem 2.1.7 (Scholze).
(1) Let K be a perfectoid field and L/ K is a finite extension then L is perfectoid.
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The map L — L° defines a degree preserving equivalence of categories between
{finite extensions of K} —» {ﬁmte extensions of Kb}

Note K is always perfect so this is really an equivalence of finite separable extensions. In particular,
we get a canonical isomorphism

Gal(K*P/K) = Gal((K”)*P/K”)

Remark 2.1.8.

(1)

It’s actually easy to write down a quasi-inverse to this functor. Given K perfectoid there is a canonical
ring homomorphism
VK W(ﬁKb) - ﬁK

sending [(zg, Z1,...)] = lim, e ﬁpn where z,, € Ok lifts x,,. Then given a finite extension /K’
with ring of integers Og we let

L=W(0Og) QW (6,.4)vrc K
Then L is an untilt of E, i.e. L’ = F.

In fact this works in greater generality. We get a more general tilting equivalence.
{perfectoid K-algebras} — {perfectoid K b-aulgebraus} .

By definition a perfectoid K-algebra is a Banach K-algebra such that R° C R is open and bounded,
where

R° ={z € R|{z"} is bounded}
and R°/w zorl, Re /w is surjective. Again the equivalence is given by R + R, and there is still a
quasi-inverse given by the construction above. There is an almost purity theorem, which says that
given a perfectoid K-algebra R, tilting induces an equivalence

FEtr — FEtp»
between the categories of finite étale R-algebras and finite étale R’-algebras.
If you allow all base fields K, tilting does not give an equivalence. For example, take
(a) K1 =Qp(en [n=1)"
(b) Kz = Qu(p"/?" )"
(c) K3 =Fy((z"/*7))
These are all perfectoid, and K? = Kg = Kg = K3. Note Kg has an element

2
@’ = (p,p"/P,p7 ).

Then F,((z)) — K3 sending x + w” induces an isomorphism

F((«'/7™)) = K.

Idea for tilting equivalence. Given K, Ok ,w, we have K°, Oy, w’. Note we have Ok /w = O /@’ by
construction. We then prove that L ~— L’ is an equivalence as follows: we prove instead that & — Op»
is an equivalence. But by reducing mod w, we have to prove that given & we can show that & /@™ is
the unique flat lift of &, /w over Ok /ww™. Note these sorts of lifts are controlled by the cotangent complex,
which we show vanishes, so the obstructions vanish, and we get canonical lifts. O
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2.2. Back to (¢,I')-modules. Let K/Q, be finite and set C; = C,, = K. Let F/F,((x)) be finite and let
Cy = (F5P)Ne,

Then the Gg-action on K extends to a continuous action of Gx on C;. Similarly, the Gr-action on F°P)
extends to a continuous action of Gg on Cs.

Lemma 2.2.1.
(1) C1,Cy are algebraically closed. In particular, Cy = e (consequence of Krasner’s lemma).

(2) Cy and Cy are perfectoid fields, and Co = C°, but this isomorphism is very non-canonical, and
depends on the choice of some w" € C’?.

(3) Let H C Gk (resp H C Gr) be a closed subgroup. Then
Cff = (K'Y (resp. CfT = ((Fn)™yPerty)

This is a consequence of the Az-Sen lemma.

Now fix €, € K a compatible sequence of p-power roots of 1. Let Ko, = K(€, | n > 1). Then K, /K is a
Galois extension, and we let I" := Gal(K/K), and we define the cyclotomic character

X:I‘—N—>Z;, g-en=e9 foralln>1
This is an isomorphism is K = Q,, but in general just lands in an open subgroup of Z) (for example if

K = Qp(e1), it should land in 1 + pZ,).
Then I?O\o is a perfectoid field. Then

~ (comp.)

{finite (sep.) extensions of K} {ﬁnite (sep.) extensions of I/(;}

J,N (tilting)

—b
{finite (sep.) extensions of Fy((z))P*} —=— {ﬁnite (sep.) extensions of K, }

{finite (sep.) extensions of F,((x))}

In conclusion we get an isomorphism Gal(K /K ) = Gal(F*®/F) (note we're writing F' = F,((z))), which
is what we wanted to obtain c.f. the last lecture. Note that G'x acts on C, and thus also on C; D) I/(O\Ob D F.
So Gk also acts on W(C‘I’,) and W(ﬁcz)- Note CZ D F#°P. Note that the Gx-action preserves F*°P, and the
restriction of G k-action to F®°P is just the canonical action of Gg on F*°P,

Let O = W(Fy)((x))" — W(C;) by taking x +— 1 — [(€g,€1,...)]. Then O¢ with the restriction of the
Witt vector Frobenius on W(CL’,) is a Cohen ring of F. Then O is the p-adic completion of the maximal
unramified extension of ¢ in VV(C;)7 and this is stable under the action of G and Frob. The restriction

of the G g-action on Ogur to G is the canonical action.

3. TaLKk III

3.1. Addendum / Small Correction. So last time we had K/Q, finite, and had constructed K., =

U,.>0 K (€n) by adjoining a compatible system (€,),>0 of p™th roots of unity. We let Fy denote the residue
B —b

field of K. In the first lecture, we said that we wanted F' = F,((X)) < K, which has a I' action via the

cyclotomic character. We let 0g = W (F,)((X))Y < W(K?,), which is still acted upon by I, and we wanted
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a I'-equivariant embedding. But the point is that this is not automatic: it definitely depends on the chosen
embedding. In this case, Ogunr, Ogunr —> W(C;) is automatically G g-stable.

ified, _ ’ _ . . - )

(1) If K/Q, unramified, then K = W(k)[1/p], so k = F in this case (essentially K is totally ramified)
Furthermore, 7, = 1 —¢, € K, = K(e,) is a uniformizer, since the ¢, are the only source of
ramification. Now choose the embedding

F = k(X)) = k(X/?7)) = K2,
sending x > € — 1 = (e, €9,...) — 1. Also choose
W(k)(X))Y < W(KZ)
sending X +— [¢] — 1. Then F and O are ¢ and I'-stable, and then you need to check that the

embeddings preserve ¢ and I'.

Moreover, k((X/?™)) < K”_ is an isomorphism.
Proof. It’s enough to show that |, k[[X'/?P"]] C 0%, is dense. Recall

O = lim Ox_/p =" Ox_[p= ] Wk)m]/p
xT—xP n>0

So it’s enough to show that 7, = 1 — ¢, is always in the image of the projection. But in fact take

m—n

pr,,(XP ) =7,
0

(2) Now suppose K/Q, is arbitrary. Let L be the maximal unramified subextension. Then the previous
step says that F' = k((X)) < L% and Og — W(L,).
But then K., = KL, and I/{; is a perfectoid field extension of f; Then let F' be the finite
—b
separable extension of F’ inside C; corresponds to K, /Loo. This is Galois stable, and the unique
unramified lift O /Og of F'/F inside W(C3), is stable under G.
So in summary,

{continuous reps of Gk on f.g. Z,-modules} = {(¢,T')-modules over O}

~

— {(gp, G i )-modules over ﬁAgum}

= {gp—mods over é)\gunr with semilinear G g-action, comm. with cp}

3.2. p-modules and the Fargues-Fontaine curve. Let F' be a perfectoid field of characteristic p, (for
example C), or K2_). We define
Aint = Aine(F) = W(OF),

which has a ¢-action via Frobenius. We choose a pseudo-uniformizer w € O and define
Y = Spa(Ains (F), Aint (F)) \ V (p[w]).

This gives you an adic space, independent of the choice of w, which is equipped with an automorphism ¢,
which is induced by the g-action on Aj,¢(F), which has no fixed points and which acts freely, i.e. p?% acts
totally discontinuously and freely. In this case, we always know how to form the quotient in the category of
locally ringed spaces.

Here’s a bit of an explanation of what we just did. As a set,

| Spa(Aint (F), Aint(F))| = {v : Aine(F) = I'y U{0} continuous valuation such that v(Aine(F)) < 1} /o .
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This T',, is supposed to be a totally ordered abelian group, and then we extend this by demanding that 0 is
smaller than everything. Continuity means that for all v € T',, the set {f € Aine(F) | v(f) <7} C Aine(F) is
open for the (p, [w])-adic topology on Ajn¢(F') (this is really a mixture of the topology on the residue field F
via w and the Witt vector bit via p). Then

V(pl@]) = {v € Spa(Ains(F), Aine(F)) | v(p) = 0 and v([w]) = 0} .
In some sense this is kind of huge.
We make Yr into a locally ringed space as follows. First of all,
B = A (F) L)[lw]] = { Z [zn]p" € W(E)[1/p] | xp € F bounded}
n>>-oo

which is not quite the ring of functions on Y. Then for 0 < p <1, we define a norm |- |, on B by

’Z[mn]p”

p
For a closed interval I C [0, 1] define By = Bp s as the completion of B with respect to the family of norms
{I-1olpel}

Theorem 3.2.1 (Fargues-Fontaine). If 1 & I, and the endpoints of I are in |F*| then By is a principal ideal
domain.

= max |z, |p" € R
n

So we define Yp 1 = Spa(B, BY) = {v € YF | v extends to a continuous valuation on Br}. Then

Yrrn NYrn =Yrnnm,

and
Yrp = U Yr 1
IC(0,1)
and we give it the topology such that the Yz are open. To form a basis for the topology, you need all
rational open subsets.

Then we make Yr into a topologically locally ringed space with structure sheaf Oy, with
I'(Yg,, Oy,) = By.
Of course one needs to check that this is a sheaf, and that the stalks are local rings.
Furthermore, for f € B, we have lo(f)lpr = |f\£. So ¢ extends to By, = Bigr pe], S0
@ : Y [arbr] = YF[ab]
and if [a, b] is small enough then it will be disjoint from [a?, b?], so the map
w:Yp S Ye
is totally disconnected and free.
Definition 3.2.2. The (adic) Fargues-Fontaine curve is the locally ringed space Xr = Yz /@Z.

Remark 3.2.3. So how do we think about the universal cover Yr? First assume F' is algebraically closed
(e.g. C;). There is a bijection

{“classical points” of Yr} — {ideals (p — [a]) C Aint(F),0 # a € OF,0 < |a| < 1}
= {perfectoid fields F in characteristic 0 such that E” = F} .

Here a classical point is a valuation which factors through a maximal ideal of B, and the second map takes
(p—la]) to (W (Cr)/(p — [a]))[1/p], which is algebraically closed perfectoid, and has characteristic 0.
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Because of this description, one can think of Y as a “punctured open unit disk”, and the coordinate function
on Yr is p, except that different a could give you the same ideal, and it’s not clear which ones (to me at
least, right now).

Now F'is arbitrary again. Let’s write B = I'(Yp, Oy,.) = @1[ By, which is the same as the Fréchet completion
of BY with respect to all the norms.
Theorem 3.2.4 (Fargues-Fontaine).
F(XFv ﬁFx) = BSO:id = QP
Note that a vector bundle V on X is the same as a a vector bundle V on Y and an isomorphism ¢*V =Sy,

Note a ¢-module over B which is finite projective gives rise to a vector bundle on Xg. In fact, every vector
bundle arises in this way.

3.3. Classification of Vector Bundles. Now suppose F' is algebraically closed. We say that a divisor, as
usual, is a formal sum D = > n;x;, where each z; is a classical point, as described earlier.

Proposition 3.3.1. Every line bundle L on X is associated to a divisor D = > n;z;, e.g.

O(—x) = ideal sheaf of functions vanishing at z.

This gives us a well-defined notion of the degree of a line bundle:

LEO (anxz> — Zni.
More generally, if V be a vector bundle on X we define
degV = deg(A™kV)

and we define the slope of V to be
w(V) = deg(V)/ rank(V).

Definition 3.3.2. A vector bundle V is called semistable of slope pu if ©(V) = p and the slope of any
sub-vector-bundle of V is < p.

Theorem 3.3.3 (Fargues-Fontaine).
(1) Ewvery vector bundle on X decomposes as a direct sum of semistable vector bundles.

(2) For every u € Q, there exists a unique indecomposable semistable vector bundle of slope p.

3.4. Construction of V,. Let y = r/s where r, s coprime, and say s > 1. Let

D, = (W(F,)[1/p)*

and then we make D, into a ¢-module over W (F,)[1/p] by requiring that the matrix of ¢ is

—

00 - p
1 0 ---

0 1

0 0

Then the Dieudonné-Manin classification tell you that these are the unique indecomposable ¢-modules over
this field.

Let D,, be the pullback (as a ¢-module) of D,, along the map in the top row:
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<7
| —

Op «——F,
This defines a vector bundle D, on Yr with ¢*D, = D,,, which descends to a vector bundle on Xp.

But you have to be careful: this construction is not full, it’s just faithful and essentially surjective. There
are some endomorphisms which appear when you pass to vector bundles.

4. TALK IV

4.1. Correction. Yesterday, for F' a characteristic p perfectoid field, we defined Yz and had a covering
U 1C(0,1) Yr ;. But we said yesterday that Yz ; forms a basis for the topology, but this isn’t true!

In fact, a basis for the topology on Yp; = Spa(B;, BY) is given by taking fi,..., fn,g9 € By such that
(fi,--- fn,g) = (1). Then we define the rational open subset

U (flgfn> = {2 € Vs | 1i(2)] < |g(@)| for all i},

where we write | f(z)| in place of v(f), where & = v is the valuation.
One can then really check that if I’ C I with endpoints in |F*|, then Yp ;» C Y is a rational open.

Example 4.1.1. So as we said yesterday if F is algebraically closed and = € Y is a classical point, then it
corresponds to the ideal (p — [a]) for some a € OF with 0 < |a| < 1. We also said that this defines an untilt
E of F by taking

Op = Ans(F)/(p—la]) C E

and inverting p. Then E” = F because by definition,
Op/p=0OF/a,

and then just take the inverse limit over Frobenius. For f € Aj:(F), let f be its image in Og/p = Or/a.
Let ?l € O denote a lift. Then

—/
[f (@) = 1]
which is independent of the lift. The classification from last time implies
Corollary 4.1.2.
{semi-stable slope 0 vector bundles on X} — {finite dimensional Qp-vector spaces}

where we take V — I'(Xr,V) in one direction and V — V ®q, Ox,. in the other.

Now let F' be arbitrary again. Then curve X has an algebraic variant

X3® .= Proj @ B#~"
d>0

where B = I'(Yr, Oy,.) is the Fréchet completion of B® as before.
Theorem 4.1.3 (Fargues-Fontaine).

(1) X;lg s a 1-dimensional regular Noetherian scheme.
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(2) There is a morphism of locally ringed spaces
Xp — X308
which induces a bijection
{classical points of Xp} — {closed points of X;lg} ,

(we didn’t define classical points for non-algebraically closed fields, but there is a definition) inducing
isomorphisms

~

ﬁX;}g,I — ﬁXF,I
for x a classical point.

Theorem 4.1.4 (GAGA of Kedlaya-Liu). If F is algebraically closed, then pullback along Xp — X;lg
induces an equivalence of categories

{vector bundles on X;lg} = {vector bundles on Xp}

Remark 4.1.5. Here, being algebraically closed might not be necessary, but we couldn’t find a reference.

Now let oo € X;lg be any closed point, and define
o 1.
B, :=T(X%8\ {0}, Oxpe) = B[] d

for some ¢ € B such that V() = pr~!(c0) C Y. Then

alg) ~ finite projective Be-modules M and
{vector bundles on X } — [1/¢] an 5xalg Jattice
F ®

~

ACM@p. 0

al
X 58,00

This follows from the usual Beauville-Lazslo gluing lemma.

4.2. Equivariant Vector Bundle. Now say K/Q,, is finite and let C, = K, which has a Gk-action. Then
Gk acts isometrically on C; by functoriality, and on W(ﬁ’cg ) as well. So Gk acts on YC; and XC; .

Corollary 4.2.1. The map

continuous G g -representations ~ G i -equivariant vector bundles
on finite dimensional Qy-vector spaces on XC%’ semistable of slope 0

taking V =V ®q, ﬁch (with the diagonal G -action) is an equivalence of categories.
P

Remark 4.2.2. If V is an equivariant vector bundle and U C Xcg is open and H C G is the stabilizer of
U, then H is asked to act continuously on I'(U, V): this should be part of the definition.

Corollary 4.2.3. Let 0 : W(ﬁc;) — ﬁc; be the canonical surjection. Then 6 defines a classical point
To € Yc;a so let o € XC; denote its image. Then oo is stabilized by Gk, and we get a Gg-action on

B, = r(xgl,f, @’lef ). Then

o N (M,A), M a finite projective B.-module with semilinear G i -action
{G’K—equwamant vector bundles on XC;} — and A C M @p, Ox_, o[1/1] a G-stable Ox.., o-lattice
p P

Definition 4.2.4. We write
B(TR = ﬁxcgyoo = ﬁyc';7m0’

which is the completion of W(ﬁcg)[l/p] with respect to ker(W(ﬁ’cZ) — Cp).
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Example 4.2.5. Let ¢ = (Gn)nzo c ﬁcz and write
_1)n
t = log([¢]) = Z(—l)”“%_

n>1

This does not converge in Aj,s or B®, but in all the By for I C (0,1) it does converge. Then we compute
that ©(t) = pt and if g € Gk, then g -t = x(g)t, where x is the cyclotomic character (for this, one shows
that log([e]*) = alog([e])). Then

V(t) =pr~'(c0) C Yp

An equivariant vector bundle on X is a p-module over B is a p-module over W(F,)[1/p]. Ox,, is B with

@1 1is brevQ, sending 1+ 1. Ox_, (00) is t7'B (i.e. B with p(1) =p~") is brev(Q,) 1+ p~ 1.
Ox _, is trivially semistable of slope 0, and it has trivial action, so it corresponds to the trivial G-
CP
representation of Gq,. However, & X, (00) is not semistable of slope 0, and
I(Xcy, Ox,, (00)) = (17! B)#=¢ = B#=F
which is an infinite dimensional Q,-vector space! Note
Hom, (Dy,D_1) =0
and
Hornﬁ"(ﬁ)-xczb9 ) ﬁXC% (OO)) = Bﬂa:id
which is huge.

Let £ be the line bundle on X, which corresponds to ¢t~ !B with ¢ = pp. Then £ becomes semistable of

slope 0, and the corresponding Galois representation is t~1Q,,, which is (t71B)¥=4 and Gk acts via y~!.

4.3. Galois descent and decompletion/deperfection. Let F' be a perfectoid field of characteristic p.
Write C' = % = F/'SG\P, has a Gp-action. Then by functoriality the inclusion F' — C induces
Xo — Xp and X2% — X318
These morphisms are G p-equivariant.
Theorem 4.3.1 (Algebraic Galois descent). The natural map

{vector bundles on X?,lg} = {Gp-equivam'ant vector bundle on Xglg} .

18 an equivalence of categories.

Now let K/Q, be a finite extension and let K, /K be a Galois extension with Galois group I' = Gal(K ./ K)
such that K is perfectoid.

Corollary 4.3.2.

{F-equivariant vector bundles on Xi?\b} = {GK-eqm'vam'ant vector bundles on Xélbg} .
p

oo

This should really work for any K, but in the cyclotomic case Koo = K((€,)n>0) We can say more.
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We already know that (here B =T'(Y, 0y ), and we abbreviate Y = Y_—).

oo

{vector bundles on Xl?\b} = {¢-modules over B}

~

— {<p—modules over B(O’T]}
(: {B(O’r]—modules with *M =5 M ® go.n B(O’Tp])})

= {(p—modules over lim B(07] (: Bl i of Berger )}

r—0 g,

The same remark applies to (¢, I')-modules. Now let us write A* to mean the punctured open unit disk over
W (F,)[1/p], where Fy is the residue field of K. For simplicity assume K/Q,, is unramified. Then we get a
map ['(A*, Oa-) — B sending X — [¢] — 1. Then we let

— 1 BT -1 (0,r]
= < «) C B, =
R ;m% I'({p < [X] < 1},0a) C By, ¢ = lim B

r—0

is stable under (¢,T'), and is called the Robba ring, which is Bjig, ¢ for Berger.

Note ¢ is not an isomorphism on R, only injective. So EL&K is a Fréchet completion of UnZO © " (R).
Theorem 4.3.3 (Decompletion and deperfection).
{(¢,T)-modules over R} = {(go, I')-modules over EIig,K} .

5. TALK V

5.1. Crystalline representations and Fontaine’s period rings. We resume with the usual setup. Let
K/Q, be a finite extension and let C, = K with its G-action. We have the curves Y, and X, both with
P p

G k-actions, and a G g-equivariant quotient map YC; 2 Xc; . We have a fixed point co € X corresponding
to the untilt C,, and this corresponds to a the canonical surjection W(ﬁc; ) = Oc,. We let

Bl = Ox,00c = Oy .
Note pr=t(cc) = V() C Y, where t = log([e]) € B, and we can also view ¢ as an element of 53/7%0 = Bjy

and it is a uniformizer there.

We have seen that we have an equivalence of categories

continuous G p-representations ~ G k-equivariant vector bundles
on finite dimensional Q,-vector spaces on Xc; , semistable of slope 0

via the functors of global sections, and base change. So since the whole point of this correspondence is to
construct Galois representations, we now want to describe certain interesting vector bundles whose global
sections give us Galois representations.

Well, we have also seen that we have a functor

{¢-modules over W (F,)[1/p]} = {vector bundles on X, } .

By functoriality, we can enrich this over Gg. Note (Q,)%% = W(k)[1/p] = Ko, so in summary we get a
diagram

{ G k-equivariant p-modules over W (F,)[1/p]} —— {G k-equivariant vector bundles on X, }

{¢-modules over Ky}
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Note that given an arbitrary p-module (D, ¢), the image V(D, ¢) is usually not usually semistable of slope

0. To get around this, we take a Bj;-lattice A C V(D, ¢) ® Ox [1/t] and modify our vector bundle (recall
that Beauville-Lazslo gluing works well in our situation) by A to get a vector bundle V(D,®,A). Note

V(D,¢)® U?Xm[l/t] has a Gg-action, and if A is Gg-stable, then the modification V(D, ¢, A) will again be
G k-equivariant. Then if V(D, ¢, A) is semistable of slope 0, then

I(X,V(D, ¢, A))
is a continuous G'x-representation on a finite dimensional Q,-vector space, whose rank is dimg, D.
Definition 5.1.1. Representations arising this way are called crystalline.

Definition 5.1.2. Let A denote the p-adic completion of the divided power envelope of Ainf(C;) with
respect to ker(Ains LN Og,). Actually, ker 6 is principal and generated by one element &, and

Acris i= Aing[€"/nl,n > 1]

We let
Bl = Auial1 /1)
and one can check that t = log([¢]) converges in Ag;is, S0 we define
Beyis == B [1/t] = Acyis[1/1].
Remark 5.1.3.

(1) The Gg-action on Ajn¢ extends to Acyis, Beris and BT

cris*

(2) The (Witt vector) Frobenius ¢ : Ains — Ajnr extends to an injective map ¢ : Acis — Aeris- These
further extends to ¢ : B — ) commuting with Gg.

cris cris

(3) One checks that we get a canonical map Bctis — B(;FR. Warning: this is just a ring map. The
*._has the p-adic topology and B;R

canonical topologies on both rings are not really compatible: B,
has the t-adic topology, so this is not a topological embedding (although it is continuous). But on
the other hand, the map is at least Gi-equivariant.

We can use this embedding to define a filtration on B by
Fil' Beyis := Beris N ' By

Note that this is not the same filtration as ' BT

cris*
Proposition 5.1.4. The rings Beis and Bqr are Gg-regular. We have BCGn’g = Ky and BdGP’f = K. Fur-
thermore, (BL. )?=id =

cris T epe

Definition 5.1.5. Let V be a continuous G g-representation on a finite dimensional Q,-vector space. Then
V is called de Rham if V is Byr-admissible and V' is called crystalline if it is Bgjs-admissible.

Moreover, recall that
Dar(V) = (V ®q, Bar)“"
is a finite dimensional K-vector space and

Dcris(v) == (V ®Qp Bcris)GK

is a finite dimensional Ky-vector space.
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Remark 5.1.6. Crystalline representations are de Rham, because Be,is < Bgr is Gi-equivariant. Further-
more
Deris(V) ® Ky K = Dexis(V) @k BSE

= (Deris(V) ® Ky Bar)

= Deris(V) ® Ky Beris ® By Bar)©

= (V ®q, Beris @By, Bar)“x

= Dgr(V).

Since ¢ : Beris — Beris 18 G g-equivariant and tile'R C Bygr is G-stable, we get extensions
¢ Deris(V) = Deris(V)
which are ¢-linear isomorphism (because injective) and we get an exhaustive and separated Z-filtration
Fil' Dgr(V) := (V ®q, t'Biz) "~
by K-vector spaces.

Definition 5.1.7. A filtered ¢p-module for K is a finite dimensional Ko-vector space D along with
¢ : D — D a ¢-linear isomorphism plus an exhaustive and separated filtration Fil' Dg C Dx = D ®, K by
sub- K -vector spaces.

In particular we have contructed a functor
Dyis : {crystalline representations} — {filtered p-modules} .

Theorem 5.1.8. A filtered p-module (D, ¢,Fil) is weakly admissible if it is semistable of slope 0 for
the slope theory defined by the slope

w(D, ¢, Fil) := v,(det ¢) — Z idimg gr; Dk
i€Z
Theorem 5.1.9 (Fontaine, Colmez-Fontaine, Berger, Kedlaya, Kisin).
(1) Deyis is fully faithful.
(2) The essential image consists of the weakly admissible objects, and a quasi-inverse is given by
Veris(D, ¢, Fil) := Fil°(D @y Beris)?™ = (D ® K, Bexis)? ™ N Fil’(Dg ®x Bar),
where we put the -product filtration on Dk R Bgr.-
Theorem 5.1.10 (Faltings, Tsuji, ...). Let X/K be a proper smooth algebraic variety. Then
V= Hét(XFa Q)

s a finite dimensional continuous G -representation. Furthermore, V is always de Rham, and there is a
canonical G -equivariant isomorphism

Hét(X?, Qp) ®Qp Bar = HQR(X/K) ®K Bar
which thus induces
Dar(He (X7, Qp)) = Hir(X/K)

In fact, this identifies the filtrations on both sides. If X has good reduction and X /O is a smooth proper
model, then H} (X7, Q) is crystalline, and we have a (canonical) (G, p)-equivariant isomorphism

Hgy (X7, Qp) ©q, Beris = Hexio(X/W (k) @ () Beris
In particular Deys(V) =2 HE . (X /W (k))[1/p] as p-modules over K.

cris
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5.2. Relation with the Fargues-Fontaine curve.
Proposition 5.2.1.
(1) (BE[/H)#= = BE" = Be = (B[1/1))#=.
(2) (Bg;

d d
$Y=P — B¥Y=P
cris) .

In particular,
1 . —=p9 . —pd
Xéf := Proj @399 P" = Proj @(B:;is)“’ p
d d

and we get a functor

{-modules over Ko} — {¢-modules over BY, } — {graded QB(B+ )¢=P d—modules} — {vector bundles on Xélf}

d
and one checks that (D, ¢) — V(D, ¢). One computes
DX\ {00}, V(D, ¢)) = (D @1, Beris)*~.

Lemma 5.2.2. Given an exhaustive separated filtration of Dy, we can produce a Gg-stable B;FR—lattice
A CV(D,¢) ® Bar = Dk @k Bar, by sending

(Fil' Dic); = Y Fil' D @t 'BJy.

This is bijective.

DX V(D,p,A)) = AX8\ {0}, V(D,¢)) NA C V(D,¢) ® Bar = Veris(D, ¢, Fil).
Proposition 5.2.3. V(D, ¢, A) is semistable of slope 0 if and only if (D, ¢,Fil*) is weakly admissible.
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