Week 2 Group Problems - Topology - Spring 2023

1 Open/closed sets

We saw a notion of open and closed ball; $B_{r}(x)$ and $B_{r}^{\bullet}(x)$ in a metric space. Let's expand this a bit.

1. If (M, d) is a metric space and $U \subseteq M$ is a subset of M, say U is open if for every point $x \in U$ there exists $r>0$ such that $B_{r}(x) \subseteq U$.
(a) Is the empty subset open?
(b) Is an arbitrary union of open subsets open? Prove or find a counterexample/salvage.
(c) Is an arbitrary intersection of open subsets open? Prove or find a counterexample/salvage.
(d) If M is discrete, what are the open sets?

Skip the next problem and come back to it later.
(e) Can you precisely describe the structure of every open set in \mathbb{R} (with the Euclidean topology)?
2. If (M, d) is a metric space and $Z \subseteq M$ is a subset, we say that Z is closed if its complement in M is open.
(a) Is it true that if $Z \subseteq M$ is closed and $x \in Z$ then Z must contain a closed ball $B_{r}^{\bullet}(x)$?
(b) Is an arbitrary union of closed subsets closed? Prove or find a counterexample/salvage.
(c) Is an arbitrary intersection of closed subsets closed? Prove or find a counterexample/salvage.
(d) If M is discrete what are the closed sets?
(e) Can you find a subset of a metric space which is neither closed nor open?
(f) Can you find a subset of a metric space which is both closed and open (clopen)? What about in \mathbb{R} ?
(g) Show that $\{x\} \subset M$ is always closed.

Skip the next problem and come back to it later.
(h) Prove that a subset $Z \subseteq M$ is closed if and only if

$$
\left(x_{i}\right) \in Z \text { and } x_{i} \rightarrow x \in Z \text { implies } x \in Z .
$$

(hint: think about \mathbb{R} or \mathbb{R}^{2} first to get some intuition!)

2 Ultrametrics

A metric d on a space M is called an ultrametric if it satisfies the strong triangle inequality

$$
d(x, z) \leq \max (d(x, y), d(y, z))
$$

1. Let $\mathbb{C}((x))$ denote the set (actually, it's a field, but we don't need this) of Laurent series in the complex numbers. This is the set of power series

$$
f(x)=\sum_{i=N}^{\infty} c_{i} x^{i}
$$

with $c_{i} \in \mathbb{C}$ and for $N \in \mathbb{Z}$, positive or negative; so in particular $\left\{i<0: c_{i} \neq 0\right\}$ is finite. If $f(x) \in$ $\mathbb{C}((x))$, let $|f(x)|=2^{-i}$ where i is the smallest index for which $c_{i} \neq 0$ (e.g. if $f(x)=x^{-1}+2 x$ then $i=-1)$. Define a metric on $\mathbb{C}((x))$ by taking

$$
d(f(x), g(x))=|f(x)-g(x)|
$$

Show that d is an ultrametric.
2. Now let (M, d) be an arbitrary ultrametric space. These spaces are really weird! Here's why.
(a) In the inequality

$$
d(x, z) \leq \max (d(x, y), d(y, z))
$$

show that if $d(x, y) \neq d(y, z)$, then $d(x, z)=\max (d(x, y), d(y, z))$.
Give an example in $\mathbb{C}((t))$ where the inequality is strict.
(b) Show that if $y \in B_{r}(x)$ then $B_{r}(x)=B_{r}(y)$. Conclude that if $B_{r}(x) \cap B_{s}(y) \neq \varnothing$ then one is contained in the other.
(c) Show that every closed ball is open and that every open ball is closed.
3. Can you draw a picture of an ultrametric space?

