WEEK 1 GROUP PROBLEMS — TOPOLOGY — SPRING 2023

- 1. Let's explore equivalence relations.
 - (a) Take the set $\mathbb{R}^2 \{0\}$, and declare $(x_1, y_1) \sim (x_2, y_2)$ if and only if there exists $\lambda \in \mathbb{R}$ such that $x_1 = \lambda x_2$ and $y_1 = \lambda y_2$. Describe the equivalence classes. Can you think of ways to describe the set of equivalence classes?
 - (b) On the same set, let $(x_1, y_1) \sim (x_2, y_2)$ if $\sqrt{x_1^2 + y_1^2} = \sqrt{x_2^2 + y_2^2}$. Describe each equivalence class, and describe the set of equivalence classes. Compare and contrast with part (a).

Skip the next two and come back to them later.

- (c) Show that the intersection of a collection of equivalence relations is again an equivalence relation.
- (d) Intersect every equivalence relation on \mathbb{R} containing $\{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x + 1 \text{ and } -1 < x < 1\}$. What do you get?

- 2. If X is a set, we let $i_X : X \to X$ denote its *identity function*. If $f : X \to Y$ then $g : Y \to X$ is a *left inverse* if $g \circ f = i_X$, and a *right inverse* if $f \circ h = i_Y$. Find f which has:
 - (a) no left or right inverse (b) a left but not right inverse (c) a right but not left inverse
 - (d) Can a function have more than one left inverse? right inverse?
 - (e) Prove or disprove: a function $f: X \to Y$ can have left inverse g and right inverse h with $g \neq h$.

3. (a) Prove or disprove the existence of a strictly decreasing sequence of subsets of \mathbb{R}^2 :

$$U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$$

(we write $A \supseteq B$ if $A \supset B$ and $A \neq B$) such that if we let $U = \bigcap_{i=1}^{\infty} U_i$, then

(i) U is empty (ii) |U| = 1 (iii) |U| = n, for n > 0

(iv) U is countable (v) U is uncountable

- (b) Repeat part (a) but with \mathbb{Z} instead of \mathbb{R}^2 .
- (c) Challenge: Do (iv) for (0,1) instead of \mathbb{R}^2

4. I give you a real number $\epsilon > 0$. Give me a collection of closed intervals $\{[a_i, b_i]\}_{i \in I}$ (indexed by whatever set I that you want) inside \mathbb{R} such that

$$\mathbb{Q} \subseteq \bigcup_{i \in I} [a_i, b_i]$$

and such that the sum of the lengths is $< \epsilon$:

$$\sum_{i \in I} (b_i - a_i) < \epsilon.$$

One way to interpret this statement is by saying that " \mathbb{Q} has measure zero". It's "very small"!