Homework 1

Introduction to Topology, Spring 2023

Due January 30, 2023 at 11:59pm

This week's homework is meant to be a review of preliminaries, to make sure that you are familiar with some set theory and related material.

1. Give an example of a continuous function $f : \mathbb{R} \to \mathbb{R}$ which is:

- (a) injective but not surjective
- (b) surjective but not injective
- (c) neither injective nor surjective
- (d) bijective

Your answer should be a precisely defined function on all of \mathbb{R} , not just a picture. In parts (a) and (b) and (c), find nonempty subsets of the domain and the codomain where the function is bijective.

2. Prove de Morgan's laws: in other words, show that if $X \subset Z$ and $Y \subset Z$ then

$$(X \cap Y)^c = X^c \cup Y^c$$

and

$$(X \cup Y)^c = X^c \cap Y^c$$

Also show that

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

3. If X, Y, Z are three sets, construct natural maps

$$\begin{split} &\operatorname{Fun}(X,Y\times Z)\to\operatorname{Fun}(X,Y)\times\operatorname{Fun}(X,Z)\\ &\operatorname{Fun}(X\sqcup Y,Z)\to\operatorname{Fun}(X,Z)\times\operatorname{Fun}(Y,Z) \end{split}$$

and show that they are bijections.

- 4. If X is a finite set, show that $|X| < |\mathcal{P}(X)|$ without computing $|\mathcal{P}(X)|$ in terms of |X|. Then compute the size of $|\mathcal{P}(X)|$.¹
- 5. Let $f: A \to B$ and $g: B \to C$ be functions and let $A' \subset A$ and $B' \subset B$ and $C' \subset C$ be subsets.
 - (a) Show that $A' \subset f^{-1}(f(A'))$ and that equality holds if f is injective.
 - (b) Show that $f(f^{-1}(B')) \subset B'$ and that equality holds if f is surjective.
 - (c) Show that $(g \circ f)^{-1}(C') = f^{-1}(g^{-1}(C'))$.
- 6. Let $f: X \to Y$ be a function.
 - (a) Define a relation on X by setting

$$x_0 \sim x_1$$
 if $f(x_0) = f(x_1)$

Show that \sim defines an equivalence relation on X.

¹Bonus question, not for credit: if X is infinite and countable, is $\mathcal{P}(X)$ countable or uncountable? Can you prove it?

- (b) Let X^* denote the set of equivalence classes under \sim and let $r: X \to X^*$ denote the map sending $x \in X$ to its equivalence class under \sim . Show that r is surjective.
- (c) Show that there is an injective map

$$f^\star: X^\star \to Y$$

such that $f^* \circ r = f$. If f is surjective, then show that f^* is bijective.

We can express the fact that $f^* \circ r = f$ by drawing a *diagram*

and saying that it *commutes*; this means that if you start at X and go down and then up-right, that's the same as going right.