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1. Talk I

This course will be about mod p and p-adic representations of p-adic reductive groups, and we will focus on
GLn(Qp) to keep things concrete.

Date: March 20, 2019.
1ashwin.iyengar@kcl.ac.uk
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Our motivation are the mod p and p-adic (local) Langlands correspondences, i.e. connections with Galois
representations. The first half will roughly be about mod p representations, and the second half will be about
p-adic representations (for example, Banach representations, and locally analytic representations).

1.1. p-adic groups. For simplicity, assume G = GLn(Qp). Then G is a topological group with unique
maximal compact open K = GLn(Zp) (up to conjugation). Inside K we have a filtration K(r) = 1 +
pr Matn(Zp) ⊇ K(r + 1) ⊇ · · · , which form a fundamental system of neighborhoods of 1 ∈ G. This implies
immediately that G is totally disconnected.

Remark 1.1.1. If H is a topological group, then any open subgroup is closed, and any closed subgroup of
finite index is open.

Definition 1.1.2. For us, a profinite group (resp. a pro-p-group) is a compact Hausdorff topological group
with a fundamental system of neighborhoods of 1 consisting of open normal subgroups of finite index (resp.
of index p).

Example 1.1.3. In our case K is profinite, and K(r) is pro-p: to see this note

K(s)/K(s+ 1)
∼−→ Matn(Fp)

under the map sending 1 + psA 7→ A.

In particular, this implies that G has no Fp-valued Haar measure.

Here are some important subgroups:

• The Borel B denotes the upper triangular matrices in G.

• The torus T denotes the diagonal matrices in B.

• The unipotent radical U of B denotes the upper triangular matrices with 1 all along the diagonal.

• More generally if n =
∑r
i=1 ni, then P denotes the standard parabolic subgroup of G with r blocks of

size n1, . . . , nr, and the standard Levi subgroup is the corresponding Levi, isomorphic to
∏r
i=1 GLni ,

and N denotes the corresponding unipotent radical.

• Note B = T o U and more generally P = M oN .

• We let P denote the opposite parabolic (this is just the transpose, for GLn) and N its unipotent
radical.

Proposition 1.1.4 (Iwasawa Decomposition). For P any standard parabolic, G = PK.

Proof. Exercise. �

Proposition 1.1.5 (Cartan Decomposition).

G =
⊔

a1≥···≥an

K diag(pa1 , . . . , pan)K

Proof. For GLn this follows from the theory of elementary divisors, but for more general groups, this is
harder, and you need the Bruhat-Tits building. �
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1.2. Smooth representations. In this section, G is any Hausdorff topological group with a fundamental
system of neighborhoods consisting of compact open subgroups. Let C be any field (soon we assume that C
has characteristic p and that C is algebraically closed).

Suppose π is any representation of G over C.

Lemma 1.2.1. The following are equivalent:

(1) For all x ∈ π, StabG(x) contains an open subgroup.

(2) π =
⋃
U π

U where U runs over compact open subgroups.

(3) The action map G× π → π is continuous if π is discrete.

Definition 1.2.2. If these hold, then π is smooth. A map of smooth G-representations is any G-linear map,
and this forms an abelian category of smooth representations of G.

Example 1.2.3. If G = Q×p , then a character χ : Q×p → C× is smooth if and only if kerχ is open. But

Q×p = Z×p ×pZ, so χ is determined by χ(p) and a character Z×p → C× with open kernel. The open subgroups

of Z×p are of the form 1 + prZp so the character Z×p → C× must factor via a character

Z×p /(1 + prZp) ∼= Z/(p− 1)Z× Z/pr−1Z→ C×

for some r.

1.3. Induced representations. Now suppose H ≤ G is some closed subgroup and σ is a smooth H-
representation. Then

IndGH(σ) :=

{
f : G→ σ | f(hg) = hf(g) for all h ∈ H, g ∈ G,

∃U compact open where f(gu) = f(g)

}
This has a G-action:

(γ · f)(g) = f(gγ)

and this is forced to be smooth because of the compact open condition in the definition.

Remark 1.3.1. For f ∈ IndGH(σ), the support supp(f) = {Hg ∈ H\G | f(g) 6= 0} ⊆ H\G is open and
closed: if we pick U such that f(gu) = f(g) for all u ∈ U , then the preimage of supp(f) under G→ H\G is
a union of left cosets of U , which is open. Repeat the argument with the complement of supp(f).

Definition 1.3.2. Let c-IndGH σ =
{
f ∈ IndGH σ : supp(f) compact

}
. This is a subrepresentation of IndGH ,

called the compact induction.

Remark 1.3.3. In the special case where H\G is compact, the two constructions agree. For example, if H
is a parabolic subgroup of GLn, they are the same.

Proposition 1.3.4 (Frobenius Reciprocity). Say π is a smooth G-representation, and σ is a smooth H-
representation. Then

(1) HomG(π, IndGH σ) ∼= HomH(π|H , σ), and this is natural in π, σ.

(2) If U is an open subgroup of G, then

HomG(c-IndGU σ, π) ∼= HomU (σ, π|U ).

Moreover, c-IndGU is an exact functor.

Proof Idea. For ϕ : π → IndGH σ, we define ϕ : π|H → σ sending x 7→ ϕ(x)(1). Conversely, for ψ : π|H → σ,

we define ψ : π → IndGH σ taking x 7→ (g 7→ ψ(gx)).

For g ∈ G and y ∈ σ, let [g, y] ∈ c-IndGU σ denote the function on Ug−1 that sends g−1 7→ y, and zero outside.

Then γ[g, y] = [γg, y] for γ ∈ G and if u ∈ U we have [gu, y] = [g, uy]. Check that C[G]⊗C[U ] σ ∼= c-IndGU σ
sending g ⊗ y 7→ [g, y], and exactness follows from this description because C[G] is free over C[U ]. �
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Proposition 1.3.5. If G = GLn(Qp) and P is a standard parabolic, then IndGP (−) is an exact functor.

Proof Idea. There exists a continuous section s : P\G → G to π : G → P\G: for example, you can use

G ⊇ PN . Then IndGP σ
∼= C∞(P\G, σ) as a C-v.s. (locally constant functions): send f 7→ (x 7→ f(s(x))). �

Remark 1.3.6. If σ is a smooth representation of M , then first we inflate it to a smooth P -representation
via P � M , and then induce. By abuse of notation, we notate this IndGP (σ). Furthermore, if P1 ⊆ P2 ⊆ G
and σ is a smooth representation of M1, then

IndGP1
σ ∼= IndGP2

IndP2

P1
(σ ◦ (P1 �M1)) ∼= IndGP2

IndM2

P2∩M1
σ|P2∩M1

.

1.4. The mod p setting. From now on, in the mod p setting, we assume that C is an algebraically closed
field of characteristic p, and G = GLn(Qp).

The following is an extremely important lemma which distinguishes mod p representation theory from the
characteristic 0 world.

Lemma 1.4.1 (p-group Lemma). Any smooth representation τ 6= 0 of a pro-p group H has a fixed vector:
τH 6= 0.

Proof. WLOG let C = Fp, and pick some nonzero x ∈ τ . Since τ is smooth and H is compact, there exists
an open normal subgroup U ≤ H such that x ∈ τU . Note H/U is a finite p-group (since H is pro-p), and it
acts on τU . Replacing τU by Fp[H] · x, WLOG we can assume dimFp τ is finite. By picking a basis, we get
a map

τ : H → GLn(Fp),

so τ(H) is a p-group, and thus τ(H) is contained in the p-Sylow subgroup of GLn(Fp). But the p-Sylow
subgroup of GLn(Fp) is conjugate to the unipotent radical of the standard Borel, and thus τ(H) fixes the
first basis vector. �

Corollary 1.4.2. If π 6= 0 is a smooth representation of G or K, then πK(1) 6= 0.

Proof. The group K(1) is pro-p, so use the lemma. �

Corollary 1.4.3. Any irreducible smooth K-representation π is trivial on K(1), so we get a bijection

{irreducible smooth K-representations} ∼←→ {irreducible GLn(Fp)-representations} .

Proof. Since πK(1) 6= 0 and K(1) is normal in K, we see that 0 6= πK(1) ⊆ π is a subrepresentation. Now we
use the fact that π is irreducible to conclude that πK(1) = π which shows that the action of π factors through
K/K(1) ∼= GLn(Fp). �

Definition 1.4.4. An irreducible smooth K-representation is called a weight.

Corollary 1.4.5. Any non-zero smooth G-representation π contains a weight V , i.e. V ⊆ π|K .

Proof. Pick a nonzero x ∈ πK(1). Then C[K] · x = C[K/K(1)] · x is finite dimensional, so it contains an
irreducible subrepresentation. �

If n = 1, then the weights are exactly the irreducible F×p -representations valued in C, which are just

parametrized by F×p .

If n = 2, the weights are given by Va,b = Syma−b(C2)⊗ detb for (a, b) ∈ Z2 such that 0 ≤ a− b ≤ p− 1 (and
0 ≤ b ≤ p− 1).
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We can think of Syma−b(C2) as homogeneous polynomials in X,Y of degree a−b, and GL2(Fp) acts via(
α β
γ δ

)
f(X,Y ) = f(αX + γY, βX + δY )

Note dimVa,b = a− b+ 1.

Theorem 1.4.6. If P = MN is the standard parabolic decomposition and V is a weight of G, then the
natural map

V N(Fp) ↪→ V � VN(Fp)

is an isomorphism of irreducible M(Fp)-representations (i.e. weights of M). In particular, if P = B,

V U(Fp) ∼= VU(Fp) is one dimensional.

This theorem allows us to make one parametrization of weights.

Theorem 1.4.7 (Curtis, 1970s...). There is a bijection

{weights of G} ∼=
{

(ψ : T (Fp)→ C×, P standard parabolic) | ψ extends to P (Fp)
}
.

The map sends V 7→ (ψV , PV ), which we call the parameter of V , where ψV is the action of T (Fp) on V U(Fp)

and PV is the largest standard parabolic such that VN(Fp)-coinvariants are still one-dimensional.

Example 1.4.8. Let n = 2 again. Then Y a−b ∈ Va,b is U(Fp)-stable and thus generates V
U(Fp)
a,b , and you

can compute that ψVa,b : T (Fp) → C× takes diag(x, y) 7→ xbya. Furthermore PVa,b is G if a = b and B
otherwise. Note ψVa,b extends to G(Fp) if and only if a ≡ b mod p− 1.

Remark 1.4.9. There is a Steinberg parametrization of weights, which uses algebraic representations of the
algebraic group GLn,Fp .

Remark 1.4.10. The weight V N(Fp) ∼= VN(Fp) of M has parameter (ψV ,M ∩ PV ).

1.5. Hecke algebras and mod p Satake isomorphism. If π is an irreducible smooth G-representation,
then there exists a weight V ↪→ π|K , so by Frobenius reciprocity, we get a map c-IndGK V → π, which is
surjective, since π is irreducible and V is nonzero.

Definition 1.5.1. The Hecke algebra of the weight V is HG(V ) = EndG(c-IndGK V ).

Lemma 1.5.2. We have an algebra isomorphism

HG(V ) ∼=
{
ϕ : G→ EndC(V ) | supp(ϕ) is compact, and

ϕ(k1gk2) = k1 ◦ ϕ(g) ◦ k2

}
where the right hand side has the convolution product

(ϕ1 ∗ ϕ2)(g) =
∑

γ∈G/K

ϕ1(gγ) ◦ ϕ2(γ−1)

Proof. As vector spaces,

HG(V ) = HomG(c-IndGK(V ), c-IndGK(V )) = HomK(V, c-IndGK(V )|K).

In general, we have

Maps(V,Maps(G,V )) = Maps(G× V, V ) = Maps(G,Maps(V, V )).

Then just check that this matches the right hand side in the statement of the lemma. Then just do the
computation to check multiplication. �
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2. Talk II

2.1. Hecke algebras + mod p Satake isomorphism. Recall G = GLn(Qp), and C is an algebraically
closed characteristic p coefficient field. We had the congruence subgroups K and K(r), and the standard
decomposition of parabolics P = MN for N the unipotent radical and N the Levi.

We defined weights to be irreducible smooth C-valued representations of K, but since we’re in characteristic
p these are automatically trivial on K(1), and K/K(1) ∼= G(Fp), so these are the same as irreducible
representations of GLn(Fp).

Definition 2.1.1. We defined the Hecke algebra of V is

HG(V ) = EndG(c-IndGK(V )).

We had the following lemma:

Lemma 2.1.2. We have an algebra isomorphism

HG(V ) ∼= {ϕ : G→ EndC(V ) | supp(ϕ) compact, and ϕ(k1gk2) = k1 ◦ ϕ(g) ◦ k2}

where the right hand side has the convolution product

(ϕ1 ◦ ϕ2)(g) =
∑

γ∈G/K

ϕ1(gγ) ◦ ϕ2(γ−1)

Proof. Given last time. �

Remark 2.1.3. If π is a smooth G-representation, then by Frobenius reciprocity, if V is a weight, then

HomK(V, π|K) ∼= HomG(c-IndGK V, π),

and it’s now clear that HG(V ) acts on the left side of the equality. Explicitly, if f : V → π|K and ϕ ∈ HG(V ),
then

(f · ϕ)(x) =
∑

Kg∈K\G

g−1f(ϕ(g)(x)),

and now you need to check that this is well-defined.

Example 2.1.4. If V = 1 (trivial rep) then

HG(V ) = HG(1) = Cc(K\G/K,C).

Then HG(V ) acts on HomK(1, π|K) = πK in the usual double-coset way, i.e.

1KgK : πK → πK , x 7→
∑
i

g−1
i x

where KgK =
⊔
iKgi.

2.2. Satake isomorphism (mod p). We want to understand the structure of HG(V ) now for C-valued
representations. We want to embed

HG(V ) ↪→ HT (VU(Fp))

and then determine its image. More generally, we want to have

HG(V ) ↪→ HM (VN(Fp))

for larger parabolics.

Lemma 2.2.1. There exists a natural isomorphism

HomG(c-IndGK(V ), IndGP (−))
f 7→fM−−−−→ HomM (c-IndMM∩K VN(Fp),−)
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Proof. By Frobenius reciprocity, we get

HomG(c-IndGK(V ), IndGP (−)) ∼= HomK(V, IndGP (−)|K)

But IndGP (−)|K = IndKP∩K(−|P∩K) by the Iwasawa decomposition. Then

HomK(V, IndKP∩K(−|P∩K)) ∼= HomP∩K(V |P∩K ,−|P∩K)

Now note we started with an M -representation viewed as a P -representation, so this becomes

HomM∩K(VN∩K ,−|M∩K)

and then finally we use Frobenius reciprocity again to get

HomM (c-IndMM∩K VN(Fp),−).

�

Observe that any ϕ ∈ HG(V ) = End(c-IndGK(V )) induces a natural transformation of the first functor
in the lemma by precomposition, hence also of the second functor. So by Yoneda, there exists a unique
SGM (ϕ) ∈ EndM (c-IndMM∩K VN(FP )) = HM (VN(Fp)) such that

(f ◦ ϕ)M = fM ◦ SGM (ϕ)

Exercise 2.2.2. Use this identity to show that SGM : HG(V )→ HM (VN(Fp)) is a C-algebra homomorphism.

Proposition 2.2.3. Let pN : V → VN(Fp). Explicitly, we have SGM (ϕ) : M → EndC(VN(Fp)) takes m 7→∑
N∩K\N pN ◦ ϕ(nm).

Idea of Proof. Find f such that fM = id and use the defining formula. �

Definition 2.2.4. Let T+ = {diag(t1, . . . , tn) ∈ T | val(t1) ≥ · · · ≥ val(tn)} and

H+
T (VU(Fp)) =

{
ψ : HT (VU(Fp)) : suppψ ⊆ T+

}
Theorem 2.2.5. The map

SGT : HG(V )→ HT (VU(Fp))

is injective with image H+
T (VU(Fp)).

Corollary 2.2.6.

HG(V ) ∼= C[Λ+]

where Λ+ = T+/(T ∩K) = Zn+ = {(λ1, . . . , λn) | λ1 ≥ · · · ≥ λn)}.

Outline of Proof.

(1) Find nice bases of HG and HT : for λ ∈ Zn+ let tλ := diag(pλ1 , . . . , pλn).

Fact: there exists Tλ ∈ HG(V ) such that suppTλ = KtλK and Tλ(tλ) ∈ EndC(V ) is a linear
projection. Then if we reduce K ∩ t−1

λ Ktλ to the residue field, we get Pλ(Fp) and note that Tλ(tλ)
has to factor as

V � VNλ(Fp) → V Nλ(Fp) ↪→ V.

and the middle map is Mλ(Fp)-linear by Theorem 1.4.6.

The by the Cartan decomposition, deduce that Tλ for all λ ∈ Zn+ gives a C-basis of HG. Similarly,
(τλ)λ forms a basis for HT .

(2) To show that SGT is injective, prove that

SGT (Tλ) = τλ +
∑
µ<λ

aµτµ
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(3) Need to show that im(SGT ) ⊆ H+
T .

(4) Triangular argument of Sug Woo.

�

For the corollary, just note that as T is commutative, τλτµ = τλµ, so we deduce that

H+
T
∼= C[Zn+] ∼= C[x1, . . . , xn, x

−1
n

Proposition 2.2.7. So we have a commutative diagram

HG(V ) HM (VN(Fp))

HT (VU(Fp)),

SGM

SGT
SMT

hence SGM is injective. Moreover, there exists ϕ ∈ HG(V ) such that

HG(V )[ϕ−1]
∼−→ HM (VN(Fp))

Proof. The first part is formal.

Note im(SGT ) ∼= C[Λ+], but

im(SMT ) ∼= C[Λ+,M ]

Note SGM is identified with the inclusion

C[Λ+] ↪→ C[Λ+,M ,

and this is localization at any fixed λ ∈ Λ+ ∼= Zn+ such that

λ1 = · · · = λn1
> λn1+1 = · · · = λn1+n2

> · · ·
�

2.3. Admissible representations and supersingular representations.

Definition 2.3.1. A smooth G-representation π is admissible if dimC π
W < ∞ for all compact open sub-

groups W .

Remark 2.3.2. This is stable under taking subrepresentations, less obvious is that it’s also stable under
taking quotients.

Lemma 2.3.3. A smooth rep. π is admissible if and only if there exists W ≤ G open and pro-p such that
dimC π

W <∞.

Proof. One direction is by clear. Let’s say W ′ ⊆ G is any compact open subgroup. Firstly, we can shrink
W ′, so WLOG we can assume that W ′ ⊆W . Then we see that by Frob Rec.

πW
′

= HomW ′(1, π|W ′) = HomW (c-IndWW ′ 1, π)

Note W ′ is finite index inside W so c-IndWW ′ is finite dimensional, so we claim that HomW (σ, π) is finite
dimensional for all finite dimensional smooth σ. We do this by induction. If σ is irreducible and smooth,
then σ = 1 by the p-group lemma. If not, then we have some nontrivial short exact sequence

0→ σ′ → σ → σ′′ → 0

so we get

0→ HomW (σ′′, π)→ HomW (σ, π)→ HomW (σ, π′).

So the middle term is finite dimensional by induction. �
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Lemma 2.3.4. If π is admissible, then it contains an irreducible subrepresentation.

Proof. Fix any W open pro-p subgroup of G. For all subrepresentations 0 6= τ ⊆ π, we have that 0 6=
τW ⊆ πW by Lemma 1.4.1. Then choose τ such that dim(τW ) is minimal. Then exercise:

〈
G · τW

〉
is

irreducible. �

Exercise 2.3.5.

(1) If π is a smooth representation, then π is admissible if and only if all the HomK(V, π) are finite
dimensional.

(2) If π is irreducible and admissible, then π has a central character.

(3) Show that taking parabolic induction preserves admissibility.

Remark 2.3.6. If π is irreducible and smooth, then it does not have to be admissible!

2.4. Supersingular representations. These were first defined by Barthel-Livné for GL2.

Recall that if π is admissible G-representation and V a weight, then HomK(V, π) is finite dimensional, and
we have a right action of HG(V ). So we want to use this to describe a notion of supersingularity.

If HomK(V, π) 6= 0, then it contains a simultaneous eigenvector for the HG(V )-action.

Definition 2.4.1. EvalG(V, π) := {ϕ ∈ HomC(HG(V ), C) : ϕ occurs as eigenvalues on HomK(V, π)}.

RecallH+
T has basis τλ for λ ∈ Zn+. Note that τλ ∈ (H+

T )× if and only if λ ∈ Zn+∩(−Zn+) = {(a, . . . , a) | a ∈ Z}.

Lemma 2.4.2. If π is an irreducible admissible G-representation and V is a weight, then TFAE:

(1) For all χ ∈ EvalG(V, π), χ(τλ) = 0 for all λ ∈ Zn+\Z+
0 .

(2) For all χ ∈ EvalG(V, π), χ doesn’t factor through SGM : HG(V )→ HM (VN(Fp)) for all M 6= G.

Idea. We saw that HG[τ−1
λ ] ∼= HMλ

, where Mλ is the centralizer of tλ. �

Definition 2.4.3. An irreducible admissible G-representation is supersingular if it satisfies the equivalent
conditions in Lemma 2.4.2 for all weights V .

Theorem 2.4.4 (Breuil). If n = 2 and α ∈ C×, then

c-IndGK(V )/(τ(1,0), τ(1,1) − α) c-IndGK(V )

is irreducible admissible supersingular.

But this is very special to GL2(Qp): not irreducible in general.

3. Talk III

Last time, we talked about Hecke algebras, the mod p Satake transform, and we defined supersingular
representations: recall this is defined using the Hecke eigenvalues.
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3.1. Classification in terms of supersingular representations. If Q is a standard parabolic subgroup,
then we define the generalized Steinberg representations

StQ := IndGQ(1)/
∑
Q(Q′

IndGQ′(1).

The actual Steinberg is when Q = B and trivial if Q = G.

Theorem 3.1.1 (Grosse-Klonne, H., T. Ly). The representations StQ are irreducible admissible and pairwise

non-isomorphic. The irreducible constituents of IndGQ(1) are the StQ′ for all Q′ ⊇ Q, each with multiplicity
one.

Proposition 3.1.2. Suppose σ is an (irreducible/admissible/smooth) M -representation. Then there exists
a unique largest parabolic P (σ) containing P such that σ considered as a P -representation extends uniquely
to P (σ), and it carries the same properties as before (irreducible/admissible/smooth).

Remark 3.1.3. The extension σ̃ is trivial on the unipotent radical on N(σ) because N(σ) ⊆ N .

Example 3.1.4. Say M is the (2, 1) Levi inside GL3. If σ is irreducible admissible, then it’s automatically
of the form τ �χ, for some GL2-rep τ and character χ. If P (σ) = G, then σ̃ is trivial on the normal subgroup
generated by

N =

1 0 ∗
1 ∗

1


which is

SL3(Qp) =

〈1
∗ 1
∗ ∗ 1

 ,

1 ∗ ∗
1 ∗

1

〉 .
S since τ is irreducible, it was to be χ−1 ◦ det.

Definition 3.1.5. Suppose (P, σ,Q) consists of a standard parabolic P , σ an irreducible admissible super-
singular M -representation, and Q a parabolic P ⊆ Q ⊆ P (σ). Then Let

I(P, σ,Q) = IndGP (σ)(σ̃ ⊗ St
P (σ)
Q )

where StPQ := IndPQ(1)/
∑
Q(Q′⊆P IndPQ′(1)

Remark 3.1.6. As N ≤ P and N ≤ Q, N acts trivially on StPQ, and

StPQ |M ∼= IndMQ∩M (1)/
∑

Q(Q′⊆P
IndMQ′∩M

In particular, St
P (σ)
Q is trivial on N(σ), so we can do parabolic induction.

Theorem 3.1.7 (Abe-Henniart-H-Vignéras). The map from triples (P, σ,Q) as above (up to isomorphism)
to irreducible admissible G-representations (up to isomorphism) sending

(P, σ,Q) 7→ I(P, σ,Q)

is a bijection.

Concretely, P has blocks of size n1, . . . , nr, so if

σ � σ1 � · · ·� σr

for σi irreducible admissible supersingular representations of GLn(Qp), then when you do P (σ), you combine
the consecutive ones such that

ni = · · · = ni+1 = · · · = nj = 1

and
σi = σi+1 = · · · = σj
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i.e. the consecutive characters.

So any irreducible admissible representation is of the form

IndGP ′(τ)

where τ = τ1 � · · ·� τs and each τi is either supersingular (if n′i ≥ 2) or τi ∼= St
GLn′

i

Qi
⊗(ηi ◦ det).

Example 3.1.8 (n = 2). If P = B and σ = χ1 � χ2 for χ1 6= χ2, then since χ1 6= χ2, we must have Q = B,

and in this case IndGB(χ1 � χ2).

But if P = B and σ = χ � χ, then P (σ) = G, so we can either take Q = B or Q = G. If Q = B, we get
St⊗χ ◦ det and if Q = G we get χ ◦ det.

Finally, if P = G, then σ is supersingular, and Q = G, so we see the supersingular representations of GL2.

Lemma 3.1.9. If σ is an irreducible admissible supersingular representation of M , then IndGP (σ) is of finite
length. Its irreducible constituents are precisely the I(P, σ,Q) where Q runs through all the possible choices
between P and P (σ), with multiplicity one.

Definition 3.1.10. An irreducible admissible G-representation π is supercuspidal if it’s not a subquotient
of IndGP (σ) for P 6= G and for all irreducible admissible σ.

Corollary 3.1.11. If π is irreducible admissible, then π is supersingular if and only if π is supercuspidal.

Proof. If π is supercuspidal, then by the Theorem, π = I(P, σ,Q), so by the lemma, π is a subquotient of

IndGP (σ), but by the Theorem, P = G, so π = I(G, σ,G) = σ, and is therefore supersingular.

In the other direction, if π is supersingular, suppose π occurs in some IndGQ(τ) where τ is irreducible admissible
and Q 6= G. Then the lemma applied to τ and transitivity of parabolic induction implies that π occurs in
IndGP (σ), where σ is supersingular, and P ⊆ Q. Therefore, by the lemma again,

π ∼= I(P, σ,Q′)

for some Q′, but on the other hand, π ∼= I(G, π,G), so P = G and Q = G. �

Idea of proof of theorem::: If we want to show that IndQP (σ) is irreducible, then take τ ⊆ IndGP (σ) nonzero
and then take V ↪→ τ |K . Then

c-IndGK V → τ ↪→ IndGP (σ)

Then this factors through C ⊗HG(V ),χ c-IndGK(V ) for some χ : HG(V )→ C. Then if PV ⊆ P , then

C ⊗HG(V ),χ c-IndGK(V ) ∼= IndGP (C ⊗HM c-IndVN(Fp))

3.2. p-adic representations. Compared to the mod p representation theory, we need to go through some
basic stuff to even access the basic objects and definitions. There is a lot more topology and analysis involved,
because the topologies are now very compatible.

To avoid confusion, let E/Qp be a finite extension of Qp: this will be our new coefficient field. O = OE will
be the ring of integers, and V will now be an E-vector space.

3.3. Some functional analysis. The basic reference is Schneider’s book. We can either consider seminorms
or lattices.

Definition 3.3.1.

(1) A non-archimedean seminorm is a function

| · | : V → R≥0

such that
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• |x+ y| ≤ max(|x|, |y|),

• |λx| = |λ|E |x| for all λ ∈ E and x ∈ V

and we say that it’s a norm if

• |x| = 0 if and only if x = 0.

A lattice in V is an O-submodule Λ ⊆ V that spans V as an E-vector space.

(2) A locally convex vector space (lcv) is a vector space V equipped with a topology defined by seminorms
{| · |i}i∈I , where the basic opens are given by

x0 + {|x|i1 ≤ ε, . . . |x|in ≤ ε for some ij ∈ I, ε > 0}

with this definition, it’s easy to see that V is a topological vector space (CHECK THIS). Equivalently,
its topology is defined by lattices in the sense that the basic opens are of the form x0 + Λj for some
j ∈ J where the Λj are a family of lattices such that

(a) For all α ∈ E× and j ∈ J , there exists some other k ∈ J such that αΛj ⊇ Λk (we want to make
sure that when we scale a lattice it’s still open).

(b) For i, j ∈ J , Λi ∩ Λj ⊇ Λk.

(3) The dictionary is as follows: if | · | is a seminorm, then {|x| ≤ ε} is a lattice. If Λ is a lattice, then
|x|Λ := infx∈λΛ |λ|E .

By convention all lcv will be Hausdorff, i.e.
⋂

Λ = {0}, where Λ runs over open lattices.

Exercise 3.3.2. If V is a lcv and W ⊆ V the subspace topology on W and quotient topology on V/W are
lcv.

Remark 3.3.3. We usually consider W ⊆ V closed, because then V/W is Hausdorff.

Exercise 3.3.4. If (Vi)i∈I is a family of lcv, then so is
∏
i∈I Vi for the product topology.

Similarly, we can put a topology on lim←−i Vi and it’s lcv.

On V :=
⊕

i∈I Vi take the finest locally convex topology such that each Vi → V is continuous, this should
be lcv.

Similarly, we could take lim−→i
Vi, it should be lcv.

Exercise 3.3.5. If V is a lcv, so is its strong dual

V ′b := Homcts
E (V,E)

with the topology defined by the lattices

{f | |f(B)| ≤ ε}
for all B bounded subsets of V and all ε > 0 (uniform converges in each bounded subset). Here, B ⊆ V is
bounded if for all Λ ⊆ V open lattice, there exists α ∈ E such that B ⊆ αΛ.

Definition 3.3.6. A lcv V is Banach (Fréchet) if its topology can be defined by a single (a countable family
of) (semi)norm(s), and for which it’s complete with respect to the topology (i.e. Cauchy sequences converge).

Clearly a Banach lcv V is Fréchet. A Fréchet space is metrizable.

Remark 3.3.7. A Banach space does not carry a fixed norm, but sometimes it can be useful to fix one.
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Proposition 3.3.8. A finite dimensional vector space carries a unique Hausdorff lcv topology. If V = En,
we can define it in this non-archimedean world using the supremum norm:

||a|| := max
1≤i≤n

|ai|.

This is clearly a Banach topology, complete because E is complete.

Example 3.3.9. If I is a set, consider

`∞(I) := {bounded functions I → E with the sup. norm}

Inside, we have c0(I) = {f ∈ `∞(I) | for all ε > 0, | {|f | > ε} | <∞}. Think of I = N.

If X is a compact topological space, then we have

C 0(X,E)

with the sup norm, and this is Banach.

Remark 3.3.10. For Fréchet spaces, we have the Open Mapping Theorem, and the Closed Graph Theorem.

4. Talk IV

4.1. Recollections. Recall that we take a finite extension E/Qp, and O = OE denotes its ring of integers,
and V is an E-vector space. Recall that we are interested in locally convex (lcv) vector spaces V , i.e. those
where a fundamental neighborhood basis of 0 is given by a family of lattices or semi-norms.

By convention, we assumed that V is always Hausdorff.

Definition 4.1.1. A map f : V → W of Banach spaces is compact if f(V ◦) is relatively compact for
any/some unit ball V ◦ ⊆ V .

Definition 4.1.2. A locally convex V is of compact type if

V ∼= lim−→
n≥1

Vn

where Vn is Banach and Vn → Vn+1 are injective and compact.

Example 4.1.3. If dimE V is countable, then we can equip it with the finest locally convex topology. Then
V =

⋃
n≥1 Vn, where V1 ⊆ V2 ⊆ · · · which are all finite dimensional, so V is clearly of compact type.

Fact 4.1.4.

(1) If V is of compact type and W ⊆ V is a closed subspace, then both W (with the subspace topology)
and V/W (with the quotient topology) are of compact type.

(2) The strong dual induces equivalences of categories:

{compact type spaces} ∼←→ {“nuclear” Fréchet spaces}

taking

lim−→
n

Vn 7→ lim←−
n

(Vn)∨b

where ∨ denotes the continuous linear dual, and b denotes the strong topology.
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4.2. Locally analytic manifolds. First let’s discuss manifolds.

Definition 4.2.1. If a ∈ Qd
p and r > 0, we define the closed ball

Br(a) =
{
x ∈ Qd

p | ||x− a|| ≤ r
}
.

These are actually compact and open as well.

Definition 4.2.2. A (Qp-)locally analytic manifold of dimension d is a paracompact Hausdorff topo-
logical space M along with a maximal atlas of charts (U,ϕU ) where U ⊆ M is open which cover M , and

ϕU : U
∼−→ BU ⊆ Qd

p where BU is a closed ball such that ϕUi ◦ ϕ−1
Uj

: ϕU ′(U ∩ U ′)
∼−→ ϕU (U ∩ U ′) is locally

analytic, i.e. locally given by a convergent power series.

We get a category of locally analytic manifolds.

Definition 4.2.3. A locally analytic group (or p-adic Lie group) is a group object in the category of
locally analytic manifolds.

Example 4.2.4. Examples are GLn(Qp), GLn(K), K/Qp a finite extension.

Remark 4.2.5. Any locally analytic manifold is strictly paracompact, meaning that you can refine an open
cover by a locally finite cover consisting of disjoint open sets.

4.3. Locally analytic functions.

Definition 4.3.1. If B = Br(a) ⊆ Qd
p and V is a Banach space, with some fixed norm || · ||, let

Crig(B, V ) :=

f =
∑
i∈Nd

vi(x1 − a1)i1 · · · (xd − ad)id | lim
|i|→∞

||vi||r|i| = 0

 .

Furthermore, let ||f ||B := maxi ||vi||r|i| ∈ R≥0.

Lemma 4.3.2.

(1) || · ||B is independent of the choice of a, because we are in the non-archimedean world.

(2) (Crig(B, V ), || · ||B) is complete, i.e. Banach.

Proof. ??? �

Remark 4.3.3. We have a continuous injective evaluation map

Crig(B, V )→ C0(B, V ).

Definition 4.3.4. If B1, B2 = Br(a) are closed balls in Qd
p, then let

Crig(B1, B2) :=
{
f + a | f ∈ Crig(B1,Q

d
p) | ||f ||B1 ≤ r

}
and this is independent of the choice of a, and composition is well-defined.

Definition 4.3.5. Suppose M is a locally analytic manifold and V a Banach space. Then we define

Can(M,V ) := lim−→
M=

⊔
i∈I Ui charts ϕ:Ui

∼−→Bi ball

∏
i∈I
Crig(Bi, V )

In this limit, transition maps are refinements: say (Ui, ϕi)i∈I ≤ (Wj , ψj)j∈J if for all j ∈ J there exists a
unique i(j) ∈ I such that Wj ⊆ Ui(j) such that the map

Bj
ψ−1
j−−−→Wj ⊆ Ui(j)

ϕi(j)−−−→ Bi(j)
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lives in the image of Crig(Bj , Bi(j))→ C0(Bj , Bi(j)). Then we get transition maps

Crig(Ui(j), V )→ Crig(Wj , V ),

which induces ∏
i∈I
Crig(Ui, V )→

∏
j∈J
Crig(Wj , V ),

which is continuous and injective.

Remark 4.3.6. The transition maps are compatible with compositions, and any two indices admit a common
refinement, which implies that Can(M,V ) is locally convex and we have a continuous evaluation map

Can(M,V )→ C0(M,V ).

Exercise 4.3.7. If M = Zp ⊆ Qp then the set {(a+ pnZp, id) | a ∈ Z/pn}n≥0 is cofinal among all indices.
So

Can(Zp, V ) = lim−→
n≥0

∏
a∈Z/pn

Crig(a+ pnZp, V ).

The transition maps are compact, which implies that Can(Zp, E) is of compact type. The fact that the
transitions maps are compact comes down to the fact that

Crig(Zp, E)→ Crig(pZp, E)

is compact.

Proposition 4.3.8. If M is compact and V = E (or more generally V is of compact type) then Can(M,V )
is of compact type.

More generally, if V is locally convex, we define

Can(M,V ) := lim−→
(Ui,ϕi,Vi)

∏
i∈I
Crig(Ui, Vi)

over Vi Banach with a continuous injection Vi ↪→ V , and where (U,ϕi) are before.

Proposition 4.3.9. If M =
⊔
i∈IMi, then

Can(M,V ) ∼=
∏
i∈I

(Mi, V ).

4.4. Locally analytic and Banach space representations. Now G is a locally analytic group.

Definition 4.4.1. A Banach space representation of G is a Banach space V and a continuous linear
action G× V → V . It is unitary if there exists a G-invariant norm defining the topology on V .

Remark 4.4.2. Continuous is equivalent to separately continuous. Closed subrepresentations and quotients
are still Banach.

Example 4.4.3.

(1) A finite dimensional continuous representation (with its unique Hausdorff topology) is a Banach space
representation.

(2) If H ≤ G is a closed subgroup such that H\G is compact and W is any Banach representation of H,
then

(IndGHW )C0 =
{
f : G

cts−−→W | f(hg) = hf(g)
}
.

There always exists a section of s : H\G→ G, and we can use this to get an isomorphism

(IndGHW )C0 ∼= C0(H\G,W ),

which is again a Banach space, using the supremum norm. For example, this works when P is a
parabolic, or we get C0(G,E) if G is compact and H = 1.
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(3) If G is compact, then any Banach space representation is unitary (via averaging, as usual).

Definition 4.4.4. A locally analytic representation of G is a compact type space V and a continuous
linear action G × V → V such that orbit maps ov : G → V sending g 7→ gv are locally analytic, i.e.
ov ∈ Can(G,V ) for all v ∈ V .

Example 4.4.5.

(1) Finite dimensional representations are locally analytic: the point is that any continuous homomor-
phism G→ GLn(E) is locally analytic).

(2) If H ≤ G is closed with compact quotient, we let

(IndGHW )an :=
{
f : G

locally analytic−−−−−−−−−→W | f(hg) = hf(g)
}
∼= Can(H\G,W ),

which is of compact type because H\G is compact and W is of compact type.

(3) Say V sm is a smooth representation of countable dimension (here ov is locally constant!)

(4) If G = G(Qp), where G is an algebraic group and Valg is a (finite dimensional) algebraic representa-
tion of G, then Valg is locally analytic, and things of the form Valg⊗Vsm are called “locally algebraic”.
(Warning: these are not abelian categories!!)

4.5. Duality and admissibility: mod p. For this section, G is a compact locally analytic group (e.g.
GLn(Zp)).

First we discuss the mod p case. Let C/Fp be a finite field and let

D∞(G) := Can(G,C)∨ = ( lim−→
U≤G open normal

C(G/U,C))∨ = lim←−
U≤G open normal

C[G/U ] = C[[G]].

This is Noetherian (Lazard). If V is a smooth representation of C, then V = lim−→U≤G open normal
V U , which

has an action of C[[G]] in the limit, and thus V ∨ does as well.

Then duality in this case gives a map

{smooth G-reps} ∼−→ {D∞(G)-modules with profinite top. such that action is cts.}
sending V 7→ V ∨ (lim−→W 7→ lim←−W

∨).

Remark 4.5.1.

(1) By (a version of) Nakayama’s lemma, V is admissible if and only if V ∨ is a finitely generated module
over D∞(G).

(2) Any finitely generated D∞(G)-module carries a unique profinite topology such that the action is
continuous, so the above duality restricts to

{admissible G-reps} ∼−→ {finitely generated D∞(G)-modules} .
Now the right hand side is an abelian category, because D∞(G) is Noetherian.

Corollary 4.5.2. The LHS is closed under quotients.

4.6. Duality and admissibility: Banach case. Now let’s go back to the p-adic case. Let

Dc(G) := C0(G,E)′ ∼= O[[G]][1/p]

where O[[G]] = lim←−n,U≤G open normal
(O/$n)[G/U ]. This is a profinite ring, Noetherian by Lazard.

If V is a Banach representation, then it is unitary (recall G is compact). In particular, there exists a
G-invariant lattice V ◦ ⊆ V . By definition

V ◦ = lim←−
n≥0

V ◦/$nV ◦,
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each of which carries an action of (O/$n)[[G]], so we get an action of O[[G]] in the limit. So V, V ′ become
Dc(G)-modules.

Definition 4.6.1. Say V is admissible if V ∨ is finitely generated as a Dc(G)-module.

Theorem 4.6.2 (Schneider-Teitelbaum). There is a bijection

{admissible Banach representations of G} ∼−→ {finitely generated Dc(G)-modules}

sending V 7→ V ∨.

Example 4.6.3. The dual of C0(G,E) is Dc(G).

Corollary 4.6.4.

(1) Any map f : V → W of admissible Banach space representations is strict (i.e. V/ ker f ∼= im f is a
topological isomorphism).

(2) Any closed subspace W and quotient V/W are again admissible if V is admissible.

(3) Have usual kernel/cokernel with the induced topology.

5. Talk V

Let G be a locally analytic group.Recall that a Banach representation is a continuous map

G× V → V

where V is a Banach space. A locally analytic representation is a continuous map

G× V → V

where V is of compact type and the orbit map ov : G→ V is locally analytic for all v ∈ V .

Assume G is compact. Recall that in the Banach case, we defined

Dc(G) := C0(G,E)′ ∼= O[[G]][1/p]

and so V and V ′ become finitely generated modules over Dc(G), and this is an equivalence (cf. Theorem
4.6.2), and therefore we get an abelian category.

5.1. Duality and admissibility: locally analytic case. Now we can still define the distribution algebra
analogously:

Dan(G) := Can(G,E)′b

which is a nuclear Fréchet space. We have Dirac distributions δg for g ∈ G, which span a dense subspace of
the analytic distributions.

Theorem 5.1.1 (de Lacroix). There is a unique continuous multiplication ∗ on Dan(G) such that

δg ∗ δh = δgh.

Concretely, if δ1, δ2 ∈ Dan(G), we can compute

(δ1 ∗ δ2)(f) = δ1(g1 7→ δ2(g2 7→ f(g1g2)))

If V is a locally analytic representation then there’s a unique separately continuous action of Dan(G)×V → V
such that δgv = gv, and same for V ′.

But now Dan(G) is not Noetherian in general.
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Theorem 5.1.2 (Schneider-Teitelbaum).{
locally analytic representations

on compact type spaces

}
∼−→
{

separately continuous Dan(G)-modules
on nuclear Fréchet spaces

}
taking V 7→ V ′b .

Remark 5.1.3. If g = Lie(G), then we get a map g→ Dan(G) via

X 7→ (f 7→ d

dt
|t=0f(etX)).

Note the exponential map g→ G is defined near the identity.

Remark 5.1.4. We have a subring Dc(G) ↪→ Dan(G), but again, Dan(G) is not necessarily Noetherian.

Example 5.1.5. Take G = Zp. Mahler showed that

C0(Zp, E) =

∑
n≥0

an

(
x

n

)
| an ∈ E, an → 0


So

Can(Zp, E) =

∑
n≥0

an

(
x

n

)
| |an|rn → 0 for some r > 1


Then we have the Amice transformDan(Zp)

∼−→ {rigid analytic functions on the open unit disc} =: Crig(X<1),
which is an algebra isomorphism sending

δ 7→ δ((1 + T )x) =
∑
n≥0

δ

((
x

n

))
Tn

But note Crig(X<1) ∼= lim←−r<1,r∈pQ C
rig(X≤r), and note that Crig(X≤r) is a noetherian PID.

In general, Schneider-Teitelbaum showed that Dan(G) is a Fréchet-Stein algebra.

Definition 5.1.6. A Fréchet algebra A is Fréchet-Stein if there exist seminorms q1 ≤ q2 ≤ · · · defining the
topology on A such that

(1) The multiplication A × A → A is continuous with respect to qn for all n (which implies that A ∼=
lim←−n≥1

Aqn).

(2) The completion Aqn is left Noetherian.

(3) Aqn is flat as a right Aqn+1
-module.

Definition 5.1.7. If A is Fréchet-Stein, then an A-module M is coadmissible if

(1) Mn := Aqn ⊗AM is finitely generated for all n, and

(2) M → lim←−nMn is a bijection.

This mimics the definition of the definition of a coherent sheaf on a non-affinoid which has an exhaustive
decreasing cover by affinoid things. It doesn’t depend on the choice of qn.

Fact 5.1.8.

(1) In the above definition, coadmissible modules M are the same as a compatible sequence Mn, each
finitely generated Aqn-modules

(2) The category of coadmissible modules is an abelian subcategory of the category of A-modules.

(3) Any finitely presented A-module is coadmissible.
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Remark 5.1.9. Any coadmissible M carries a canonical topology: first Mn carries a unique Banach topology
by finite generation, then we take the inverse limit topology from M

∼−→ lim←−nMn. Then any map between

coadmissible modules is continuous and strict.

The idea of the proof that Dan(G) are Fréchet-Stein is that we pass to a small compact open subgroup that
is “uniform pro-p”. One consequence of this is that topologically, we have a homeomorphism

Zdp
∼−→ G

Then they use some results of Lazard on Mahler expansions, etc.

Definition 5.1.10. A locally analytic representation V is admissible if V ′b is isomorphic to a coadmissible
module with its canonical topology.

As before, we get

{admissible locally analytic representations} ∼−→ {coadmissible modules over Dan(G)}
and thus we get an abelian category.

Corollary 5.1.11.

(1) Any map of admissible G-representations is strict with closed image.

(2) Closed subrepresentations/Hausdorff quotients are admissible.

(3) We have the usual kernel and cokernel.

Example 5.1.12. If V is admissible and smooth, then it’s admissible locally analytic. If V is an admissible
Banach representation of G, then let

Van := {v ∈ V | ov ∈ Can(G,V )}
which takes the subspace topology from Can(G,V ).

Theorem 5.1.13 (Schneider-Teitelbaum).

(1) The Van are compact type and dense in V .

(2) Van form an admissible locally analytic representation and (Van)′ ∼= Dan(G)⊗Dc(G) V
′.

(3) V 7→ Van is exact.

5.2. Orlik-Strauch Representations. Now let G = GLn(Qp). We write P = MN the usual parabolic
decomposition for some P . Let g = Lie(G), p = Lie(P ), etc. We have a universal enveloping algebra U(g),
etc, by which we really mean U(g)⊗Qp E.

Definition 5.2.1. A finite dimensional irreducible representation of m over E is algebraic if it integrates
to a finite dimensional algebraic representation of the Levi M .

Example 5.2.2. If P = B, then M = T , and t = Qd
p → E is some map x 7→

∑
λixi, and this is algebraic if

and only if λi ∈ Z, and in this case, this integrates to the character sending

diag(t1, . . . , tn) 7→
∏

tλii .

Definition 5.2.3. The objects of the category Oalg
p are finitely generated U(g)-modules L such that L|m is

a direct sum of irreducible algebraic representations of m, and such that for all x ∈ L we have that U(m) · x
is finite dimensional.

Morphisms are U(g)-linear maps.

Example 5.2.4.
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(1) Note Oalg
g is the category of algebraic representations of g.

(2) In general, if W is an irreducible algebraic m-representation, consider it as a module over U(p) via
the projection U(p) � U(m). Then the (generalized) Verma module is

M(W ) = U(g)⊗U(p) W

lives in Oalg
p . (exercise: use that M(W ) = U(n)⊗E W by PBW).

Fact 5.2.5. Here are some facts about Oalg
p .

(1) It’s abelian.

(2) It’s closed under sub/quotient/⊕.

(3) Every object has finite length.

(4) If P ⊆ Q then Oalg
q ⊆ Oalg

p .

Now fix L ∈ Oalg
p , and πM an admissible smooth M -representation. Then there exists some W ⊆ L finite

dimensional, stable under p such that W generates L.

0→ ∂ → U(g)⊗U(p) W → L→ 0

Note the p-action on W integrates to an algebraic P -action: the idea is that it’s clearly true for the M -action
by axiom (2), and for the n-action use part (3) and the exponential map n

∼−→ N .

Now consider

Can(G,W ′ ⊗ πM ),

which carries two G-actions, by both left/right-translation. Differentiate the left one and get an action of g
on Can(G,W ′ ⊗ πM ), i.e. X · f = d

dt |t=0f(etX(−)).

Then we get a pairing

(U(g)⊗U(p) W )× IndGP (W ′ ⊗ πM )an → Can(G, πM )

sending

(X ⊗ w, f) 7→ (g 7→ 〈(X · f)(g), w〉)

Definition 5.2.6. Note ∂ acts on IndGP (W ′ ⊗ πM )an via U(G)⊗U(p) W and the above pairing.

FGP (L, πM ) := [IndGP (W ′ ⊗ πM )an]∂=0

which is a closed G-subrepresentation of IndGP (W ′ ⊗ πM )an.

Example 5.2.7. Note FGP (U(g)⊗U(p) W,πM ) = IndGP (W ′ ⊗ πM )an: in this case ∂ = 0.

Theorem 5.2.8 (Orlik-S?).

(1) FGP is independent of the choice of W .

(2) FGP (L, πM ) is admissible, and this is functorial and exact in both L and πM .

(3) If Q ⊇ P and L ∈ Oalg
q

FGP (L, πM ) ∼= FGQ (L, (IndMP∩MQ
πM )∞)

(4) If L and πM are irreducible and P is maximal for L (i.e. L 6∈ Oalg
q for Q ) P ) then FGP (L, πM ) is

topologically irreducible.

Corollary 5.2.9. If πM is of finite length then FGP (L, πM ) is topologically of finite length.
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5.3. n = 2. Now take λ = (λ1, λ2) ∈ Z2 ⊆ t′ with λ1 ≥ λ2. Then we get the following sequence in O. Note
L(λ) is the unique irreducible quotient of the Verma module.

0→ L(λ′)→M(λ)→ L(λ)→ 0

where λ′ = (12) ◦ λ = (λ2 − 1, λ1 + 1). Note L(λ) lies in Oalg
g , but L(λ′) is infinite dimensional.

Let χ = χ1 ⊗ χ2 be a smooth character T → E×. By Orlik-Strauch, we get

0→ FGB (L(λ), χ)→ FGB (M(λ), χ)→ FGB (L(λ′), χ)→ 0

Note FGB (M(λ), χ) = IndGB(χ−1
λ ⊗ χ)an. Furthermore, the quotient FGB (L(λ′), χ) is irreducible. Also

FGB (L(λ), χ) ∼= FGG (L(λ), (IndGB(χ))∞)

is irreducible if and only if χ1χ
−1
2 6= 1, | · |2.

lastly, the quotient is M(λ′), so it’s a principal series for λ′.
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