1 Open/closed sets

We saw a notion of open and closed ball; $B_r(x)$ and $B_r^{\bullet}(x)$ in a metric space. Let's expand this a bit.

- 1. If (M, d) is a metric space and $U \subseteq M$ is a subset of M, say U is open if for every point $x \in U$ there exists r > 0 such that $B_r(x) \subseteq U$.
 - (a) Is the empty subset open?
 - (b) Is an arbitrary union of open subsets open? Prove or find a counterexample/salvage.
 - (c) Is an arbitrary intersection of open subsets open? Prove or find a counterexample/salvage.
 - (d) If M is discrete, what are the open sets?Skip the next problem and come back to it later.
 - (e) Can you precisely describe the structure of *every* open set in \mathbb{R} (with the Euclidean topology)?

- 2. If (M, d) is a metric space and $Z \subseteq M$ is a subset, we say that Z is *closed* if its complement in M is open.
 - (a) Is it true that if $Z \subseteq M$ is closed and $x \in Z$ then Z must contain a closed ball $B_r^{\bullet}(x)$?
 - (b) Is an arbitrary union of closed subsets closed? Prove or find a counterexample/salvage.
 - (c) Is an arbitrary intersection of closed subsets closed? Prove or find a counterexample/salvage.
 - (d) If M is discrete what are the closed sets?
 - (e) Can you find a subset of a metric space which is neither closed nor open?
 - (f) Can you find a subset of a metric space which is both closed and open (clopen)? What about in ℝ?
 - (g) Show that $\{x\} \subset M$ is always closed.

Skip the next problem and come back to it later.

(h) Prove that a subset $Z \subseteq M$ is closed if and only if

 $(x_i) \in Z$ and $x_i \to x \in Z$ implies $x \in Z$.

(hint: think about \mathbb{R} or \mathbb{R}^2 first to get some intuition!)

2 Ultrametrics

A metric d on a space M is called an *ultrametric* if it satisfies the strong triangle inequality

$$d(x, z) \le \max(d(x, y), d(y, z))$$

1. Let $\mathbb{C}((x))$ denote the set (actually, it's a field, but we don't need this) of *Laurent series* in the complex numbers. This is the set of power series

$$f(x) = \sum_{i=N}^{\infty} c_i x^i$$

with $c_i \in \mathbb{C}$ and for $N \in \mathbb{Z}$, positive or negative; so in particular $\{i < 0 : c_i \neq 0\}$ is finite. If $f(x) \in \mathbb{C}((x))$, let $|f(x)| = 2^{-i}$ where *i* is the smallest index for which $c_i \neq 0$ (e.g. if $f(x) = x^{-1} + 2x$ then i = -1). Define a metric on $\mathbb{C}((x))$ by taking

$$d(f(x), g(x)) = |f(x) - g(x)|.$$

Show that d is an ultrametric.

- 2. Now let (M,d) be an arbitrary ultrametric space. These spaces are really weird! Here's why.
 - (a) In the inequality

$$d(x,z) \le \max(d(x,y), d(y,z))$$

show that if $d(x, y) \neq d(y, z)$, then $d(x, z) = \max(d(x, y), d(y, z))$.

Give an example in $\mathbb{C}((t))$ where the inequality is strict.

- (b) Show that if $y \in B_r(x)$ then $B_r(x) = B_r(y)$. Conclude that if $B_r(x) \cap B_s(y) \neq \emptyset$ then one is contained in the other.
- (c) Show that every closed ball is open and that every open ball is closed.
- 3. Can you draw a picture of an ultrametric space?