Week 12 Group Problems - Topology - Spring 2023
Recall that I mentioned in class that $\pi_{3}\left(S^{2}\right)=\mathbb{Z}$, generated by something called the "Hopf fibration". This should be a map $S^{3} \rightarrow S^{2}$.
Recall also that

$$
S^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: \sum_{i=0}^{n} x_{i}^{2}=1\right\}
$$

Most of the following problems are going to be algebra problems.

1. Show that

$$
h(a, b, c, d)=\left(a^{2}+b^{2}-c^{2}-d^{2}, 2(a c+b d), 2(b c-a d)\right)
$$

defines a map $S^{3} \rightarrow S^{2}$. This is the Hopf map.
2. We can identify \mathbb{R}^{4} with \mathbb{C}^{2} by sending $(a, b, c, d) \mapsto(a+b i, c+d i)$; how would you describe the image of S^{3} under this identification?
3. We can identify S^{2} with the one-point compactification of the complex numbers, written $\mathbb{C} \cup \infty$ (this is also called the complex projective line), via stereographic projection from the unit sphere to the $x-y$ plane. Using this (and the previous exercise), show that the Hopf map is the same as the map

$$
\left(z_{1}, z_{2}\right) \mapsto z_{1} / z_{2}
$$

(Hint: if you can't remember how stereographic projection works, try it for the circle and $\mathbb{R} \cup \infty$ first)
4. Using the previous exercise, compute the fibers of the Hopf map over a fixed point.
5. Assuming you know that the Hopf map is a fiber bundle, show that it can't be the trivial fiber bundle.
6. Go watch this video: https://www.youtube.com/watch?v=AKotMPGFJYk. In this video S^{2} is viewed in the usual way, and S^{3} is viewed as $[0,1]^{3}$ with the boundary glued together.

