Homework 11

Introduction to Topology, Spring 2023

Due April 17, 2023 at 11:59pm

- 1. Prove the Eckmann–Hilton theorem (Proposition 11.2.3 in the notes).
- 2. We don't know $\pi_i(S^n)$ for i > n in general. But show that $\pi_i(S^1) = 0$ for all i > 1. You may assume the following general fact about covering spaces:

Proposition 0.0.1. Suppose $p: E \to B$ is a covering map and fix a point $e_0 \in E$ and let $b_0 := p(e_0)$. Fix Y a path-connected topological space which is also locally path-connected¹. Suppose $f: Y \to B$ is a continuous map and suppose there is a point $y_0 \in Y$ such that $f(y_0) = b_0$.

If $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(E, e_0))$, then there exists a map $\tilde{f}: Y \to E$ satisfying $\tilde{f}(y_0) = e_0$ and $p \circ \tilde{f} = f$. This is summarized in the diagram

3. By analogy with the case of S^1 , show that if X is path-connected and $x_0, x_1 \in X$ then there exists a group isomorphism $\pi_n(X, x_0) \cong \pi_n(X, x_1)$.

¹A space is locally path-connected if for every point $x \in X$ and every open set U containing x there exists a path-connected open set $V \subseteq U$ such that $x \in V$. You may assume that spheres are path-connected and locally path-connected