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1. Talk I

This course will give an overview of the Langlands program for GLn (but we’ll say things about how to
generalize to arbitrary G here and there).

Here’s the rough plan for the five talks:

Date: March 20, 2019.
1ashwin.iyengar@kcl.ac.uk
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(1) Motivation

(2) Automorphic (local)

(3) Galois

(4) Automorphic (global) + Langlands correspondence

(5) Langlands-Kottwitz (for GL2,Q)

1.1. Motivation. Fix F a global field, and let AF =
∏′
v Fv denote the usual ring of adèles. Let ΓF :=

Gal(F sep/F ), and let Γv := Gal(F sep
v /Fv), and fix some embeddings Γv ↪→ ΓF induced from some F ↪→

Fv.

Conjecture 1.1.1 (Global Langlands, Rough Form). There is a unique bijection between certain automorphic
representations of GLn(AF ) and certain Galois representations ΓF → GLn(Q`) such that π corresponds to
ρ if and only if πp corresponds to ρv := ρ|Γv at every finite place v, where π = ⊗′vπv.

The second part is called “local-global compatibility”, and it implicitly refers to a local Langlands correspon-
dence. The goal for the course is to make this precise!

1.2. Smooth Representations. We will start in the local setting: let F/Qp be a finite extension with ring
of integers OF and finite residue field kF with uniformizer $F . Let G = GLn(F ) with the p-adic topology.
This is a locally compact and locally profinite group with a maximal compact subgroup GLn(OF ), which has
a basis of neighborhoods In +$m

FMn(OF ) around the identity In.

Our coefficient field will be C, with the discrete topology, but most of this also works for Q` (e.g. this is useful
when we take étale cohomology). Most of what’s to follow works for other reductive groups as well.

Now consider a representation (π, V ) of G (note V will usually be infinite dimensional, but there shouldn’t
really be any topological issues, because the topology on G and the topology on the coefficients, which could
either be discrete or `-adic, etc, shouldn’t interact anyway: this is what makes local Langlands simpler away
from p!).

Definition 1.2.1.

(1) A representation (π, V ) is called smooth if for every v ∈ V , the stabilizer StabG(v) contains an

open subgroup of G. This is equivalent to saying that the map G × V π−→ V is continuous for the
discrete topology on V (exercise). (I think this is not equivalent, assuming V is infinite dimensional,
to saying that G → GL(V ) is continuous, unless there’s some strange topology on GL(V ) that I
haven’t considered. It certainly shouldn’t be true if you put the discrete topology on GL(V )?)

(2) A smooth representation (π, V ) is called admissible if dimV K <∞ (here V K denotes the invariant
vectors in V for the action of K) for all open compact subgroups K ⊆ G.

Remark 1.2.1.

(1) As previously mentioned, V is typically infinite dimensional, so admissibility is not a vacuous condi-
tion.

(2) An irreducible smooth representation is admissible: this is a non-trivial fact.

(3) From an arbitrary representation (π, V ) of G, we can produce a smooth representation (πsm, V sm)
by taking the subspace of smooth vectors in V : to see this use the fact that StabG(v) ∩ StabG(v′) ⊆
StabG(αv + βv′) for any α, β ∈ F and v, v′ ∈ V , and the definition of smooth.

Two questions we can ask: can we classify all representations of one of these types (admissible/smooth)?
Can we even construct them? We must answer at least the first question to do local Langlands.
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Fact 1.2.1. If π is irreducible and smooth (hence admissible), then EndG(π) = C: this is a version of
Schur’s lemma in this context. It follows that when π is irreducible, then there exists a “central character”
ωπ : F× = Z(G)→ C× such that π(z) = ωπ(z) · idV for all z ∈ Z(G).

We can also define the contragredient (dual) to an irreducible admissible (π, V ). It is denoted (π∨, V ∨),
where V ∨ = HomC(V,C)sm is the smooth vectors in the usual dual space, and where

π∨(g)(f) : v 7→ f(π(g−1) · v)

Exercise 1.2.1.

(1) Show that (π∨, V ∨) is admissible if (π, V ) is (hint: show that (HomC(V,C)sm)K = HomC(V K ,C)).

(2) Show that duality is an involution (this is not completely trivial: note V are typically infinite dimen-
sional! But the fact that we’re taking smooth vectors fixes this problem).

(3) Show that

ωπ∨ = (ωπ)−1

1.3. Parabolic Induction. The hope is that we can understand representations of some nice class of sub-
groups, and then induce them to G. We now try to do this for parabolic subgroups.

Let n = (n1, . . . , nr) denote a partition of n. Then let Pn denote the usual standard parabolic in GLn of block
upper-triangular matrices with block sizes determined by n. This has a Levi decomposition Pn = MnNn: here
Mn is block diagonal matrices with blocks in GLni

, and Nn is the corresponding unipotent radical.

Let δn : Mn → C× denote the modulus character, given by

m 7→ |det(ad(m|LieNn))|F

Example 1.3.1. For G = GL2(F ) and P(1,1) = B the Borel, we get that M = {diag(a, d)} and that LieN
is the set of matrices which are zero outside of the upper right corner, so ad(diag(a, d)) acts by the character
ad−1, and thus δ(1,1)(diag(a, d)) = |ad−1|F .

Let RepC(−) denote the category of smooth representations with C-coefficients.

Definition 1.3.1 (Normalized Parabolic Induction). There is a functor n-Ind : RepC(Mn) → RepC(G)
taking

πn 7→ IndGPn
(πn ⊗ δ1/2

n )sm,

where G acts by pre-composition on the left

Remark 1.3.1. Note the IndGPn
(πn ⊗ δ

1/2
n )sm can be described as the set of locally constant functions

f : G→ Pn such that f(pg) = δ
1/2
n (p)πn(p)f(g) for all p ∈ Pn and g ∈ G.

Remark 1.3.2.

(1) n-Ind is an exact functor, and has a very explicit left and right adjoint in terms of Jacquet modules.

(2) n-Ind preserves admissibility, and the property of being finite length.

(3) So why do we add this δ1/2? Well, it makes n-Ind preserve the unitary-ness of the representation,
and it makes n-Ind “Weyl-symmetric”.
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In summary, we construct representations of G from representations of a Levi as follows: given n =
(n1, . . . , nr), we take πi ∈ Irr(Gni) (here Irr(−) is the set of irreducible smooth representations), and
take

n-IndGPn
(π1 � · · ·� πr),

a finite length representation of G (note we’re implicitly pulling back along Pn →Mn).

1.4. Hierarchy of Representations.

Definition 1.4.1. We define the set of square-integrable representations

Irr2(G) =
{

(π, V ) ∈ Irr(G) : (g 7→ f(π(g)v)) ∈ L2(G) for all g ∈ G, v ∈ V, f ∈ V ∨
}
,

where L(G) is the space of square-integrable functions on G, with respect to the usual Haar measure. We
also define the set of supercuspidal representations

Irrsc(G) = {(π, V ) ∈ Irr(G) : (g 7→ f(π(g)v)) is compactly supported for all g ∈ G, v ∈ V, f ∈ V ∨} .

Then there is a hierarchy

Irr(G) ⊇ Irr2(G) ⊇ Irrsc(G).

Fact 1.4.1. An irreducible admissible (π, V ) is supercuspidal if and only if it’s not a subquotient of a parabolic
induction.

1.5. Local Hecke Algebras. Here we want to give the analog of the group algebra C[G] in the setting of
smooth admissible representations.

Fix a Haar measure on G normalized so that vol(GLn(OF )) = 1.

Definition 1.5.1. We define the Hecke algebra H(G) := C∞c (G,C), the locally constant compactly sup-
ported functions under convolution (this is not commutative!). This is an infinite dimensional C-vector space,
and has no unit (the unit wants to be the Dirac δ function, but this isn’t locally constant). Another point of
view is

H(G) =
⋃
K

C∞c (K\G/K)

where K runs over the open compact subgroups. With this description if f, f ′ are K-bi-invariant, then

(f ? f ′)(g) =
∑

h,h′∈G/K

f(h)f ′(h−1g).

Definition 1.5.2. A left-H(G)-module is called smooth if H(G)V = V (you need this because there’s no
unit in H(G)).

Fact 1.5.1. There is an equivalence of categories RepC(G)
∼−→ Modsm

H(G) (smooth left-H(G)-modules).

Sketch of Proof. Given (π, V ) and f ∈ H(G), then

π(f) · v =

∫
G

f(g)(π(g) · v)dg.

What does this mean? Choose K such that f is K-bi-invariant and K stabilizes v. Then

π(f) · v = vol(K)
∑

g∈G/K

f(g)π(g) · v.
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Since f is compactly supported, the sum is finite. One can check that this doesn’t depend on the choice
of K, and a simple computation shows that this makes V a left-H(G)-module, which is smooth (take f =
1K/ vol(K)). Conversely, given a left-H(G)-module V , define

π(g)v = π(1gK/ vol(K))v

for any open compact K ⊆ G (check this is well-defined). One checks that this is smooth and provides an
inverse construction. �

Exercise 1.5.1. For K a compact open subgroup of G, this induces a bijection{
π ∈ Irr(G) : πK 6= 0

} ∼= Irr(C∞c (K\G/K))

Fix f ∈ H(G), and note that f is K-bi-invariant for some open compact K ⊆ G. Then a computation shows
that π(f)V ⊆ V K , so if π is admissible, we can define trπ(f) ∈ C.

Observe that if π is admissible, then π(f) has finite rank (π(f)V ⊆ V K), so trπ(f) ∈ C is defined.

Let’s construct some representations using normalized induction.

Example 1.5.1. If G = GL2(F ), then note that

n-Ind(δ1/2) = IndGB(1)sm =
{
f : P1(F )→ C locally constant

}
This has the constant functions as a subspace, which we call 1, so we get a short exact sequence

0→ 1→ n-Ind(δ−1/2)→ St→ 0.

We call the quotient St, the Steinberg representation, which it turns out is irreducible and square-
integrable.

Here’s a construction of the generalized Steinberg representation, for arbitrary n. Let Gn = GLn(F ).

Take m ∈ Z≥1 and π0 ∈ Irrsc(Gr). Then

n-Ind(π0 � π0|det |� · · ·� π0|det |m−1)

has a unique irreducible quotient called Stm(π0) which lives in Irr2(Grm).

Fact 1.5.2 ([Zel80], Section 9.3).

Irr2(G) =
{

Stm(π0) : m | n, π0 ∈ Irrsc(Gn/m)
}

Theorem 1.5.1 ([Zel80], Theorem 6.3). If π ∈ Irr(G), then

π = Stm1(π1) � · · ·� Stmr (πr)

for unique (mi, πi), where πi ∈ Irr(Gri) up to permutation, where π′1 � · · · � π′r is a certain “distinguished
irreducible subquotient” of n-Ind(π′1 � · · ·� π′r), where π′i ∈ Irr2(G).

So the upshot is that to understand all irreducible representations, you really just need to understand the
supercuspidal representations, and you can build the rest of them.

Example 1.5.2. Working through the above definitions, we have the following exact sequence from before:

0→ 1→ n-Ind(δ−1/2)→ St(| · |−1/2)→ 0

Furthermore, 1 = | · |−1/2 � | · |1/2.
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2. Talk II

2.1. Unramified Hecke Algebra. Recall F/Qp finite extension, and G = Gn = GLn(F ). We defined the
Hecke algebra H(G) = C∞c (G,C) of locally constant functions on G under convolution. When K ⊆ G is an
open compact subgroup, we defined

H(G,K) = C∞c (K\G/K,C),

and we had that

Irrur(G) :=
{
π ∈ IrrG : πK 6= 0

}
↔ ∼ Irr(H(G,K))

under the map sending π 7→ πK .

Now let’s consider K0 = GLn(OF ). This is a maximal compact subgroup of G.

Definition 2.1.1. If π ∈ Irr(G) is unramified if it has πK0 6= 0.

Note for GLn, this definition doesn’t depend on the choice of maximal compact.

When n = 1, such π really correspond to unramified characters on the Galois side, under local class field
theory. We let

Hur(G) := H(G,K0).

Again there’s a bijection between the set of irreducible unramified representations of G and Irr(Hur(G)),
under the map π 7→ πK0 , so to understand irreducible unramified representations, we can really just study
the structure of Hur(G). The goal of the Satake isomorphism is to explicitly describe this ring.

2.2. Satake Isomorphism. We let T ⊆ B ⊆ G, where T is a maximal torus, and B is the standard Borel.
In this case, T is the set of diagonal matrices in G, and B is the set of upper triangular matrices in G. In
other words, we are in the n = (1, . . . , 1) situation.

We let δ : B � T → R×>0 where the first map is the natural projection, and the second map is the modulus
character

diag(t1, . . . , tn) 7→ |tn−1
1 tn−3

2 · · · t1−nn |F .
The unramified Hecke algebra of T is by definition

Hur(T ) = C∞c (T (F )/T (OF )).

But this is relatively easy to understand: note after choosing a uniformizer that there is an obvious (topo-

logical, but both sides are discrete) bijection T (F )/T (OF )
∼−→ Zn and in fact this induces an algebra homo-

morphism

Hur(T ) ∼= C[t±1 , . . . , t
±
n ]

One checks easily that convolution of functions is the same as multiplication of polynomials under this
identification. Now consider the map

Hur(G)
S−→ Hur(T )

defined by

f 7→
(
t 7→ δ1/2(t)

∫
N

f(tn)dn

)
where dn is the standard Haar measure making vol(N) = 1.

Theorem 2.2.1 (Satake Isomorphism). The map S induces an isomorphism

Hur(G)
∼−→ C[t±1 , . . . , t

±
n ]Sn ,

where the symmetric group Sn acts by permuting the indices of the xi.
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Idea of Proof. First check that S is an algebra homomorphism which lands in the Sn-invariants. Then we
compare bases: Hur(G) has a basis{

1K0 diag(ωa1 ,...,ωam )K0
: a1 ≥ · · · ≥ am

}
(this follows from the Cartan decomposition of G) and C[t±1 , . . . , t

±
n ]Sn has a basis{∑

w∈Sn

t
aw(1)

1 · · · taw(n)
n : a1 ≥ · · · ≥ am

}
and one then shows that as you take larger and larger corresponding finite subsets of these bases (under the
obvious correspondence), S remains upper-triangular. �

The theorem shows that Hur(G) is commutative, so its irreducible modules are one-dimensional. So the
map Irrur(G) → Irr(Hur(G)) given by π 7→ πK0 lands in 1-dimensional subspaces, with an action of
C[t±1 , . . . , t

±
n ]Sn . Then if we write

pC(x) = (x− t1) · · · (x− tn) = xn + Cn−1x
n−1 + · · ·+ C1x+ C0,

then the coefficients Ci ∈ C[t±1 , . . . , t
±
n ] act via nonzero scalars ci on πK0 , and if we take the roots of the

polynomial
pc(x) = xn + cn−1x

n−1 + · · ·+ c1x+ c0,

we get a set of n nonzero complex numbers which we call the Satake parameter Sat(π). Conversely, a set
of n nonzero complex numbers determines an action of each Ci, but since

{
C−1

0 , C0, . . . , Cn−1

}
generates

C[t±1 , . . . , t
±
n ]Sn , this uniquely determines an action of Hur(G). We have thus proven:

Corollary 2.2.1. There exists a canonical bijection

Sat : Irrur(G)
∼−→ Irr(Hur(G))

∼−→ (C×)/Sn

You can actually construct an inverse of Sat. Given {s1, . . . , sn} ∈ (C×)/Sn, we can construct an unramified

character χsi : F× → C× taking a 7→ s
v(a)
i (here v is the normalized valuation F× → Z). Then

{s1, . . . , sn} 7→ χs1 � · · ·� χsn

(the Langlands quotient from Lecture 1) is the inverse.

2.3. Basic Representation Theory. Let R be a topological ring (e.g. Q`, Z`, F`). Fix E/Q` a finite
extension with ring of integers OE and residue field kE . We can topologize GLn(R) with the subspace
topology from Mn(R)×R, as usual.

Definition 2.3.1. Say Γ is a topological group and k is a topological field. Let ρ : Γ → GL(V ) be a
continuous representation on some finite dimensional k-vector space V . Then there exists some filtration

0 ( V1 ( V2 ( · · · ( Vr = V

such that Vi/Vi−1 is irreducible, and define

ρss =

r⊕
i=1

Vi/Vi−1.

We say that ρ is semisimple if ρ ∼= ρss.

Fact 2.3.1 (Brauer-Nesbitt). If two continuous representations ρ1, ρ2 : Γ→ GLn(k) have the same charac-
teristic polynomial on a dense subset of Γ, then ρss

1
∼= ρss

2 .

Remark 2.3.1. If k has characteristic 0, then it’s enough to impose that the traces are equal in the Brauer-
Nesbitt theorem.
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From now on, assume Γ is compact, e.g. a profinite group, in applications.

Fact 2.3.2. If ρ : Γ→ GLn(Q`) is continuous, then its image is contained in GLn(E) for some finite E/Q`.
In fact, ρ has image in GLn(OE) up to conjugation, i.e. there exists g ∈ GLn(E) such that gρg−1 lands in
GLn(OE).

Idea of Proof. The first part uses the Baire category theorem: see Corollary 5 in [Dic01]. It’s enough to show
that an OE-sublattice of En is stabilized by ρ(Γ). But since Γ is compact, we take Γ to be generated by
ρ(Γ)(On

E). �

2.4. Construction mod `. Let ρ : Γ → GLn(E) be a continuous rerpesentation. Conjugate it by g ∈
GLn(E) into OE and reduce mod $E and semisimplify, and then call the resulting thing ρ.

Claim 2.4.1. The residual representation ρ is independent of g.

Proof. No matter which g you choose, the characteristic polynomial of gρg−1 will be same after reducing
mod mE . Now apply Fact 2.3.1. �

Exercise 2.4.1. If Γ is profinite and ρ : Γ → GLn(k) is continuous with k discrete or C with its complex
topology, then the image of ρ is finite (hint: think about the kernel of ρ).

2.5. Galois Groups. Let F be a number field and v be a place of F with completion Fv. Fix algebraic
closures F , Fv and iv : F ↪→ Fv, so we get Γv ↪→ Γ induced by the iv.

The Γ,Γv are profinite, hence compact and totally disconnected. If v is nonarchimedean, then we have

0→ Iv → Γv
α−→ Gal(kv/kv) = Ẑ→ 0

(here we use the geometric Frobenius convention). As usual the Weil group WFv
is α−1(Z), and local class

field theory gives us

F×v
∼−→W ab

Fv

2.6. Galois Representations. Start with the local nonarchimedean case. We have a continuous represen-
tation ρ : Γv → GLn(k).

Definition 2.6.1. We say ρ is unramified if ρ(Iv) = 1 (in particular if ρ is unramified, then there’s a
well-defined ρ(Frobv)). In the global context, if Γ → GLn(k) is a continuous representation then say ρ is
unramified at p if ρ(Iv) = 1, which is independent of iv. If S is a finite set of places, we say that ρ is
unramified outside S (almost everywhere) if ρ(Iv) 6= 1 for v 6∈ S.

Fact 2.6.1. If X/F is a smooth projective variety, then Hi
et(XF ,Q`) is unramified almost everywhere.

If ρ is unramified away from some finite set of places S, then ρ factors as ρ : Γ � ΓS → GLn(Q`), where
ΓS = Gal(FS/F ), where FS is the maximal algebraic extension of F unramified outside S. Then we can make
sense of the (conjugacy classes of) {Frobv}v 6∈S ⊆ ΓS . By the Cebotarev density theorem, these Frobenii are
dense, so along with Brauer-Nesbitt, this determines ρss.
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3. Talk III

3.1. Weil-Deligne Representations. We want to turn Galois representations into representations “without
the topology”. This may seem like a strange thing to do, but think about the fact that smooth representations
on the automorphic side have the discrete topology, so this might make it easier for us to see a local Langlands
correspondence. Furthermore, to formulate a notion of “compatible system” of Galois representations (for
varying ` 6= p, such a reinterpretation is helpful because it eliminates the topology on the coefficients.

Let F/Qp be a finite extension, and let k be a topological field of characteristic 0. Recall we had the exact
sequence

1 IF WF Z 0

1 IF ΓF Ẑ 0

Local class field theory gives us a map | · |F : WF →W ab
F
∼= F×

|·|F−−→ Q×>0.

Definition 3.1.1. A Weil-Deligne representation of WF is a triple (V, r,N), where V is a finite dimen-
sional k vector space and r : WF → GLk(V ) is such that, such that

(1) r|Ip has open kernel: this essentially should say that r is continuous for the discrete topology on k,
and

(2) N ∈ Endk(V ) is an endomorphism such that r(w)Nr(w)−1 = |w|F · N for all w ∈ WF (note | · |F
lands in Q and k has characteristic 0). In particular, N is automatically nilpotent (hint: think about
traces).

Definition 3.1.2. We say that σ = (V, r,N) is Frobenius semisimple if r(w) is semisimple for all w ∈WF .
This is equivalent to saying that r(w) is semisimple for some w such that |w| 6= 1. Say σ is semisimple if
it’s Frobenius-semisimple and N = 0. Say σ is unramified if r(IF ) = 1 and N = 0.

Example 3.1.1. (V, r,N) is Frob-semisimple and unramified if and only if N = 0 and r =
⊕

i∈I χi for some
unramified characters of WF , i.e. a character χi : WF → k× which factors through the quotient WF /IF ∼= Z.
So basically an n-dimensional Frob-ss unramified Weil-Deligne representation is the same as an element of
(k×)n/Sn, by sending r 7→ {χi(Frob)}ni=1.

There exists a Frobenius semisimplification (V, r,N) 7→ (V, rss, N) by taking the semisimple part of r.

Example 3.1.2. Consider r : WF →WF /IF ∼= Z→ GL2(k) taking

1 7→
(
a 1
0 a

)
Then this is not Frobenius semisimple, but on the other hand, rss takes 1 to diag(a, a).

There is a hierarchy

Repk(WDF )Frob− ss ⊇ Indec(WDF )Frob− ss ⊇ Irr(WDF )

If the definition of Indec(WDF )Frob− ss seems confusing, remember that these are supposed to be indecom-
posable as Weil-Deligne-representations, but that the actually underlying representation of the Weil group
is always semisimple: if N doesn’t vanish, then you may not be able to decompose the Weil-Deligne repre-
sentation, but ρ might not be irreducible.
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Under local Langlands, these are supposed to match up with the hierarchy given on the automorphic
side:

Irr(G) ⊇ Irr2(G) ⊇ Irrsc(G)

Furthermore, just like on the automorphic side, we will show that you can build all of Repk(WDF )Frob− ss

out of Irr(WDF ), and the construction process looks very similar. In fact, we leave this as a multi-part
exercise.

Remark 3.1.1. If σ is an irreducible Weil-Deligne representation, then N = 0: note N is nilpotent, so if it
were nonzero, then it would map V onto a proper nonzero subrepresentation of V .

Let σ = (V, r,N) be an irreducible Weil-Deligne representation (so in particular N = 0). Now we define, for
m ≥ 1,

Spm(σ) = (V ⊕m, r ⊕ r| · |F ⊕ · · · ⊕ r| · |m−iF , Nm),

where Nm(v1, . . . , vm) = (0, v1, . . . , vm−1).

Exercise 3.1.1.

(1) Show that Spm(σ) is a Weil-Deligne representation.

(2) Show that there is a bijection between Indec(WDF )Frob− ss and {(m,σ0) : m ≥ 1, σ0 ∈ Irr(WDF )},
taking (m,σ0) 7→ Spm(σ0).

(3) Finally, show that there is a bijection between Rep(WDF )Frob− ss and

{(m,σi)} /permutation

where (m,σi) 7→
⊕

i Spmi
(σi).

Hint for (2) and (3): decompose ρ into irreducible factors, and think about how N has to act on each factor.

3.2. Local Galois Representations vs Weil-Deligne Representations. Again let F/Qp be a finite

extension. Then there are two cases: ` 6= p and ` = p. Now let’s use k = Q`-coefficients.

Proposition 3.2.1. In the ` 6= p case, there is a fully faithful functor

RepQ`
(ΓF )→ RepQ`

(WDF )

taking (V, ρ) 7→ (V, r, n).

A special case of this is when it happens that ρ(IF ) is finite: then r = ρ|WF
and N = 0. In general, N

remembers the infinite unipotent action of the `-part of tame inertia.

One Word Proof. Grothendieck’s `-adic monodromy theorem. �

Note however, that this is not an equivalence of categories.

In the ` = p case, something deeper is happening. In this case, we need p-adic Hodge theory, and we’ll just
say something vague about this for now:

Proposition 3.2.2. There is a functor (not fully faithful) RepdR
Qp

(ΓF ) → RepQp
(WDF ) produced by p-adic

Hodge theory.
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3.3. Local Langlands for GLn. First we explain the n = 1 case. An admissible smooth representation of
F× is just a character F× → C× which vanishes on 1 = mrF for some r > 0, and a 1-dimensional Weil-Deligne
representation is just a map W ab

F → C× whose restriction to Iab
F factors through a finite quotient. But local

class field theory gives us an isomorphism F×
∼−→ W ab

F which takes O×F to Iab
F , so we really have the same

objects on either side.

Now we can state local Langlands in general.

Theorem 3.3.1 (Local Langlands: Harris-Taylor, Henniart, Scholze). There is a unique bijection

IrrC(GLn(F ))
LLn−−−→ Repn−dim

C (WDF )Frob− ss

such that

(1) When n = 1, LL is given by local class field theory, as described above.

(2) If π corresponds to ρ, then ωπ corresponds to det(σ), π∨ corresponds to σ∨, and for any smooth
χ : F× → C, one has that π ⊗ (χ ◦ det) corresponds to σ ⊗ χ.

(3) Irr2(GLn(F )) corresponds to Indec(WDF )Frob− ss, Irrsc(GLn(F )) corresponds to Irr(WDF ), and un-
ramified things match up, i.e. �i Stmi(πi) matches

⊕
i Spmi

(σi) if each πi matches with σi.

(4) If πi corresponds to σi for i = 1, 2 then

(L/ε)(s, π1 × π2) = (L/ε)(s, σ1 ⊗ σ2)

Remark 3.3.1. There exist operations you can do on the Weil-Deligne side like base change to a finite
extension, induction from a finite extension, tensor product.

Henniart proved (1) and (4) for ε-factors are enough to pin down the local Langlands correspondence uniquely.

4. Talk IV

4.1. Automorphic Representations. Now we’re in the global setting, so from now on F will be a finite
extension of Q. Let G = GLn,F now be the algebraic group defined over F . We consider the center
Z = GL1 = Z(GLn), and AF = A⊗Q F , and we fix a continuous central character

ω : Z(AF )/Z(F ) = A×F /F
× → C×,

Consider L2(G(F )\G(AF ), ω): these are square integrable functions (for the Haar measure on G(AF )) such
that f(zg) = ω(z)f(g) for all z ∈ Z(AF ) and g ∈ G(AF ). If |ω| = 1 then f ∈ L2 means∫

G(F )Z(F )\G(AF )

|f(g)|2dg <∞

Since ω is unitary, then the quotient by the center in the integral is fine. On the other hand, if ω is not
unitary, you need to scale this somehow for it to be well-defined.

Definition 4.1.1. Say f ∈ L2 is cuspidal if∫
Nn(F )\Nn(AF )

f(ng)dn = 0

for all nontrivial partitions n for all g ∈ G(AF ). We call L2
cusp(G(F )\G(AF ), ω) is the Hilbert space of

cuspidal functions for the usual inner product. A fancier way of saying this is that “for each parabolic,
the constant term map is zero on f”.

This may look strange, but it captures the notion of “vanishing at the cusps” from modular forms for the
case G = GL2,Q.
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Definition 4.1.2. An irreducible representation π of GLn(AF ) is cuspidal automorphic if π is a closed
G(AF )-submodule (for the topology coming from the Hilbert space structure) of L2

cusp(G(F )\G(AF ), ω).

4.2. Flath Decomposition. By definition, G(AF ) =
∏′
v G(Fv): this is the restricted product at all places,

even archimedean ones (for a general reductive group, you really need to use an integral model in order
to define a restricted product, i.e. you need some way of picking a maximal compact at all places for the
definition to make sense).

If π is cuspidal automorphic (or irreducible admissible, which we haven’t defined yet) decomposes as

π = ⊗̂′πv,
where now πv is an irreducible representation of G(Fv):

(1) If v is a finite place, πsm
v is dense in πv, and πsm

v is irreducible smooth. But for the purposes of our
lecture, let’s just assume πv is smooth: we don’t actually lose anything by doing this because if you
take the unitary completion you get the actual πv.

(2) If v is an infinite place, then πv is a representation of G(R) or G(C), and we get an analogous dense
πsm
v ⊆ πv, which consists of smooth Kv-finite vectors, where Kv is the maximal compact in G(Fv),

except this time πsm
v is only a (g = LieG(Fv),Kv)-module, so it’s not actually defined over the whole

G(Fv).

Fact 4.2.1 (Strong multiplicity one for GLn). If π, π′ are cuspidal automorphic representations and πv ∼= π′v
for all but finitely many v, then π = π′ as subrepresentations of L2

cusp.

Note this means that there is really at most one subrepresentation of L2
cusp(G(F )\G(AF ), ω) with fixed local

components at all but finitely many places.

4.3. Infinitesimal Characters. Say v - ∞ is an infinite place. Then we attach the infinitesimal charac-
ter

inf : Irr(GLn(Fv))→ (Cn/Sn)[Fv :R]

Roughly the way this works: π gets an action of Z(U(gv)), the center of the universal enveloping algebra of
gv = LieG(Fv), and it acts by a character. But the Harish-Chandra isomorphism tells us that

Z(U(gv)) ∼= ((C[t1, . . . , tn])Sn)⊗[Fv :R]

Then inf(π) should be thought of a Satake parameter in the archimedean case.

Definition 4.3.1 (Buzzard-Gee). A cuspidal automorphic representation π of G(AF ) is L-algebraic if
inf(π) ∈ (Zn/Sn)[Fv:R], and C-algebraic if inf(π) ∈ ((Z + n−1

2 )n/Sn)[Fv :R].

Exercise 4.3.1. If G = GL2,Q, then a classical cusp form of weight k ≥ 2 gives rise to a cuspidal automorphic
representation πf . Our normalization is inf(πf ) = (k − 3

2 ,−
1
2 ). Then |det |AF

: GL2(F )\GL2(AF )→ R×>0,
so

πf ⊗ | det |a inf−−→
(
k − 1

2
− a,−1

2
− a
)
.

4.4. Global Langlands Correspondence for GLn. This is based on work of Langlands himself, but also
work of Clozel, Fontaine-Mazur. Fix a prime ` and ι : Q`

∼−→ C.

Conjecture 4.4.1. There exists a unique bijection

{
cuspidal automorphic C-algebraic

representations π of GLn(AF )

}
∼←→


irreducible continuous representations

ρ : ΓF → GLn(Q`)
unramified almost everywhere, such that

ρv is de Rham for all v - `
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such that π ↔ ρ if and only if πv ↔ ιWD(πv)
Frob− ss ⊗ | · | 1−n

2 for all v - ∞ under the local Langlands
correspondence.

In the above theorem cuspidal should corresponds to irreducible and C-algebraic should corresponds to de
Rham.

Note that compatibility of the system of Galois representations is implicit in the statement: this suggests that
these should really come from something motivic, so maybe it should be the `-adic realization of some kind
of motive underlying the correspondence: see the Fontaine-Mazur conjecture for more details on this.

Remark 4.4.1. Here is a summary of some of the results known about this. The automorphic to Galois
direction is almost always done using the `-adic cohomology of Shimura varieties, which is where you find
Galois representations that should be compatible with your original automorphic representation. In the
other direction, the Taylor-Wiles-Kisin or Calegari-Geraghty methods are the two main methods people use
to prove automorphy lifting theorems.

The automorphic to Galois direction is done if F is CM or totally real, and π is regular, which means
that inf(π) consists of n distinct numbers: this is due to Harris-Lan-Taylor-Thorne, and by Scholze using a
different method.

Now we will state our target theorem for this course. Let ` and ι be as before, but now G = GL2,Q and π is
a cuspidal, automorphic, regular, and C-algebraic representation, unramified outside some finite set of places
S: this is the same as saying that π comes from a cuspidal eigenform of weight k ≥ 2.

Theorem 4.4.1 (Eichler-Shimura, Deligne). There exists a Galois representation

ρπ : ΓQ → GL2(Q`)

such that local-global compatibility holds at all places v 6∈ S ∪ {`}. Explicitly, this means that p1/2 Sat(π) is
the set of eigenvalues of ρ(Frobv) via ι.

Remark 4.4.2. We will follow the Langlands-Kottwitz method. Then local-global compatibility at S for
v 6= ` is done by Carayol, and at v = ` was done by Saito.

Idea of Proof. Realize this Galois representation as the π-part in the cohomology of modular curves. �

5. Talk V

References for this talk are [Tay04], [Kud94], [Wed08], [Sch11], [Kot92].

Let ` be a prime and ι : Q` → C be an isomorphism. Let π be a cuspidal automorphic regular C-algebraic
representation of GL2(AQ) unramified outside a finite set of places S (recall these come from cusp forms of
weight k ≥ 2). Then our goal is to prove the following theorem:

Theorem 5.0.1. There exists a unique representation

ρπ : Γ→ GL2(Q`)

unramified outside S ∪ {`} such that local-global compatibility holds, i.e. the elements of p1/2 Sat(πp) are the
eigenvalues of ρπ(Frobp) (via ι) for all p 6∈ S ∪ {`}.

We will prove this via the cohomology of modular curves.
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5.1. Modular Curves. Fix N ≥ 5.

Definition 5.1.1. The modular curve (of full level N) MN is the scheme defined over Z[1/N ] representing
the functor SchZ[1/N ] → Set given by

S 7→
{

(E/S, αN ) : E elliptic curve over S and αN : (Z/NZ)2
S
∼−→ E[N ]

}
/ ∼

Remark 5.1.1. Evaluating at C-points, we have as usual

MN (C) ∼=
⊔

Γ(N)\H

where Γ(N) is the usual subgroup ker(SL2(Z)→ SL2(Z/NZ)) and H is the complex upper half plane.

If N |N ′, then there is a mapMN ′ →MN taking (E,αN ′) 7→ (E,αN ′ |(Z/NZ)2) so we can take the limit

M = lim←−
N

MN .

This gets a Hecke action of GL2(A∞Q ) from the Hecke action at each level N (the transition maps are

Hecke-equivariant). We have a universal elliptic curve Euniv
N

p−→MN living over the moduli problem, and we
let

LN,k := Symk−2(R1p∗Euniv
N ).

(recall that inf(π∞) = (k− 3
2 ,−

1
2 ). In fact we will assume for simplicity that k = 2 so that LN,k = Q`. These

live over each MN , and we look at the compactly supported étale cohomology

H1
c,k(M) := lim−→

N

H1
c (MN,Q,LN,k).

The transition maps commute with the Hecke action, and we have a Galois action by construction of étale
cohomology, so we get an action of ΓQ ×GL2(A∞Q ).

Now we are in a nice setup, because now we have both a Hecke and a Galois action. The way this should
work then is that

ρπ := HomG(A∞Q )((π
∞)∨, H1

c,k(M)).

In other words, the Galois representation comes from the piece of cohomology which has the same Hecke
eigensystem as our original cuspidal automorphic representation π. Note one can show that dim ρπ = 2 via
Eichler-Shimura or a “Matsushima-type formula”.

But our main problem is to prove local-global compatibility: we need to relate πp with ρπ(Frobp). Consider
the following variant

Mp := lim←−
(N,p)=1

MN ,

which is now defined over Z(p) so that we can look mod p. Let

H1
c,k(Mp) := lim−→

(N,p)=1

H1
c (MN,Q,LN,k).

Then one can still check that

ρπ ∼= HomG(A∞,p
Q )((π

∞,p)∨, H1
c,k(Mp))

To see this, use the fact that dimπ
G(Zp)
p = 1 along with strong multiplicity one for GL2 (note that the

G(Zp)-invariants of H1
c,k(M) gives you H1

c,k(Mp)).

Now the new main problem is to “compute” the action of ΓQ×GL2(A∞,pQ ) on H1
c,k(Mp) at unramified primes,

but since the action is unramified at p, we are really studying the action of 〈Frobp〉 ×GL2(A∞,pQ ).
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5.2. Outline of the argument. Now we give an outline of the main argument.

(1) Describe the action of 〈Frobp〉 ×GL2(A∞,pQ ) on Mp(Fp) in terms of “linear algebraic” data.

(2) Obtain a trace formula computing the action of 〈Frobp〉 × GL2(A∞,pQ ) on H∗c,k(Mp) by applying a
suitable fixed point formula.

(3) Massage the formula and make it look like the Selberg trace formula.

(4) Compare the outcome of Step 3 with the Selberg trace formula. Basically, they look really similar,
but the difference is that the Selberg trace formula knows nothing about the action of Frobp, but it
does know about the full G(AQ).

(5) If all goes well, we get an equality, for j ≥ 1

tr(f (j)
p |πp) = tr(Frobjp |ρπ)

where f
(j)
p ∈ Hur(G(Qp)) are some explicit Hecke operators. Morally what’s going on is that we need

to relate the actions of Frobp and G(Qp) on both sides of the trace formula, as mentioned in the
previous step.

So there are too many things to go through: for us, we’ll describe step 1.

5.3. Fp-points of Mp. This is in the spirit of Langlands-Rapoport for modular curves.

Let Ẑp := lim←−(N,p)=1
(Z/NZ) and we let

E0 :=
{
E

elliptic curve−−−−−−−−→ Fp

}
/isogeny

Then given E → Fp, let

T p(E) := lim←−
(N,p)=1

E[N ]

and let

V p(E) := T p(E)⊗Z Q.

Note T p(E) is a free Ẑp-module of rank 2, and is a Ẑp-lattice in V p(E). We also need Ťp(E), which is the

covariant Dieudonné module of E[p∞]. This is free of rank 2 over Žp := W (Fp) and there are F−1, V −1

actions such that F−1V −1 = V −1F−1 = p. Then T ′p(E) ⊆ V ′p(E) is an F−1, V −1-invariant lattice. The

Frobenius on Q̌p = W (Fp)⊗Zp Qp is σ-semilinear.

So away from p we care about T p(E) and Ťp(E). Let’s describe

Mp(Fp) = lim←−
(N,p)=1

MN (Fp) =
{

(E
elliptic curve−−−−−−−−→ Fp, α : (Ẑp)2 ∼−→ T p(E))

}
/ ∼ .

But now we partition this into isogeny classes:⊔
E0∈E0

{
(E,α) ∈Mp(Fp) : there is an isogeny E → E0

}
=

⊔
E0∈E0

{(Lp, φp, Lp)} /(∼,Aut0(E0))

where Lp ⊆ V pE0 is a Ẑp-lattice, φp : (Ẑp)2 ∼−→ Lp is a trivialization, and Lp ⊆ V̌pE0 is a F−1, V −1-invariant

Žp-lattice.

How do we get this characterization? Given (E,α) and an isogeny f : E → E0 take Lp = f(T p(E)),

ϕp : (Ẑp)2 α−→ T p(E)
f−→ f(Tp(E)) = Lp. Then Lp = f(Ťp(E)). Then we quotient by Aut0(E0) to forget the

choice of f .
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Exercise 5.3.1. Check that this really gives you a bijection.

So we let
Xp(E0) := {(Lp, φp)}

and this has an action of GL2(A∞,pQ ) (if g ∈ G(Ẑp), then the action is given by φp 7→ φp · g). At p, we
let

Xp(E0) := {Lp}
parametrizing F−1, V −1-invariant lattices in V̌p(E0), which has a Frobp-action by F . Write

I(E) = Aut0(E0)

the self-quasi-isogenies. Then the summary is that

Mp(Fp) =
⊔

E0∈E0
I(E0)\Xp(E0)×Xp(E0)

and this map is an 〈Frobp〉 ×GL2(A∞,pQ )-equivariant identification.

Now let’s get a more group-theoretic description of Xp(E0) and Xp(E0).

Exercise 5.3.2. Xp(E0) is a GL2(A∞,pQ )-torsor.

At p, fix ϕ0,p : ̂̌Zp2 ∼−→ ŤpE0. Then X̌p(E0) consists of Lp ⊆ VpE0 ⊆ Q̌2
p which are F−1, V −1-invariant.

Equivalently Lp ⊆ F (Lp) ⊆ p−1Lp, and the Fp-dimension of the quotient is 2 ((1,1)).

Writing F = bσ for b ∈ G(Q̌p) and Lp = gp(Ž
2
p) for g ∈ G(Q̌p)/G(Žp), then the condition becomes

g−1
p bσ(gp) ∈ Ǩp diag(1, p−1)Ǩp.

with Ǩp = G(Žp).
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