Homework 9

Introduction to Topology, Spring 2023

Due April 3, 2023 at 11:59pm

1. Suppose $f, g: I \rightarrow X$ are two loops satisfying $f(0)=g(0)$ and $f(1)=g(1)$ and $k: X \rightarrow X^{\prime}$ is another continuous map. If H is a path-homotopy between f and g, show that $k \circ H$ is a path-homotopy between $k \circ f$ and $k \circ g$.
2. Suppose $f, g: X \rightarrow Y$ are two continuous maps satisfying $f\left(x_{0}\right)=g\left(x_{0}\right)$. Denote $y_{0}:=f\left(x_{0}\right)$. A homotopy from f to g relative to x_{0} is a map

$$
H: X \times I \rightarrow Y
$$

such that $H\left(x_{0}, t\right)=y_{0}$ for all $t \in I$; in this case we say that f and g are homotopic relative to x_{0}.
Show that if f, g are homotopic relative to x_{0} then the maps $f_{*}, g_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ are equal.
3. Here we will finish the proof that $\pi_{1}\left(X, x_{0}\right)$ is a group.
(a) Show that if $\ell: I \rightarrow X$ is a loop based at x_{0}, then the constant map $c: I \rightarrow X$ sending $t \mapsto x_{0}$ satisfies $[c * f]=[f * c]=[f]$. In other words, c is the identity element for the group structure on $\pi_{1}\left(X, x_{0}\right)$.
(b) Show that the operation $*$ on $\pi_{1}\left(X, x_{0}\right)$ is associative.
(c) If $\ell: I \rightarrow X$ is a loop based at x_{0}, then show that $\ell^{-1}(t)=\ell(1-t)$ is an inverse to ℓ in $\pi_{1}\left(X, x_{0}\right)$; in other words, you need to show that $\left[\ell^{-1} * \ell\right]=\left[\ell * \ell^{-1}\right]=[c]$.
4. This exercise is about varying the basepoint.
(a) Suppose $x_{0}, x_{1} \in X$ are two points and $\alpha: I \rightarrow X$ is a path satisfying $\alpha(0)=x_{0}$ and $\alpha(1)=x_{1}$. Then show that the map

$$
\begin{aligned}
\widehat{\alpha}: \pi_{1}\left(X, x_{0}\right) & \rightarrow \pi_{1}\left(X, x_{1}\right) \\
{[f] } & \mapsto\left[\alpha^{-1} * f * \alpha\right]
\end{aligned}
$$

is well-defined, and is an isomorphism of groups. (You may assume that concatenation of paths is associative; the proof of this is basically same as $3(\mathrm{~b})$).
(b) Recall that a group $(G, *)$ is abelian if $x * y=y * x$ for all $x, y \in G$.

Suppose X is path-connected, and fix two points $x_{0}, x_{1} \in X$. Show that $\pi_{1}\left(X, x_{0}\right)$ is abelian if and only if $\widehat{\alpha}=\widehat{\beta}$ for all pairs of paths α, β from x_{0} to x_{1}.
5. If X, Y are two topological spaces and $x_{0} \in X$ and $y_{0} \in Y$ are some chosen basepoints then find an isomorphism

$$
\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \xrightarrow{\sim} \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)
$$

(recall that if G and H are two groups, then $G \times H$ becomes a group by taking $(g, h) *\left(g, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right)$). Hint: think about the universal property of the Cartesian product.

