Homework 2

Introduction to Topology, Spring 2023

Due February 6, 2023 at 11:59pm

This week's exercises are meant to get you to play around with/think about metric spaces.

1. Show that if a metric space M has the discrete metric, then every closed ball can be written as an open ball, and every open ball can be written as a closed ball.
2. If (M_{1}, d_{1}) and (M_{2}, d_{2}) are two metric spaces, show that the following functions on $M_{1} \times M_{2}$ are metrics:
(a) $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)$
(b) $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\sqrt{d_{1}\left(x_{1}, y_{1}\right)^{2}+d_{2}\left(x_{2}, y_{2}\right)^{2}}$
(c) $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left(d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right)$.

Now suppose M_{1} and M_{2} are both \mathbb{R} with the Euclidean metric. For each metric d above, draw $B_{1}((0,0))$, the unit ball of radius 1 around zero.
3. Fix a set M, and fix two metrics d_{1} and d_{2}. Let $B_{r}\left(x, d_{i}\right)$ denote the open ball of radius $r>0$ around the point $x \in M$ with respect to d_{i}, for $i=1,2$.
We say that d_{1} and d_{2} are equivalent if for every $x \in M$ and every $r>0$ there exists $r^{\prime}, r^{\prime \prime}>0$ such that

$$
B_{r^{\prime}}\left(x ; d_{1}\right) \subseteq B_{r}\left(x ; d_{2}\right) \text { and } B_{r^{\prime \prime}}\left(x ; d_{2}\right) \subseteq B_{r}\left(x ; d_{1}\right) .
$$

In other words, the open balls for d_{1} and d_{2} "nest".
(a) Let d denote the usual Euclidean metric on \mathbb{R}^{n}. Let

$$
d_{\max }\left(\left(x_{i}\right)_{i=1, \ldots, n},\left(y_{i}\right)_{i=1, \ldots, n}\right)=\max \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{n}-y_{n}\right|\right\} .
$$

Prove that d and $d_{\text {max }}$ are equivalent.
(b) Show that if M is a finite set, then any two metrics on M are equivalent.
(c) Find an example of a set M and two metrics on it which are not equivalent (and prove it!)
4. If (M, d) is a metric space and x_{1}, x_{2}, \ldots is a sequence which converges to both $x \in M$ and $y \in M$, show (using the definition of convergence given in class) that $x=y$.
5. Fix $\left(M_{1}, d_{1}\right)$ and (M_{2}, d_{2}) two metric spaces.
(a) Show that the definition of a continuous map presented in class (also see Definition 2.3.1 in the notes) is equivalent ${ }^{1}$ to the following definition: $f: M_{1} \rightarrow M_{2}$ is continuous if whenever x_{1}, x_{2}, \ldots converges to $x \in M$, the sequence $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$ converges to $f(x) \in M$.
(b) Now suppose $M_{2}=\mathbb{R}$ and d_{2} is the Euclidean metric. Show that if $f, g: M_{1} \rightarrow \mathbb{R}$ are two continuous functions then $f+g$ and $f * g$ are continuous functions (here we add and multiply pointwise).

[^0]6. Let $C([a, b], \mathbb{R})$ denote the space of continuous functions $f:[a, b] \rightarrow \mathbb{R}$. Here $[a, b]$ has the Euclidean metric.
(a) Show that $\left(C([a, b], \mathbb{R}), d_{\max }\right)$ is a metric space, where
$$
d_{\max }(f, g)=\max _{x \in[a, b]}|f(x)-g(x)|
$$
(you can use the fact that a continuous function on a closed interval attains its maximum and minimum)
(b) If $x \in[a, b]$, show that the evaluation map at x
\[

$$
\begin{aligned}
\mathrm{ev}_{x}: C([a, b], \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto f(x)
\end{aligned}
$$
\]

is continuous with respect to the metric given in part (a).
(c) Show that

$$
d(f, g)=\int_{a}^{b}|f(x)-g(x)| \mathrm{d} x
$$

is also a metric on $C([a, b], \mathbb{R})$.
(d) If $x \in[a, b]$, show by example that the evaluation map at x

$$
\begin{aligned}
\mathrm{ev}_{x}: C([a, b], \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto f(x)
\end{aligned}
$$

is not continuous with respect to the metric given in part (c).

[^0]: ${ }^{1}$ We will later see that this equivalence does not hold in general topological spaces.

