Homework 1

Introduction to Topology, Spring 2023

Due January 30, 2023 at 11:59pm

This week's homework is meant to be a review of preliminaries, to make sure that you are familiar with some set theory and related material.

1. Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is:
(a) injective but not surjective
(b) surjective but not injective
(c) neither injective nor surjective
(d) bijective

Your answer should be a precisely defined function on all of \mathbb{R}, not just a picture. In parts (a) and (b) and (c), find nonempty subsets of the domain and the codomain where the function is bijective.
2. Prove de Morgan's laws: in other words, show that if $X \subset Z$ and $Y \subset Z$ then

$$
(X \cap Y)^{c}=X^{c} \cup Y^{c}
$$

and

$$
(X \cup Y)^{c}=X^{c} \cap Y^{c}
$$

Also show that

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

3. If X, Y, Z are three sets, construct natural maps

$$
\begin{aligned}
\operatorname{Fun}(X, Y \times Z) & \rightarrow \operatorname{Fun}(X, Y) \times \operatorname{Fun}(X, Z) \\
\operatorname{Fun}(X \sqcup Y, Z) & \rightarrow \operatorname{Fun}(X, Z) \times \operatorname{Fun}(Y, Z)
\end{aligned}
$$

and show that they are bijections.
4. If X is a finite set, show that $|X|<|\mathcal{P}(X)|$ without computing $|\mathcal{P}(X)|$ in terms of $|X|$. Then compute the size of $|\mathcal{P}(X)| .^{1}$
5. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions and let $A^{\prime} \subset A$ and $B^{\prime} \subset B$ and $C^{\prime} \subset C$ be subsets.
(a) Show that $A^{\prime} \subset f^{-1}\left(f\left(A^{\prime}\right)\right)$ and that equality holds if f is injective.
(b) Show that $f\left(f^{-1}\left(B^{\prime}\right)\right) \subset B^{\prime}$ and that equality holds if f is surjective.
(c) Show that $(g \circ f)^{-1}\left(C^{\prime}\right)=f^{-1}\left(g^{-1}\left(C^{\prime}\right)\right)$.
6. Let $f: X \rightarrow Y$ be a function.
(a) Define a relation on X by setting

$$
x_{0} \sim x_{1} \text { if } f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Show that \sim defines an equivalence relation on X.

[^0](b) Let X^{\star} denote the set of equivalence classes under \sim and let $r: X \rightarrow X^{\star}$ denote the map sending $x \in X$ to its equivalence class under \sim. Show that r is surjective.
(c) Show that there is an injective map
$$
f^{\star}: X^{\star} \rightarrow Y
$$
such that $f^{\star} \circ r=f$. If f is surjective, then show that f^{\star} is bijective.
We can express the fact that $f^{\star} \circ r=f$ by drawing a diagram

and saying that it commutes; this means that if you start at X and go down and then up-right, that's the same as going right.

[^0]: ${ }^{1}$ Bonus question, not for credit: if X is infinite and countable, is $\mathcal{P}(X)$ countable or uncountable? Can you prove it?

