p-MODULAR AND LOCALLY ANALYTIC REPRESENTATION THEORY OF *p*-ADIC GROUPS

FLORIAN HERZIG

Notes taken by Ashwin $Iyengar^1$ and have not been checked by the speaker. Any errors are due to me.

Contents

1. Talk I	1
1.1. <i>p</i> -adic groups	2
1.2. Smooth representations	3
1.3. Induced representations	3
1.4. The mod p setting	4
1.5. Hecke algebras and mod p Satake isomorphism	5
2. Talk II	6
2.1. Hecke algebras $+ \mod p$ Satake isomorphism	6
2.2. Satake isomorphism (mod p)	6
2.3. Admissible representations and supersingular representations	8
2.4. Supersingular representations	9
3. Talk III	9
3.1. Classification in terms of supersingular representations	10
3.2. <i>p</i> -adic representations	11
3.3. Some functional analysis	11
4. Talk IV	13
4.1. Recollections	13
4.2. Locally analytic manifolds	14
4.3. Locally analytic functions	14
4.4. Locally analytic and Banach space representations	15
4.5. Duality and admissibility: mod p	16
4.6. Duality and admissibility: Banach case	16
5. Talk V	17
5.1. Duality and admissibility: locally analytic case	17
5.2. Orlik-Strauch Representations	19
5.3. $n = 2$	21
References	21

1. Talk I

This course will be about mod p and p-adic representations of p-adic reductive groups, and we will focus on $\operatorname{GL}_n(\mathbf{Q}_p)$ to keep things concrete.

Date: March 20, 2019.

¹ashwin.iyengar@kcl.ac.uk

Our motivation are the mod p and p-adic (local) Langlands correspondences, i.e. connections with Galois representations. The first half will roughly be about mod p representations, and the second half will be about p-adic representations (for example, Banach representations, and locally analytic representations).

1.1. *p*-adic groups. For simplicity, assume $G = \operatorname{GL}_n(\mathbf{Q}_p)$. Then G is a topological group with unique maximal compact open $K = \operatorname{GL}_n(\mathbf{Z}_p)$ (up to conjugation). Inside K we have a filtration $K(r) = 1 + p^r \operatorname{Mat}_n(\mathbf{Z}_p) \supseteq K(r+1) \supseteq \cdots$, which form a fundamental system of neighborhoods of $1 \in G$. This implies immediately that G is totally disconnected.

Remark 1.1.1. If H is a topological group, then any open subgroup is closed, and any closed subgroup of finite index is open.

Definition 1.1.2. For us, a profinite group (resp. a pro-*p*-group) is a compact Hausdorff topological group with a fundamental system of neighborhoods of 1 consisting of open normal subgroups of finite index (resp. of index p).

Example 1.1.3. In our case K is profinite, and K(r) is pro-p: to see this note

$$K(s)/K(s+1) \xrightarrow{\sim} \operatorname{Mat}_n(\mathbf{F}_p)$$

under the map sending $1 + p^s A \mapsto \overline{A}$.

In particular, this implies that G has no $\overline{\mathbf{F}}_p$ -valued Haar measure.

Here are some important subgroups:

- The Borel B denotes the upper triangular matrices in G.
- The torus T denotes the diagonal matrices in B.
- The unipotent radical U of B denotes the upper triangular matrices with 1 all along the diagonal.
- More generally if $n = \sum_{i=1}^{r} n_i$, then P denotes the standard parabolic subgroup of G with r blocks of size n_1, \ldots, n_r , and the standard Levi subgroup is the corresponding Levi, isomorphic to $\prod_{i=1}^{r} \operatorname{GL}_{n_i}$, and N denotes the corresponding unipotent radical.
- Note $B = T \rtimes U$ and more generally $P = M \rtimes N$.
- We let \overline{P} denote the opposite parabolic (this is just the transpose, for GL_n) and \overline{N} its unipotent radical.

Proposition 1.1.4 (Iwasawa Decomposition). For P any standard parabolic, G = PK.

Proof. Exercise.

Proposition 1.1.5 (Cartan Decomposition).

$$G = \bigsqcup_{a_1 \ge \dots \ge a_n} K \operatorname{diag}(p^{a_1}, \dots, p^{a_n}) K$$

Proof. For GL_n this follows from the theory of elementary divisors, but for more general groups, this is harder, and you need the Bruhat-Tits building.

1.2. Smooth representations. In this section, G is any Hausdorff topological group with a fundamental system of neighborhoods consisting of compact open subgroups. Let C be any field (soon we assume that C has characteristic p and that C is algebraically closed).

Suppose π is any representation of G over C.

Lemma 1.2.1. The following are equivalent:

- (1) For all $x \in \pi$, $\operatorname{Stab}_G(x)$ contains an open subgroup.
- (2) $\pi = \bigcup_{U} \pi^{U}$ where U runs over compact open subgroups.
- (3) The action map $G \times \pi \to \pi$ is continuous if π is discrete.

Definition 1.2.2. If these hold, then π is *smooth*. A map of smooth *G*-representations is any *G*-linear map, and this forms an abelian category of smooth representations of *G*.

Example 1.2.3. If $G = \mathbf{Q}_p^{\times}$, then a character $\chi : \mathbf{Q}_p^{\times} \to C^{\times}$ is smooth if and only if ker χ is open. But $\mathbf{Q}_p^{\times} = \mathbf{Z}_p^{\times} \times p^{\mathbf{Z}}$, so χ is determined by $\chi(p)$ and a character $\mathbf{Z}_p^{\times} \to C^{\times}$ with open kernel. The open subgroups of \mathbf{Z}_p^{\times} are of the form $1 + p^r \mathbf{Z}_p$ so the character $\mathbf{Z}_p^{\times} \to C^{\times}$ must factor via a character

$$\mathbf{Z}_p^{\times}/(1+p^r\mathbf{Z}_p)\cong \mathbf{Z}/(p-1)\mathbf{Z}\times\mathbf{Z}/p^{r-1}\mathbf{Z}\to C^{\times}$$

for some r.

1.3. Induced representations. Now suppose $H \leq G$ is some closed subgroup and σ is a smooth H-representation. Then

$$\operatorname{Ind}_{H}^{G}(\sigma) := \left\{ f: G \to \sigma \mid \begin{array}{c} f(hg) = hf(g) \text{ for all } h \in H, g \in G, \\ \exists U \text{ compact open where } f(gu) = f(g) \end{array} \right\}$$

This has a G-action:

$$(\gamma \cdot f)(g) = f(g\gamma)$$

and this is forced to be smooth because of the compact open condition in the definition.

Remark 1.3.1. For $f \in \text{Ind}_{H}^{G}(\sigma)$, the support $\text{supp}(f) = \{Hg \in H \setminus G \mid f(g) \neq 0\} \subseteq H \setminus G$ is open and closed: if we pick U such that f(gu) = f(g) for all $u \in U$, then the preimage of supp(f) under $G \to H \setminus G$ is a union of left cosets of U, which is open. Repeat the argument with the complement of supp(f).

Definition 1.3.2. Let c-Ind^G_H $\sigma = \left\{ f \in \operatorname{Ind}^G_H \sigma : \operatorname{supp}(f) \operatorname{compact} \right\}$. This is a subrepresentation of Ind^G_H, called the *compact induction*.

Remark 1.3.3. In the special case where $H \setminus G$ is compact, the two constructions agree. For example, if H is a parabolic subgroup of GL_n , they are the same.

Proposition 1.3.4 (Frobenius Reciprocity). Say π is a smooth G-representation, and σ is a smooth H-representation. Then

- (1) $\operatorname{Hom}_G(\pi, \operatorname{Ind}_H^G \sigma) \cong \operatorname{Hom}_H(\pi|_H, \sigma)$, and this is natural in π, σ .
- (2) If U is an open subgroup of G, then

$$\operatorname{Hom}_{G}(\operatorname{c-Ind}_{U}^{G}\sigma,\pi)\cong\operatorname{Hom}_{U}(\sigma,\pi|_{U}).$$

Moreover, c-Ind^G_U is an exact functor.

Proof Idea. For $\varphi : \pi \to \operatorname{Ind}_H^G \sigma$, we define $\overline{\varphi} : \pi|_H \to \sigma$ sending $x \mapsto \varphi(x)(1)$. Conversely, for $\psi : \pi|_H \to \sigma$, we define $\overline{\psi} : \pi \to \operatorname{Ind}_H^G \sigma$ taking $x \mapsto (g \mapsto \psi(gx))$.

For $g \in G$ and $y \in \sigma$, let $[g, y] \in \text{c-Ind}_U^G \sigma$ denote the function on Ug^{-1} that sends $g^{-1} \mapsto y$, and zero outside. Then $\gamma[g, y] = [\gamma g, y]$ for $\gamma \in G$ and if $u \in U$ we have [gu, y] = [g, uy]. Check that $C[G] \otimes_{C[U]} \sigma \cong \text{c-Ind}_U^G \sigma$ sending $g \otimes y \mapsto [g, y]$, and exactness follows from this description because C[G] is free over C[U].

Proposition 1.3.5. If $G = \operatorname{GL}_n(\mathbf{Q}_p)$ and P is a standard parabolic, then $\operatorname{Ind}_P^G(-)$ is an exact functor.

Proof Idea. There exists a continuous section $s : P \setminus G \to G$ to $\pi : G \to P \setminus G$: for example, you can use $G \supseteq P\overline{N}$. Then $\operatorname{Ind}_P^G \sigma \cong \mathscr{C}^{\infty}(P \setminus G, \sigma)$ as a C-v.s. (locally constant functions): send $f \mapsto (x \mapsto f(s(x)))$. \Box

Remark 1.3.6. If σ is a smooth representation of M, then first we inflate it to a smooth P-representation via $P \twoheadrightarrow M$, and then induce. By abuse of notation, we notate this $\operatorname{Ind}_P^G(\sigma)$. Furthermore, if $P_1 \subseteq P_2 \subseteq G$ and σ is a smooth representation of M_1 , then

$$\operatorname{Ind}_{P_1}^G \sigma \cong \operatorname{Ind}_{P_2}^G \operatorname{Ind}_{P_1}^{P_2} (\sigma \circ (P_1 \twoheadrightarrow M_1)) \cong \operatorname{Ind}_{P_2}^G \operatorname{Ind}_{P_2 \cap M_1}^{M_2} \sigma|_{P_2 \cap M_1}.$$

1.4. The mod p setting. From now on, in the mod p setting, we assume that C is an algebraically closed field of characteristic p, and $G = GL_n(\mathbf{Q}_p)$.

The following is an extremely important lemma which distinguishes mod p representation theory from the characteristic 0 world.

Lemma 1.4.1 (*p*-group Lemma). Any smooth representation $\tau \neq 0$ of a pro-*p* group *H* has a fixed vector: $\tau^H \neq 0$.

Proof. WLOG let $C = \mathbf{F}_p$, and pick some nonzero $x \in \tau$. Since τ is smooth and H is compact, there exists an open normal subgroup $U \leq H$ such that $x \in \tau^U$. Note H/U is a finite *p*-group (since H is pro-*p*), and it acts on τ^U . Replacing τ^U by $\mathbf{F}_p[H] \cdot x$, WLOG we can assume $\dim_{\mathbf{F}_p} \tau$ is finite. By picking a basis, we get a map

$$\tau: H \to \mathrm{GL}_n(\mathbf{F}_p),$$

so $\tau(H)$ is a *p*-group, and thus $\tau(H)$ is contained in the *p*-Sylow subgroup of $\operatorname{GL}_n(\mathbf{F}_p)$. But the *p*-Sylow subgroup of $\operatorname{GL}_n(\mathbf{F}_p)$ is conjugate to the unipotent radical of the standard Borel, and thus $\tau(H)$ fixes the first basis vector.

Corollary 1.4.2. If $\pi \neq 0$ is a smooth representation of G or K, then $\pi^{K(1)} \neq 0$.

Proof. The group K(1) is pro-p, so use the lemma.

Corollary 1.4.3. Any irreducible smooth K-representation π is trivial on K(1), so we get a bijection

 $\{irreducible \text{ smooth } K\text{-}representations}\} \xrightarrow{\sim} \{irreducible \operatorname{GL}_n(\mathbf{F}_p)\text{-}representations}\}.$

Proof. Since $\pi^{K(1)} \neq 0$ and K(1) is normal in K, we see that $0 \neq \pi^{K(1)} \subseteq \pi$ is a subrepresentation. Now we use the fact that π is irreducible to conclude that $\pi^{K(1)} = \pi$ which shows that the action of π factors through $K/K(1) \cong \operatorname{GL}_n(\mathbf{F}_p)$.

Definition 1.4.4. An irreducible smooth K-representation is called a *weight*.

Corollary 1.4.5. Any non-zero smooth G-representation π contains a weight V, i.e. $V \subseteq \pi|_K$.

Proof. Pick a nonzero $x \in \pi^{K(1)}$. Then $C[K] \cdot x = C[K/K(1)] \cdot x$ is finite dimensional, so it contains an irreducible subrepresentation.

If n = 1, then the weights are exactly the irreducible \mathbf{F}_p^{\times} -representations valued in C, which are just parametrized by \mathbf{F}_p^{\times} .

If n = 2, the weights are given by $V_{a,b} = \text{Sym}^{a-b}(C^2) \otimes \det^b$ for $(a,b) \in \mathbb{Z}^2$ such that $0 \le a - b \le p - 1$ (and $0 \le b \le p - 1$).

We can think of $\operatorname{Sym}^{a-b}(C^2)$ as homogeneous polynomials in X, Y of degree a-b, and $\operatorname{GL}_2(\mathbf{F}_p)$ acts via

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} f(X,Y) = f(\alpha X + \gamma Y, \beta X + \delta Y)$$

Note dim $V_{a,b} = a - b + 1$.

Theorem 1.4.6. If P = MN is the standard parabolic decomposition and V is a weight of G, then the natural map

$$V^{\overline{N}(\mathbf{F}_p)} \hookrightarrow V \twoheadrightarrow V_{N(\mathbf{F}_p)}$$

is an isomorphism of irreducible $M(\mathbf{F}_p)$ -representations (i.e. weights of M). In particular, if P = B, $V^{\overline{U}(\mathbf{F}_p)} \cong V_{U(\mathbf{F}_p)}$ is one dimensional.

This theorem allows us to make one parametrization of weights.

Theorem 1.4.7 (Curtis, 1970s...). There is a bijection

{weights of G} \cong { $(\psi : T(\mathbf{F}_p) \to C^{\times}, P \text{ standard parabolic}) \mid \psi \text{ extends to } P(\mathbf{F}_p)$ }.

The map sends $V \mapsto (\psi_V, P_V)$, which we call the parameter of V, where ψ_V is the action of $T(\mathbf{F}_p)$ on $V^{U(\mathbf{F}_p)}$ and P_V is the largest standard parabolic such that $V_{N(\mathbf{F}_p)}$ -coinvariants are still one-dimensional.

Example 1.4.8. Let n = 2 again. Then $Y^{a-b} \in V_{a,b}$ is $\overline{U}(\mathbf{F}_p)$ -stable and thus generates $V_{a,b}^{U(\mathbf{F}_p)}$, and you can compute that $\psi_{V_{a,b}} : T(\mathbf{F}_p) \to C^{\times}$ takes $\operatorname{diag}(x, y) \mapsto x^b y^a$. Furthermore $P_{V_{a,b}}$ is G if a = b and B otherwise. Note $\psi_{V_{a,b}}$ extends to $G(\mathbf{F}_p)$ if and only if $a \equiv b \mod p - 1$.

Remark 1.4.9. There is a Steinberg parametrization of weights, which uses algebraic representations of the algebraic group GL_{n,\mathbf{F}_p} .

Remark 1.4.10. The weight $V^{\overline{N}(\mathbf{F}_p)} \cong V_{N(\mathbf{F}_p)}$ of M has parameter $(\psi_V, M \cap P_V)$.

1.5. Hecke algebras and mod p Satake isomorphism. If π is an irreducible smooth G-representation, then there exists a weight $V \hookrightarrow \pi|_K$, so by Frobenius reciprocity, we get a map c-Ind^G_K $V \to \pi$, which is surjective, since π is irreducible and V is nonzero.

Definition 1.5.1. The Hecke algebra of the weight V is $\mathcal{H}_G(V) = \operatorname{End}_G(\operatorname{c-Ind}_K^G V)$.

Lemma 1.5.2. We have an algebra isomorphism

$$\mathcal{H}_G(V) \cong \left\{ \varphi: G \to \operatorname{End}_C(V) \mid \begin{array}{c} \operatorname{supp}(\varphi) \text{ is compact, and} \\ \varphi(k_1gk_2) = k_1 \circ \varphi(g) \circ k_2 \end{array} \right\}$$

where the right hand side has the convolution product

$$(\varphi_1 * \varphi_2)(g) = \sum_{\gamma \in G/K} \varphi_1(g\gamma) \circ \varphi_2(\gamma^{-1})$$

Proof. As vector spaces,

$$\mathcal{H}_G(V) = \operatorname{Hom}_G(\operatorname{c-Ind}_K^G(V), \operatorname{c-Ind}_K^G(V)) = \operatorname{Hom}_K(V, \operatorname{c-Ind}_K^G(V)|_K)$$

In general, we have

$$Maps(V, Maps(G, V)) = Maps(G \times V, V) = Maps(G, Maps(V, V)).$$

Then just check that this matches the right hand side in the statement of the lemma. Then just do the computation to check multiplication. $\hfill \Box$

2. Talk II

2.1. Hecke algebras + mod p Satake isomorphism. Recall $G = GL_n(\mathbf{Q}_p)$, and C is an algebraically closed characteristic p coefficient field. We had the congruence subgroups K and K(r), and the standard decomposition of parabolics P = MN for N the unipotent radical and N the Levi.

We defined weights to be irreducible smooth C-valued representations of K, but since we're in characteristic p these are automatically trivial on K(1), and $K/K(1) \cong G(\mathbf{F}_p)$, so these are the same as irreducible representations of $\mathrm{GL}_n(\mathbf{F}_p)$.

Definition 2.1.1. We defined the *Hecke algebra* of V is

$$\mathcal{H}_G(V) = \operatorname{End}_G(\operatorname{c-Ind}_K^G(V)).$$

We had the following lemma:

Lemma 2.1.2. We have an algebra isomorphism

$$\mathcal{H}_G(V) \cong \{\varphi : G \to \operatorname{End}_C(V) \mid \operatorname{supp}(\varphi) \text{ compact, and } \varphi(k_1gk_2) = k_1 \circ \varphi(g) \circ k_2\}$$

where the right hand side has the convolution product

$$(\varphi_1 \circ \varphi_2)(g) = \sum_{\gamma \in G/K} \varphi_1(g\gamma) \circ \varphi_2(\gamma^{-1})$$

Proof. Given last time.

Remark 2.1.3. If π is a smooth G-representation, then by Frobenius reciprocity, if V is a weight, then

$$\operatorname{Hom}_K(V,\pi|_K) \cong \operatorname{Hom}_G(\operatorname{c-Ind}_K^G V,\pi)$$

and it's now clear that $\mathcal{H}_G(V)$ acts on the left side of the equality. Explicitly, if $f: V \to \pi|_K$ and $\varphi \in \mathcal{H}_G(V)$, then

$$(f \cdot \varphi)(x) = \sum_{Kg \in K \setminus G} g^{-1} f(\varphi(g)(x)),$$

and now you need to check that this is well-defined.

Example 2.1.4. If V = 1 (trivial rep) then

$$\mathcal{H}_G(V) = \mathcal{H}_G(1) = \mathcal{C}_c(K \setminus G/K, C)$$

Then $\mathcal{H}_G(V)$ acts on $\operatorname{Hom}_K(1,\pi|_K) = \pi^K$ in the usual double-coset way, i.e.

$$1_{KgK}: \pi^K \to \pi^K, x \mapsto \sum_i g_i^{-1} x$$

where $KgK = \bigsqcup_i Kg_i$.

2.2. Satake isomorphism (mod p). We want to understand the structure of $\mathcal{H}_G(V)$ now for C-valued representations. We want to embed

$$\mathcal{H}_G(V) \hookrightarrow \mathcal{H}_T(V_{U(\mathbf{F}_p)})$$

and then determine its image. More generally, we want to have

$$\mathcal{H}_G(V) \hookrightarrow \mathcal{H}_M(V_{N(\mathbf{F}_p)})$$

for larger parabolics.

Lemma 2.2.1. There exists a natural isomorphism

$$\operatorname{Hom}_{G}(\operatorname{c-Ind}_{K}^{G}(V), \operatorname{Ind}_{P}^{G}(-)) \xrightarrow{f \mapsto f_{M}} \operatorname{Hom}_{M}(\operatorname{c-Ind}_{M \cap K}^{M} V_{N(\mathbf{F}_{n})}, -)$$

Proof. By Frobenius reciprocity, we get

$$\operatorname{Hom}_{G}(\operatorname{c-Ind}_{K}^{G}(V), \operatorname{Ind}_{P}^{G}(-)) \cong \operatorname{Hom}_{K}(V, \operatorname{Ind}_{P}^{G}(-)|_{K})$$

But $\operatorname{Ind}_{P}^{G}(-)|_{K} = \operatorname{Ind}_{P \cap K}^{K}(-|_{P \cap K})$ by the Iwasawa decomposition. Then

$$\operatorname{Hom}_{K}(V, \operatorname{Ind}_{P \cap K}^{K}(-|_{P \cap K})) \cong \operatorname{Hom}_{P \cap K}(V|_{P \cap K}, -|_{P \cap K})$$

Now note we started with an M-representation viewed as a P-representation, so this becomes

 $\operatorname{Hom}_{M\cap K}(V_{N\cap K}, -|_{M\cap K})$

and then finally we use Frobenius reciprocity again to get

$$\operatorname{Hom}_{M}(\operatorname{c-Ind}_{M\cap K}^{M}V_{N(\mathbf{F}_{p})},-).$$

Observe that any $\varphi \in \mathcal{H}_G(V) = \operatorname{End}(\operatorname{c-Ind}_K^G(V))$ induces a natural transformation of the first functor in the lemma by precomposition, hence also of the second functor. So by Yoneda, there exists a unique $S_M^G(\varphi) \in \operatorname{End}_M(\operatorname{c-Ind}_{M \cap K}^M V_{N(\mathbf{F}_P)}) = \mathcal{H}_M(V_{N(\mathbf{F}_P)})$ such that

$$(f \circ \varphi)_M = f_M \circ S^G_M(\varphi)$$

Exercise 2.2.2. Use this identity to show that $S_M^G : \mathcal{H}_G(V) \to \mathcal{H}_M(V_{N(\mathbf{F}_n)})$ is a *C*-algebra homomorphism.

Proposition 2.2.3. Let $p_N : V \to V_{N(\mathbf{F}_p)}$. Explicitly, we have $S_M^G(\varphi) : M \to \operatorname{End}_C(V_{N(\mathbf{F}_p)})$ takes $m \mapsto \sum_{N \cap K \setminus N} p_N \circ \varphi(nm)$.

Idea of Proof. Find f such that $f_M = id$ and use the defining formula.

Definition 2.2.4. Let $T^+ = \{ \operatorname{diag}(t_1, \ldots, t_n) \in T \mid \operatorname{val}(t_1) \geq \cdots \geq \operatorname{val}(t_n) \}$ and $\mathcal{H}^+_T(V_{U(\mathbf{F}_n)}) = \{ \psi : \mathcal{H}_T(V_{U(\mathbf{F}_n)}) : \operatorname{supp} \psi \subseteq T^+ \}$

Theorem 2.2.5. The map

$$S_T^G: \mathcal{H}_G(V) \to \mathcal{H}_T(V_{U(\mathbf{F}_n)})$$

is injective with image $\mathcal{H}_T^+(V_{U(\mathbf{F}_n)})$.

Corollary 2.2.6.

 $\mathcal{H}_G(V) \cong C[\Lambda^+]$ where $\Lambda^+ = T^+/(T \cap K) = \mathbf{Z}_+^n = \{(\lambda_1, \dots, \lambda_n) \mid \lambda_1 \ge \dots \ge \lambda_n)\}.$

Outline of Proof.

(1) Find nice bases of \mathcal{H}_G and \mathcal{H}_T : for $\lambda \in \mathbb{Z}^n_+$ let $t_{\lambda} := \operatorname{diag}(p^{\lambda_1}, \ldots, p^{\lambda_n})$.

Fact: there exists $T_{\lambda} \in \mathcal{H}_{G}(V)$ such that $\operatorname{supp} T_{\lambda} = Kt_{\lambda}K$ and $T_{\lambda}(t_{\lambda}) \in \operatorname{End}_{C}(V)$ is a linear projection. Then if we reduce $K \cap t_{\lambda}^{-1}Kt_{\lambda}$ to the residue field, we get $P_{\lambda}(\mathbf{F}_{p})$ and note that $T_{\lambda}(t_{\lambda})$ has to factor as

$$V \twoheadrightarrow V_{N_{\lambda}(\mathbf{F}_p)} \to V^{N_{\lambda}(\mathbf{F}_p)} \hookrightarrow V$$

and the middle map is $M_{\lambda}(\mathbf{F}_p)$ -linear by Theorem 1.4.6.

The by the Cartan decomposition, deduce that T_{λ} for all $\lambda \in \mathbb{Z}_{+}^{n}$ gives a *C*-basis of \mathcal{H}_{G} . Similarly, $(\tau_{\lambda})_{\lambda}$ forms a basis for \mathcal{H}_{T} .

(2) To show that S_T^G is injective, prove that

$$S_T^G(T_\lambda) = \tau_\lambda + \sum_{\mu < \lambda} a_\mu \tau_\mu$$

- (3) Need to show that $\operatorname{im}(S_T^G) \subseteq \mathcal{H}_T^+$.
- (4) Triangular argument of Sug Woo.

For the corollary, just note that as T is commutative, $\tau_{\lambda}\tau_{\mu} = \tau_{\lambda\mu}$, so we deduce that $\mathcal{H}_{T}^{+} \cong C[\mathbf{Z}_{+}^{n}] \cong C[x_{1}, \dots, x_{n}, x_{n}^{-1}]$

Proposition 2.2.7. So we have a commutative diagram

hence S_M^G is injective. Moreover, there exists $\varphi \in \mathcal{H}_G(V)$ such that $\mathcal{H}_G(V)[\varphi^{-1}] \xrightarrow{\sim} \mathcal{H}_M(V_{N(\mathbf{F}_{\ast})})$

Proof. The first part is formal.

Note $\operatorname{im}(S_T^G) \cong C[\Lambda^+]$, but

$$\operatorname{im}(S_T^M) \cong C[\Lambda^{+,M}]$$

Note ${\cal S}_M^G$ is identified with the inclusion

$$C[\Lambda^+] \hookrightarrow C[\Lambda^{+,M}]$$

and this is localization at any fixed $\lambda \in \Lambda^+ \cong \mathbf{Z}^n_+$ such that

$$\lambda_1 = \dots = \lambda_{n_1} > \lambda_{n_1+1} = \dots = \lambda_{n_1+n_2} > \dots$$

2.3. Admissible representations and supersingular representations.

Definition 2.3.1. A smooth *G*-representation π is admissible if $\dim_C \pi^W < \infty$ for all compact open subgroups *W*.

Remark 2.3.2. This is stable under taking subrepresentations, less obvious is that it's also stable under taking quotients.

Lemma 2.3.3. A smooth rep. π is admissible if and only if there exists $W \leq G$ open and pro-p such that $\dim_C \pi^W < \infty$.

Proof. One direction is by clear. Let's say $W' \subseteq G$ is any compact open subgroup. Firstly, we can shrink W', so WLOG we can assume that $W' \subseteq W$. Then we see that by Frob Rec.

 $\pi^{W'} = \operatorname{Hom}_{W'}(1,\pi|_{W'}) = \operatorname{Hom}_W(\operatorname{c-Ind}_{W'}^W 1,\pi)$

Note W' is finite index inside W so c-Ind^W_{W'} is finite dimensional, so we claim that Hom_W(σ, π) is finite dimensional for all finite dimensional smooth σ . We do this by induction. If σ is irreducible and smooth, then $\sigma = 1$ by the *p*-group lemma. If not, then we have some nontrivial short exact sequence

$$0 \to \sigma' \to \sigma \to \sigma'' \to 0$$

so we get

$$0 \to \operatorname{Hom}_W(\sigma'', \pi) \to \operatorname{Hom}_W(\sigma, \pi) \to \operatorname{Hom}_W(\sigma, \pi').$$

So the middle term is finite dimensional by induction.

ſ

Lemma 2.3.4. If π is admissible, then it contains an irreducible subrepresentation.

Proof. Fix any W open pro-p subgroup of G. For all subrepresentations $0 \neq \tau \subseteq \pi$, we have that $0 \neq \tau^W \subseteq \pi^W$ by Lemma 1.4.1. Then choose τ such that $\dim(\tau^W)$ is minimal. Then exercise: $\langle G \cdot \tau^W \rangle$ is irreducible.

Exercise 2.3.5.

- (1) If π is a smooth representation, then π is admissible if and only if all the Hom_K(V, π) are finite dimensional.
- (2) If π is irreducible and admissible, then π has a central character.
- (3) Show that taking parabolic induction preserves admissibility.

Remark 2.3.6. If π is irreducible and smooth, then it does not have to be admissible!

2.4. Supersingular representations. These were first defined by Barthel-Livné for GL₂.

Recall that if π is admissible *G*-representation and *V* a weight, then $\operatorname{Hom}_{K}(V, \pi)$ is finite dimensional, and we have a right action of $\mathcal{H}_{G}(V)$. So we want to use this to describe a notion of supersingularity.

If $\operatorname{Hom}_K(V, \pi) \neq 0$, then it contains a simultaneous eigenvector for the $\mathcal{H}_G(V)$ -action.

Definition 2.4.1. Eval_G(V, π) := { $\varphi \in \text{Hom}_C(\mathcal{H}_G(V), C) : \varphi$ occurs as eigenvalues on $\text{Hom}_K(V, \pi)$ }.

Recall \mathcal{H}_T^+ has basis τ_{λ} for $\lambda \in \mathbb{Z}_+^n$. Note that $\tau_{\lambda} \in (\mathcal{H}_T^+)^{\times}$ if and only if $\lambda \in \mathbb{Z}_+^n \cap (-\mathbb{Z}_+^n) = \{(a, \ldots, a) \mid a \in \mathbb{Z}\}.$

Lemma 2.4.2. If π is an irreducible admissible *G*-representation and *V* is a weight, then TFAE:

- (1) For all $\chi \in \text{Eval}_G(V, \pi)$, $\chi(\tau_\lambda) = 0$ for all $\lambda \in \mathbf{Z}^n_+ \backslash \mathbf{Z}^+_0$.
- (2) For all $\chi \in \text{Eval}_G(V, \pi)$, χ doesn't factor through $S_M^G : \mathcal{H}_G(V) \to \mathcal{H}_M(V_{N(\mathbf{F}_p)})$ for all $M \neq G$.

Idea. We saw that $\mathcal{H}_G[\tau_{\lambda}^{-1}] \cong \mathcal{H}_{M_{\lambda}}$, where M_{λ} is the centralizer of t_{λ} .

Definition 2.4.3. An irreducible admissible G-representation is supersingular if it satisfies the equivalent conditions in Lemma 2.4.2 for all weights V.

Theorem 2.4.4 (Breuil). If n = 2 and $\alpha \in C^{\times}$, then

$$\operatorname{c-Ind}_{K}^{G}(V)/(\tau_{(1,0)},\tau_{(1,1)}-\alpha)\operatorname{c-Ind}_{K}^{G}(V)$$

is irreducible admissible supersingular.

But this is very special to $GL_2(\mathbf{Q}_p)$: not irreducible in general.

3. Talk III

Last time, we talked about Hecke algebras, the mod p Satake transform, and we defined supersingular representations: recall this is defined using the Hecke eigenvalues.

3.1. Classification in terms of supersingular representations. If Q is a standard parabolic subgroup, then we define the generalized Steinberg representations

$$\operatorname{St}_Q := \operatorname{Ind}_Q^G(1) / \sum_{Q \subsetneq Q'} \operatorname{Ind}_{Q'}^G(1)$$

The actual Steinberg is when Q = B and trivial if Q = G.

Theorem 3.1.1 (Grosse-Klonne, H., T. Ly). The representations St_Q are irreducible admissible and pairwise non-isomorphic. The irreducible constituents of $\operatorname{Ind}_Q^G(1)$ are the $\operatorname{St}_{Q'}$ for all $Q' \supseteq Q$, each with multiplicity one.

Proposition 3.1.2. Suppose σ is an (irreducible/admissible/smooth) M-representation. Then there exists a unique largest parabolic $P(\sigma)$ containing P such that σ considered as a P-representation extends uniquely to $P(\sigma)$, and it carries the same properties as before (irreducible/admissible/smooth).

Remark 3.1.3. The extension $\tilde{\sigma}$ is trivial on the unipotent radical on $N(\sigma)$ because $N(\sigma) \subseteq N$.

Example 3.1.4. Say M is the (2, 1) Levi inside GL_3 . If σ is irreducible admissible, then it's automatically of the form $\tau \boxtimes \chi$, for some GL_2 -rep τ and character χ . If $P(\sigma) = G$, then $\tilde{\sigma}$ is trivial on the normal subgroup generated by

$$N = \begin{pmatrix} 1 & 0 & * \\ & 1 & * \\ & & 1 \end{pmatrix}$$

which is

$$\operatorname{SL}_3(\mathbf{Q}_p) = \left\langle \begin{pmatrix} 1 & & \\ * & 1 & \\ * & * & 1 \end{pmatrix}, \begin{pmatrix} 1 & * & * \\ & 1 & * \\ & & 1 \end{pmatrix} \right\rangle.$$

S since τ is irreducible, it was to be $\chi^{-1} \circ \det$.

Definition 3.1.5. Suppose (P, σ, Q) consists of a standard parabolic P, σ an irreducible admissible supersingular M-representation, and Q a parabolic $P \subseteq Q \subseteq P(\sigma)$. Then Let

$$I(P,\sigma,Q) = \operatorname{Ind}_{P(\sigma)}^G(\widetilde{\sigma} \otimes \operatorname{St}_Q^{P(\sigma)})$$

where $\operatorname{St}_Q^P := \operatorname{Ind}_Q^P(1) / \sum_{Q \subsetneq Q' \subseteq P} \operatorname{Ind}_{Q'}^P(1)$

Remark 3.1.6. As $N \leq P$ and $N \leq Q$, N acts trivially on St_Q^P , and

$$\operatorname{St}_Q^P|_M \cong \operatorname{Ind}_{Q \cap M}^M(1) / \sum_{Q \subsetneq Q' \subseteq P} \operatorname{Ind}_{Q' \cap M}^M$$

In particular, $\operatorname{St}_{Q}^{P(\sigma)}$ is trivial on $N(\sigma)$, so we can do parabolic induction.

Theorem 3.1.7 (Abe-Henniart-H-Vignéras). The map from triples (P, σ, Q) as above (up to isomorphism) to irreducible admissible G-representations (up to isomorphism) sending

$$(P, \sigma, Q) \mapsto I(P, \sigma, Q)$$

is a bijection.

Concretely, P has blocks of size n_1, \ldots, n_r , so if

$$\sigma \boxtimes \sigma_1 \boxtimes \cdots \boxtimes \sigma_r$$

for σ_i irreducible admissible supersingular representations of $\operatorname{GL}_n(\mathbf{Q}_p)$, then when you do $P(\sigma)$, you combine the consecutive ones such that

$$n_i = \dots = n_{i+1} = \dots = n_j = 1$$

and

$$\sigma_i = \sigma_{i+1} = \cdots = \sigma_i$$

i.e. the consecutive characters.

So any irreducible admissible representation is of the form

 $\operatorname{Ind}_{P'}^G(\tau)$

where $\tau = \tau_1 \boxtimes \cdots \boxtimes \tau_s$ and each τ_i is either supersingular (if $n'_i \ge 2$) or $\tau_i \cong \operatorname{St}_{O_i}^{\operatorname{GL}_{n'_i}} \otimes (\eta_i \circ \det)$.

Example 3.1.8 (n = 2). If P = B and $\sigma = \chi_1 \boxtimes \chi_2$ for $\chi_1 \neq \chi_2$, then since $\chi_1 \neq \chi_2$, we must have Q = B, and in this case $\operatorname{Ind}_B^G(\chi_1 \boxtimes \chi_2)$.

But if P = B and $\sigma = \chi \boxtimes \chi$, then $P(\sigma) = G$, so we can either take Q = B or Q = G. If Q = B, we get St $\otimes \chi \circ$ det and if Q = G we get $\chi \circ$ det.

Finally, if P = G, then σ is supersingular, and Q = G, so we see the supersingular representations of GL₂.

Lemma 3.1.9. If σ is an irreducible admissible supersingular representation of M, then $\operatorname{Ind}_{P}^{G}(\sigma)$ is of finite length. Its irreducible constituents are precisely the $I(P, \sigma, Q)$ where Q runs through all the possible choices between P and $P(\sigma)$, with multiplicity one.

Definition 3.1.10. An irreducible admissible *G*-representation π is *supercuspidal* if it's not a subquotient of $\operatorname{Ind}_{P}^{G}(\sigma)$ for $P \neq G$ and for all irreducible admissible σ .

Corollary 3.1.11. If π is irreducible admissible, then π is supersingular if and only if π is supercuspidal.

Proof. If π is supercuspidal, then by the Theorem, $\pi = I(P, \sigma, Q)$, so by the lemma, π is a subquotient of $\operatorname{Ind}_{P}^{G}(\sigma)$, but by the Theorem, P = G, so $\pi = I(G, \sigma, G) = \sigma$, and is therefore supersingular.

In the other direction, if π is supersingular, suppose π occurs in some $\operatorname{Ind}_Q^G(\tau)$ where τ is irreducible admissible and $Q \neq G$. Then the lemma applied to τ and transitivity of parabolic induction implies that π occurs in $\operatorname{Ind}_P^G(\sigma)$, where σ is supersingular, and $P \subseteq Q$. Therefore, by the lemma again,

 $\pi \cong I(P, \sigma, Q')$

for some Q', but on the other hand, $\pi \cong I(G, \pi, G)$, so P = G and Q = G.

Idea of proof of theorem::: If we want to show that $\operatorname{Ind}_P^Q(\sigma)$ is irreducible, then take $\tau \subseteq \operatorname{Ind}_P^G(\sigma)$ nonzero and then take $V \hookrightarrow \tau|_K$. Then

 $\operatorname{c-Ind}_{K}^{G} V \to \tau \hookrightarrow \operatorname{Ind}_{P}^{G}(\sigma)$

Then this factors through $C \otimes_{\mathcal{H}_G(V),\chi} \text{c-Ind}_K^G(V)$ for some $\chi : \mathcal{H}_G(V) \to C$. Then if $P_V \subseteq P$, then

 $C \otimes_{\mathcal{H}_G(V),\chi} \operatorname{c-Ind}_K^G(V) \cong \operatorname{Ind}_P^G(C \otimes_{\mathcal{H}_M} \operatorname{c-Ind} V_{N(\mathbf{F}_p)})$

3.2. p-adic representations. Compared to the mod p representation theory, we need to go through some basic stuff to even access the basic objects and definitions. There is a lot more topology and analysis involved, because the topologies are now very compatible.

To avoid confusion, let E/\mathbf{Q}_p be a finite extension of \mathbf{Q}_p : this will be our new coefficient field. $\mathcal{O} = \mathcal{O}_E$ will be the ring of integers, and V will now be an E-vector space.

3.3. **Some functional analysis.** The basic reference is Schneider's book. We can either consider seminorms or lattices.

Definition 3.3.1.

(1) A non-archimedean seminorm is a function

 $|\cdot|: V \to \mathbf{R}_{>0}$

such that

- $|x+y| \le \max(|x|, |y|),$
- $|\lambda x| = |\lambda|_E |x|$ for all $\lambda \in E$ and $x \in V$

and we say that it's a norm if

• |x| = 0 if and only if x = 0.

A lattice in V is an \mathscr{O} -submodule $\Lambda \subseteq V$ that spans V as an E-vector space.

(2) A locally convex vector space (lcv) is a vector space V equipped with a topology defined by seminorms $\{|\cdot|_i\}_{i \in I}$, where the basic opens are given by

 $x_0 + \{ |x|_{i_1} \le \epsilon, \dots, |x|_{i_n} \le \epsilon \text{ for some } i_j \in I, \epsilon > 0 \}$

with this definition, it's easy to see that V is a topological vector space (CHECK THIS). Equivalently, its topology is defined by lattices in the sense that the basic opens are of the form $x_0 + \Lambda_j$ for some $j \in J$ where the Λ_j are a family of lattices such that

- (a) For all $\alpha \in E^{\times}$ and $j \in J$, there exists some other $k \in J$ such that $\alpha \Lambda_j \supseteq \Lambda_k$ (we want to make sure that when we scale a lattice it's still open).
- (b) For $i, j \in J$, $\Lambda_i \cap \Lambda_j \supseteq \Lambda_k$.
- (3) The dictionary is as follows: if $|\cdot|$ is a seminorm, then $\{|x| \le \epsilon\}$ is a lattice. If Λ is a lattice, then $|x|_{\Lambda} := \inf_{x \in \lambda\Lambda} |\lambda|_E$.

By convention all lcv will be Hausdorff, i.e. $\bigcap \Lambda = \{0\}$, where Λ runs over open lattices.

Exercise 3.3.2. If V is a lcv and $W \subseteq V$ the subspace topology on W and quotient topology on V/W are lcv.

Remark 3.3.3. We usually consider $W \subseteq V$ closed, because then V/W is Hausdorff.

Exercise 3.3.4. If $(V_i)_{i \in I}$ is a family of lcv, then so is $\prod_{i \in I} V_i$ for the product topology.

Similarly, we can put a topology on $\lim_{i \to i} V_i$ and it's lcv.

On $V := \bigoplus_{i \in I} V_i$ take the finest locally convex topology such that each $V_i \to V$ is continuous, this should be lcv.

Similarly, we could take $\varinjlim_i V_i$, it should be lcv.

Exercise 3.3.5. If V is a lcv, so is its strong dual

$$V'_b := \operatorname{Hom}_E^{\operatorname{cts}}(V, E)$$

with the topology defined by the lattices

$$\{f \mid |f(B)| \le \epsilon\}$$

for all B bounded subsets of V and all $\epsilon > 0$ (uniform converges in each bounded subset). Here, $B \subseteq V$ is bounded if for all $\Lambda \subseteq V$ open lattice, there exists $\alpha \in E$ such that $B \subseteq \alpha \Lambda$.

Definition 3.3.6. A lev V is Banach (Fréchet) if its topology can be defined by a single (a countable family of) (semi)norm(s), and for which it's complete with respect to the topology (i.e. Cauchy sequences converge).

Clearly a Banach lev V is Fréchet. A Fréchet space is metrizable.

Remark 3.3.7. A Banach space does not carry a fixed norm, but sometimes it can be useful to fix one.

Proposition 3.3.8. A finite dimensional vector space carries a unique Hausdorff lcv topology. If $V = E^n$, we can define it in this non-archimedean world using the supremum norm:

$$||\underline{a}|| := \max_{1 \le i \le n} |a_i|.$$

This is clearly a Banach topology, complete because E is complete.

Example 3.3.9. If *I* is a set, consider

 $\ell^{\infty}(I) := \{ \text{bounded functions } I \to E \text{ with the sup. norm} \}$

Inside, we have $c_0(I) = \{f \in \ell^{\infty}(I) \mid \text{ for all } \epsilon > 0, |\{|f| > \epsilon\} | < \infty\}$. Think of $I = \mathbf{N}$.

If X is a compact topological space, then we have

 $\mathscr{C}^0(X, E)$

with the sup norm, and this is Banach.

Remark 3.3.10. For Fréchet spaces, we have the Open Mapping Theorem, and the Closed Graph Theorem.

4. Talk IV

4.1. **Recollections.** Recall that we take a finite extension E/\mathbf{Q}_p , and $\mathcal{O} = \mathcal{O}_E$ denotes its ring of integers, and V is an E-vector space. Recall that we are interested in locally convex (lcv) vector spaces V, i.e. those where a fundamental neighborhood basis of 0 is given by a family of lattices or semi-norms.

By convention, we assumed that V is always Hausdorff.

Definition 4.1.1. A map $f: V \to W$ of Banach spaces is **compact** if $\overline{f(V^{\circ})}$ is relatively compact for any/some unit ball $V^{\circ} \subseteq V$.

Definition 4.1.2. A locally convex V is of **compact type** if

$$V \cong \lim_{n \ge 1} V_n$$

where V_n is Banach and $V_n \to V_{n+1}$ are injective and compact.

Example 4.1.3. If $\dim_E V$ is countable, then we can equip it with the finest locally convex topology. Then $V = \bigcup_{n>1} V_n$, where $V_1 \subseteq V_2 \subseteq \cdots$ which are all finite dimensional, so V is clearly of compact type.

Fact 4.1.4.

- (1) If V is of compact type and $W \subseteq V$ is a closed subspace, then both W (with the subspace topology) and V/W (with the quotient topology) are of compact type.
- (2) The strong dual induces equivalences of categories:

 $\{compact type spaces\} \xleftarrow{\sim} \{ ``nuclear'' Fréchet spaces\}$

taking

$$\varinjlim_n V_n \mapsto \varprojlim_n (V_n)_b^{\vee}$$

where \lor denotes the continuous linear dual, and b denotes the strong topology.

4.2. Locally analytic manifolds. First let's discuss manifolds.

Definition 4.2.1. If $a \in \mathbf{Q}_p^d$ and r > 0, we define the closed ball

$$B_r(a) = \{x \in \mathbf{Q}_p^d \mid ||x - a|| \le r\}.$$

These are actually compact and open as well.

Definition 4.2.2. A (\mathbf{Q}_p -)locally analytic manifold of dimension d is a paracompact Hausdorff topological space M along with a maximal atlas of charts (U, φ_U) where $U \subseteq M$ is open which cover M, and $\varphi_U : U \xrightarrow{\sim} B_U \subseteq \mathbf{Q}_p^d$ where B_U is a closed ball such that $\varphi_{U_i} \circ \varphi_{U_j}^{-1} : \varphi_{U'}(U \cap U') \xrightarrow{\sim} \varphi_U(U \cap U')$ is locally analytic, i.e. locally given by a convergent power series.

We get a category of locally analytic manifolds.

Definition 4.2.3. A locally analytic group (or *p*-adic Lie group) is a group object in the category of locally analytic manifolds.

Example 4.2.4. Examples are $GL_n(\mathbf{Q}_p)$, $GL_n(K)$, K/\mathbf{Q}_p a finite extension.

Remark 4.2.5. Any locally analytic manifold is strictly paracompact, meaning that you can refine an open cover by a locally finite cover consisting of *disjoint* open sets.

4.3. Locally analytic functions.

Definition 4.3.1. If $B = B_r(a) \subseteq \mathbf{Q}_p^d$ and V is a Banach space, with some fixed norm $|| \cdot ||$, let

$$\mathcal{C}^{\mathrm{rig}}(B,V) := \left\{ f = \sum_{i \in \mathbf{N}^d} v_i (x_1 - a_1)^{i_1} \cdots (x_d - a_d)^{i_d} \mid \lim_{|i| \to \infty} ||v_i|| r^{|i|} = 0 \right\}.$$

Furthermore, let $||f||_B := \max_i ||v_i|| r^{|i|} \in \mathbf{R}_{>0}$.

Lemma 4.3.2.

- (1) $\|\cdot\|_B$ is independent of the choice of a, because we are in the non-archimedean world.
- (2) $(\mathcal{C}^{\mathrm{rig}}(B,V), ||\cdot||_B)$ is complete, i.e. Banach.

Proof. ???

Remark 4.3.3. We have a continuous injective evaluation map

$$\mathcal{C}^{\mathrm{rig}}(B,V) \to \mathcal{C}^0(B,V).$$

Definition 4.3.4. If $B_1, B_2 = B_r(a)$ are closed balls in \mathbf{Q}_p^d , then let

$$\mathcal{C}^{\mathrm{rig}}(B_1, B_2) := \{ f + a \mid f \in \mathcal{C}^{\mathrm{rig}}(B_1, \mathbf{Q}_p^d) \mid ||f||_{B_1} \le r \}$$

and this is independent of the choice of a, and composition is well-defined.

Definition 4.3.5. Suppose M is a locally analytic manifold and V a Banach space. Then we define

$$\mathcal{C}^{\mathrm{an}}(M,V) := \varinjlim_{M = \bigsqcup_{i \in I} U_i \text{ charts } \varphi: U_i \xrightarrow{\sim} B_i \text{ ball } i \in I} \prod_{i \in I} \mathcal{C}^{\mathrm{rig}}(B_i,V)$$

In this limit, transition maps are refinements: say $(U_i, \varphi_i)_{i \in I} \leq (W_j, \psi_j)_{j \in J}$ if for all $j \in J$ there exists a unique $i(j) \in I$ such that $W_j \subseteq U_{i(j)}$ such that the map

$$B_j \xrightarrow{\psi_j^{-1}} W_j \subseteq U_{i(j)} \xrightarrow{\varphi_{i(j)}} B_{i(j)}$$

lives in the image of $\mathcal{C}^{\mathrm{rig}}(B_j, B_{i(j)}) \to \mathcal{C}^0(B_j, B_{i(j)})$. Then we get transition maps

$$\mathcal{C}^{\operatorname{rig}}(U_{i(j)}, V) \to \mathcal{C}^{\operatorname{rig}}(W_j, V),$$

which induces

$$\prod_{i\in I} \mathcal{C}^{\operatorname{rig}}(U_i, V) \to \prod_{j\in J} \mathcal{C}^{\operatorname{rig}}(W_j, V),$$

which is continuous and injective.

Remark 4.3.6. The transition maps are compatible with compositions, and any two indices admit a common refinement, which implies that $\mathcal{C}^{an}(M, V)$ is locally convex and we have a continuous evaluation map

$$\mathcal{C}^{\mathrm{an}}(M,V) \to \mathcal{C}^{0}(M,V).$$

Exercise 4.3.7. If $M = \mathbf{Z}_p \subseteq \mathbf{Q}_p$ then the set $\{(a + p^n \mathbf{Z}_p, \mathrm{id}) \mid a \in \mathbf{Z}/p^n\}_{n \ge 0}$ is cofinal among all indices. So

$$\mathcal{C}^{\mathrm{an}}(\mathbf{Z}_p, V) = \varinjlim_{n \ge 0} \prod_{a \in \mathbf{Z}/p^n} \mathcal{C}^{\mathrm{rig}}(a + p^n \mathbf{Z}_p, V).$$

The transition maps are compact, which implies that $\mathcal{C}^{\mathrm{an}}(\mathbf{Z}_p, E)$ is of compact type. The fact that the transitions maps are compact comes down to the fact that

$$\mathcal{C}^{\mathrm{rig}}(\mathbf{Z}_p, E) \to \mathcal{C}^{\mathrm{rig}}(p\mathbf{Z}_p, E)$$

is compact.

Proposition 4.3.8. If M is compact and V = E (or more generally V is of compact type) then $C^{an}(M, V)$ is of compact type.

More generally, if V is locally convex, we define

$$\mathcal{C}^{\mathrm{an}}(M,V) := \varinjlim_{(U_i,\varphi_i,V_i)} \prod_{i \in I} \mathcal{C}^{\mathrm{rig}}(U_i,V_i)$$

over V_i Banach with a continuous injection $V_i \hookrightarrow V$, and where (U, φ_i) are before.

Proposition 4.3.9. If $M = \bigsqcup_{i \in I} M_i$, then

$$\mathcal{C}^{\mathrm{an}}(M,V) \cong \prod_{i \in I} (M_i,V).$$

4.4. Locally analytic and Banach space representations. Now G is a locally analytic group.

Definition 4.4.1. A **Banach space representation** of G is a Banach space V and a continuous linear action $G \times V \to V$. It is unitary if there exists a G-invariant norm defining the topology on V.

Remark 4.4.2. Continuous is equivalent to separately continuous. Closed subrepresentations and quotients are still Banach.

Example 4.4.3.

- (1) A finite dimensional continuous representation (with its unique Hausdorff topology) is a Banach space representation.
- (2) If $H \leq G$ is a closed subgroup such that $H \setminus G$ is compact and W is any Banach representation of H, then

$$(\operatorname{Ind}_{H}^{G} W)^{C_{0}} = \left\{ f : G \xrightarrow{\operatorname{cts}} W \mid f(hg) = hf(g) \right\}$$

There always exists a section of $s: H \setminus G \to G$, and we can use this to get an isomorphism

$$(\operatorname{Ind}_{H}^{G} W)^{C_{0}} \cong \mathcal{C}^{0}(H \setminus G, W),$$

which is again a Banach space, using the supremum norm. For example, this works when P is a parabolic, or we get $\mathcal{C}^0(G, E)$ if G is compact and H = 1.

(3) If G is compact, then any Banach space representation is unitary (via averaging, as usual).

Definition 4.4.4. A locally analytic representation of G is a compact type space V and a continuous linear action $G \times V \to V$ such that orbit maps $o_v : G \to V$ sending $g \mapsto gv$ are locally analytic, i.e. $o_v \in \mathcal{C}^{\mathrm{an}}(G, V)$ for all $v \in V$.

Example 4.4.5.

- (1) Finite dimensional representations are locally analytic: the point is that any continuous homomorphism $G \to \operatorname{GL}_n(E)$ is locally analytic).
- (2) If $H \leq G$ is closed with compact quotient, we let

$$(\operatorname{Ind}_{H}^{G} W)^{\operatorname{an}} := \left\{ f : G \xrightarrow{\operatorname{locally analytic}} W \mid f(hg) = hf(g) \right\} \cong \mathcal{C}^{\operatorname{an}}(H \backslash G, W),$$

which is of compact type because $H \setminus G$ is compact and W is of compact type.

- (3) Say $V^{\rm sm}$ is a **smooth representation** of countable dimension (here o_v is locally constant!)
- (4) If $G = \mathbf{G}(\mathbf{Q}_p)$, where **G** is an algebraic group and V_{alg} is a (finite dimensional) algebraic representation of G, then V_{alg} is locally analytic, and things of the form $V_{\text{alg}} \otimes V_{\text{sm}}$ are called "locally algebraic". (Warning: these are not abelian categories!!)

4.5. Duality and admissibility: mod p. For this section, G is a compact locally analytic group (e.g. $\operatorname{GL}_n(\mathbf{Z}_p)$).

First we discuss the mod p case. Let C/\mathbf{F}_p be a finite field and let

$$D^{\infty}(G) := \mathcal{C}^{\mathrm{an}}(G, C)^{\vee} = (\underset{U \le G \text{ open normal}}{\lim} \mathcal{C}(G/U, \mathbf{C}))^{\vee} = \underset{U \le G \text{ open normal}}{\lim} C[G/U] = C[[G]].$$

This is Noetherian (Lazard). If V is a smooth representation of C, then $V = \varinjlim_{U \leq G \text{ open normal}} V^U$, which has an action of C[[G]] in the limit, and thus V^{\vee} does as well.

Then duality in this case gives a map

{smooth G-reps} $\xrightarrow{\sim}$ { $D^{\infty}(G)$ -modules with profinite top. such that action is cts.}

sending $V \mapsto V^{\vee}$ ($\varinjlim W \mapsto \varprojlim W^{\vee}$).

Remark 4.5.1.

- (1) By (a version of) Nakayama's lemma, V is admissible if and only if V^{\vee} is a finitely generated module over $D^{\infty}(G)$.
- (2) Any finitely generated $D^{\infty}(G)$ -module carries a unique profinite topology such that the action is continuous, so the above duality restricts to

{admissible G-reps} $\xrightarrow{\sim}$ {finitely generated $D^{\infty}(G)$ -modules}.

Now the right hand side is an abelian category, because $D^{\infty}(G)$ is Noetherian.

Corollary 4.5.2. The LHS is closed under quotients.

4.6. Duality and admissibility: Banach case. Now let's go back to the *p*-adic case. Let

$$D^{c}(G) := \mathcal{C}^{0}(G, E)' \cong \mathscr{O}[[G]][1/p]$$

where $\mathscr{O}[[G]] = \varprojlim_{n,U \leq G \text{ open normal}} (\mathscr{O}/\varpi^n)[G/U]$. This is a profinite ring, Noetherian by Lazard.

If V is a Banach representation, then it is unitary (recall G is compact). In particular, there exists a G-invariant lattice $V^{\circ} \subseteq V$. By definition

$$V^{\circ} = \varprojlim_{n \ge 0} V^{\circ} / \varpi^n V^{\circ},$$

each of which carries an action of $(\mathcal{O}/\varpi^n)[[G]]$, so we get an action of $\mathcal{O}[[G]]$ in the limit. So V, V' become $D^c(G)$ -modules.

Definition 4.6.1. Say V is admissible if V^{\vee} is finitely generated as a $D^{c}(G)$ -module.

Theorem 4.6.2 (Schneider-Teitelbaum). There is a bijection

 $\{admissible Banach representations of G\} \xrightarrow{\sim} \{finitely generated D^{c}(G)-modules\}$

sending $V \mapsto V^{\vee}$.

Example 4.6.3. The dual of $\mathcal{C}^0(G, E)$ is $D^c(G)$.

Corollary 4.6.4.

- (1) Any map $f: V \to W$ of admissible Banach space representations is strict (i.e. $V/\ker f \cong \operatorname{im} f$ is a topological isomorphism).
- (2) Any closed subspace W and quotient V/W are again admissible if V is admissible.
- (3) Have usual kernel/cokernel with the induced topology.

Let G be a locally analytic group. Recall that a Banach representation is a continuous map

$$G \times V \to V$$

where V is a Banach space. A locally analytic representation is a continuous map

$$G\times V\to V$$

where V is of compact type and the orbit map $o_v : G \to V$ is locally analytic for all $v \in V$.

Assume G is compact. Recall that in the Banach case, we defined

$$D^{c}(G) := \mathcal{C}^{0}(G, E)' \cong \mathscr{O}[[G]][1/p]$$

and so V and V' become finitely generated modules over $D^{c}(G)$, and this is an equivalence (cf. Theorem 4.6.2), and therefore we get an abelian category.

5.1. **Duality and admissibility: locally analytic case.** Now we can still define the distribution algebra analogously:

$$D^{\mathrm{an}}(G) := \mathcal{C}^{\mathrm{an}}(G, E)_{h}^{\prime}$$

which is a nuclear Fréchet space. We have Dirac distributions δ_g for $g \in G$, which span a dense subspace of the analytic distributions.

Theorem 5.1.1 (de Lacroix). There is a unique continuous multiplication * on $D^{an}(G)$ such that

$$\delta_g * \delta_h = \delta_{gh}.$$

Concretely, if $\delta_1, \delta_2 \in D^{\mathrm{an}}(G)$, we can compute

$$(\delta_1 * \delta_2)(f) = \delta_1(g_1 \mapsto \delta_2(g_2 \mapsto f(g_1g_2)))$$

If V is a locally analytic representation then there's a unique separately continuous action of $D^{\mathrm{an}}(G) \times V \to V$ such that $\delta_q v = gv$, and same for V'.

But now $D^{\mathrm{an}}(G)$ is not Noetherian in general.

Theorem 5.1.2 (Schneider-Teitelbaum).

$$\left\{\begin{array}{c} locally \ analytic \ representations \\ on \ compact \ type \ spaces \end{array}\right\} \xrightarrow{\sim} \left\{\begin{array}{c} separately \ continuous \ D^{\mathrm{an}}(G) \text{-modules} \\ on \ nuclear \ Fréchet \ spaces \end{array}\right\}$$

taking $V \mapsto V'_b$.

Remark 5.1.3. If $\mathfrak{g} = \operatorname{Lie}(G)$, then we get a map $\mathfrak{g} \to D^{\operatorname{an}}(G)$ via

$$X \mapsto (f \mapsto \frac{d}{dt}|_{t=0} f(e^{tX})).$$

Note the exponential map $\mathfrak{g} \to G$ is defined near the identity.

Remark 5.1.4. We have a subring $D^{c}(G) \hookrightarrow D^{an}(G)$, but again, $D^{an}(G)$ is not necessarily Noetherian.

Example 5.1.5. Take $G = \mathbf{Z}_p$. Mahler showed that

$$\mathcal{C}^{0}(\mathbf{Z}_{p}, E) = \left\{ \sum_{n \ge 0} a_{n} \binom{x}{n} \mid a_{n} \in E, a_{n} \to 0 \right\}$$

So

$$\mathcal{C}^{\mathrm{an}}(\mathbf{Z}_p, E) = \left\{ \sum_{n \ge 0} a_n \binom{x}{n} \mid |a_n| r^n \to 0 \text{ for some } r > 1 \right\}$$

Then we have the Amice transform $D^{\mathrm{an}}(\mathbf{Z}_p) \xrightarrow{\sim} \{ \text{rigid analytic functions on the open unit disc} \} =: \mathcal{C}^{\mathrm{rig}}(X_{<1}),$ which is an algebra isomorphism sending

$$\delta \mapsto \delta((1+T)^x) = \sum_{n \ge 0} \delta\left(\binom{x}{n}\right) T^n$$

But note $\mathcal{C}^{\mathrm{rig}}(X_{\leq 1}) \cong \varprojlim_{r \leq 1, r \in p^{\mathbf{Q}}} \mathcal{C}^{\mathrm{rig}}(X_{\leq r})$, and note that $\mathcal{C}^{\mathrm{rig}}(X_{\leq r})$ is a noetherian PID.

In general, Schneider-Teitelbaum showed that $D^{\mathrm{an}}(G)$ is a Fréchet-Stein algebra.

Definition 5.1.6. A Fréchet algebra A is Fréchet-Stein if there exist seminorms $q_1 \leq q_2 \leq \cdots$ defining the topology on A such that

- (1) The multiplication $A \times A \to A$ is continuous with respect to q_n for all n (which implies that $A \cong \underset{n>1}{\lim} A_{q_n}$).
- (2) The completion A_{q_n} is left Noetherian.
- (3) A_{q_n} is flat as a right $A_{q_{n+1}}$ -module.

Definition 5.1.7. If A is Fréchet-Stein, then an A-module M is coadmissible if

- (1) $M_n := A_{q_n} \otimes_A M$ is finitely generated for all n, and
- (2) $M \to \varprojlim_n M_n$ is a bijection.

This mimics the definition of the definition of a coherent sheaf on a non-affinoid which has an exhaustive decreasing cover by affinoid things. It doesn't depend on the choice of q_n .

Fact 5.1.8.

- (1) In the above definition, coadmissible modules M are the same as a compatible sequence M_n , each finitely generated A_{q_n} -modules
- (2) The category of coadmissible modules is an abelian subcategory of the category of A-modules.
- (3) Any finitely presented A-module is coadmissible.

Remark 5.1.9. Any coadmissible M carries a canonical topology: first M_n carries a unique Banach topology by finite generation, then we take the inverse limit topology from $M \xrightarrow{\sim} \varprojlim_n M_n$. Then any map between coadmissible modules is continuous and strict.

The idea of the proof that $D^{\mathrm{an}}(G)$ are Fréchet-Stein is that we pass to a small compact open subgroup that is "uniform pro-p". One consequence of this is that topologically, we have a homeomorphism

$$\mathbf{Z}_p^d \xrightarrow{\sim} G$$

Then they use some results of Lazard on Mahler expansions, etc.

Definition 5.1.10. A locally analytic representation V is **admissible** if V'_b is isomorphic to a coadmissible module with its canonical topology.

As before, we get

{admissible locally analytic representations}
$$\xrightarrow{\sim}$$
 {coadmissible modules over $D^{\mathrm{an}}(G)$ }

and thus we get an abelian category.

Corollary 5.1.11.

- (1) Any map of admissible G-representations is strict with closed image.
- (2) Closed subrepresentations/Hausdorff quotients are admissible.
- (3) We have the usual kernel and cokernel.

Example 5.1.12. If V is admissible and smooth, then it's admissible locally analytic. If V is an admissible Banach representation of G, then let

$$V_{\mathrm{an}} := \{ v \in V \mid o_v \in \mathcal{C}^{\mathrm{an}}(G, V) \}$$

which takes the subspace topology from $\mathcal{C}^{\mathrm{an}}(G, V)$.

Theorem 5.1.13 (Schneider-Teitelbaum).

- (1) The $V_{\rm an}$ are compact type and dense in V.
- (2) $V_{\rm an}$ form an admissible locally analytic representation and $(V_{\rm an})' \cong D^{\rm an}(G) \otimes_{D^c(G)} V'$.
- (3) $V \mapsto V_{an}$ is exact.

5.2. Orlik-Strauch Representations. Now let $G = \operatorname{GL}_n(\mathbf{Q}_p)$. We write P = MN the usual parabolic decomposition for some P. Let $\mathfrak{g} = \operatorname{Lie}(G)$, $\mathfrak{p} = \operatorname{Lie}(P)$, etc. We have a universal enveloping algebra $U(\mathfrak{g})$, etc, by which we really mean $U(\mathfrak{g}) \otimes_{\mathbf{Q}_p} E$.

Definition 5.2.1. A finite dimensional irreducible representation of \mathfrak{m} over E is **algebraic** if it integrates to a finite dimensional algebraic representation of the Levi M.

Example 5.2.2. If P = B, then M = T, and $\mathfrak{t} = \mathbf{Q}_p^d \to E$ is some map $x \mapsto \sum \lambda_i x_i$, and this is algebraic if and only if $\lambda_i \in \mathbf{Z}$, and in this case, this integrates to the character sending

diag
$$(t_1,\ldots,t_n)\mapsto \prod t_i^{\lambda_i}$$
.

Definition 5.2.3. The objects of the category $\mathcal{O}_{\mathfrak{p}}^{\text{alg}}$ are finitely generated $U(\mathfrak{g})$ -modules L such that $L|_{\mathfrak{m}}$ is a direct sum of irreducible algebraic representations of \mathfrak{m} , and such that for all $x \in L$ we have that $U(\mathfrak{m}) \cdot x$ is finite dimensional.

Morphisms are $U(\mathfrak{g})$ -linear maps.

Example 5.2.4.

- (1) Note $\mathcal{O}_{\mathfrak{q}}^{\mathrm{alg}}$ is the category of algebraic representations of \mathfrak{g} .
- (2) In general, if W is an irreducible algebraic m-representation, consider it as a module over $U(\mathfrak{p})$ via the projection $U(\mathfrak{p}) \rightarrow U(\mathfrak{m})$. Then the (generalized) Verma module is

$$M(W) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} W$$

lives in $\mathcal{O}_{\mathfrak{p}}^{\mathrm{alg}}$. (exercise: use that $M(W) = U(\overline{\mathfrak{n}}) \otimes_E W$ by PBW).

Fact 5.2.5. Here are some facts about $\mathcal{O}_{\mathfrak{p}}^{\mathrm{alg}}.$

- (1) It's abelian.
- (2) It's closed under sub/quotient/ \oplus .
- (3) Every object has finite length.
- (4) If $P \subseteq Q$ then $\mathcal{O}_{\mathfrak{q}}^{\mathrm{alg}} \subseteq \mathcal{O}_{\mathfrak{p}}^{\mathrm{alg}}$.

Now fix $L \in \mathcal{O}_{\mathfrak{p}}^{\text{alg}}$, and π_M an admissible smooth *M*-representation. Then there exists some $W \subseteq L$ finite dimensional, stable under \mathfrak{p} such that *W* generates *L*.

$$0 \to \partial \to U(\mathfrak{g}) \otimes_{U(\mathfrak{g})} W \to L \to 0$$

Note the \mathfrak{p} -action on W integrates to an algebraic P-action: the idea is that it's clearly true for the M-action by axiom (2), and for the \mathfrak{n} -action use part (3) and the exponential map $\mathfrak{n} \xrightarrow{\sim} N$.

Now consider

$$\mathcal{C}^{\mathrm{an}}(G, W' \otimes \pi_M),$$

which carries two *G*-actions, by both left/right-translation. Differentiate the left one and get an action of \mathfrak{g} on $\mathcal{C}^{\mathrm{an}}(G, W' \otimes \pi_M)$, i.e. $X \cdot f = \frac{d}{dt}|_{t=0} f(e^{tX}(-))$.

Then we get a pairing

$$(U(\mathfrak{g})\otimes_{U(\mathfrak{p})}W)\times \mathrm{Ind}_P^G(W'\otimes\pi_M)^{\mathrm{an}}\to \mathcal{C}^{\mathrm{an}}(G,\pi_M)$$

sending

$$(X \otimes w, f) \mapsto (g \mapsto \langle (X \cdot f)(g), w \rangle)$$

Definition 5.2.6. Note ∂ acts on $\operatorname{Ind}_{P}^{G}(W' \otimes \pi_{M})^{\operatorname{an}}$ via $U(G) \otimes_{U(\mathfrak{p})} W$ and the above pairing.

 $\mathcal{F}_P^G(L,\pi_M) := [\operatorname{Ind}_P^G(W' \otimes \pi_M)^{\operatorname{an}}]^{\partial = 0}$

which is a closed G-subrepresentation of $\operatorname{Ind}_P^G(W' \otimes \pi_M)^{\operatorname{an}}$.

Example 5.2.7. Note $\mathcal{F}_P^G(U(\mathfrak{g}) \otimes_{U(\mathfrak{g})} W, \pi_M) = \operatorname{Ind}_P^G(W' \otimes \pi_M)^{\operatorname{an}}$: in this case $\partial = 0$.

Theorem 5.2.8 (Orlik-S?).

- (1) \mathcal{F}_P^G is independent of the choice of W.
- (2) $\mathcal{F}_{P}^{G}(L,\pi_{M})$ is admissible, and this is functorial and exact in both L and π_{M} .
- (3) If $Q \supseteq P$ and $L \in \mathcal{O}_{\mathfrak{q}}^{\mathrm{alg}}$

$$\mathcal{F}_P^G(L, \pi_M) \cong \mathcal{F}_Q^G(L, (\operatorname{Ind}_{P \cap M_O}^M \pi_M)^\infty)$$

(4) If L and π_M are irreducible and P is maximal for L (i.e. $L \notin \mathcal{O}_{\mathfrak{q}}^{\text{alg}}$ for $Q \supseteq P$) then $\mathcal{F}_P^G(L, \pi_M)$ is topologically irreducible.

Corollary 5.2.9. If π_M is of finite length then $\mathcal{F}_P^G(L, \pi_M)$ is topologically of finite length.

5.3. n = 2. Now take $\lambda = (\lambda_1, \lambda_2) \in \mathbf{Z}^2 \subseteq \mathfrak{t}'$ with $\lambda_1 \geq \lambda_2$. Then we get the following sequence in \mathcal{O} . Note $L(\lambda)$ is the unique irreducible quotient of the Verma module.

$$0 \to L(\lambda') \to M(\lambda) \to L(\lambda) \to 0$$

where $\lambda' = (12) \circ \lambda = (\lambda_2 - 1, \lambda_1 + 1)$. Note $L(\lambda)$ lies in $\mathcal{O}_{\mathfrak{g}}^{\text{alg}}$, but $L(\lambda')$ is infinite dimensional.

Let $\chi = \chi_1 \otimes \chi_2$ be a smooth character $T \to E^{\times}$. By Orlik-Strauch, we get

$$0 \to \mathcal{F}_B^G(L(\lambda), \chi) \to \mathcal{F}_B^G(M(\lambda), \chi) \to \mathcal{F}_B^G(L(\lambda'), \chi) \to 0$$

Note $\mathcal{F}_B^G(M(\lambda), \chi) = \operatorname{Ind}_B^G(\chi_{\lambda}^{-1} \otimes \chi)^{\operatorname{an}}$. Furthermore, the quotient $\mathcal{F}_B^G(L(\lambda'), \chi)$ is irreducible. Also $\mathcal{F}_B^G(L(\lambda), \chi) \cong \mathcal{F}_G^G(L(\lambda), (\operatorname{Ind}_B^G(\chi))^{\infty})$

is irreducible if and only if $\chi_1 \chi_2^{-1} \neq 1, |\cdot|^2$.

lastly, the quotient is $M(\lambda')$, so it's a principal series for λ' .

References