WEEK 4 GROUP PROBLEMS — TOPOLOGY — SPRING 2023

A topological space is defined by specifying which sets are open, or equivalently, which sets are closed. Today we will explore some other ways to define a topology.

Definition 0.0.1. Fix X a topological space and $A \subseteq X$ a subset.

- 1. The closure of A, denoted \overline{A} , is the smallest closed subset containing A; in other words, \overline{A} is the intersection of all closed subsets containing A (why is this closed?).
- 2. The *interior of* A, denoted A° , is the largest open subset contained in A; in other words, A° is the union of all open subsets contained in A (why is this open?).

On the homework you will show that a subset $Z \subseteq X$ is closed if and only if it contains all of its *limit points*, so you can also define \overline{A} to be the set of all limit points of A.

- 1. In Euclidean space, what is the closure of an open ball of positive radius? What is the interior of a closed ball of positive radius?
- 2. In \mathbb{R} what is the interior of a single point? In \mathbb{R}^2 what is the interior of the x-axis?
- 3. In \mathbb{R} what is the closure of \mathbb{Q} ? What about the interior of \mathbb{Q} ?
- 4. If X is a discrete topological space, describe what interior and closure do. Same for indiscrete spaces.
- 5. Show that $\overline{\overline{A}} = \overline{A}$. Show that $(A^{\circ})^{\circ} = A^{\circ}$.
- 6. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Show that $\overline{\varnothing} = \varnothing$.

Now that we've seen some basic properties of closure and interior, let's try to reverse things. So now forget you have a topology at all, and forget you have open and closed sets entirely.

Definition 0.0.2 (Kuratowski closure axioms). If X is a set, then a *closure operator* is a map $\overline{(\cdot)} : \mathcal{P}(X) \to \mathcal{P}(X)$ (this notation means that $A \mapsto \overline{A}$ under this map, for $A \in \mathcal{P}(X)$) satisfying

1.
$$\overline{\varnothing} = \varnothing$$

- 2. $A \subseteq \overline{A}$ for all $A \in \mathcal{P}(X)$,
- 3. $\overline{\overline{A}} = \overline{A}$ for all $A \in \mathcal{P}(X)$, and

4.
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
.

Now suppose you have a closure operator on X. We say that a subset $Z \subseteq X$ is *closed* if $\overline{Z} = Z$.

1. Show that the closed sets, defined this way, define a topology. In other words, show that \emptyset and X are closed and that closedness is stable under finite union and arbitrary intersection.

2. Ty to formulate a dual notion of "interior operator". Define a notion of "open set" with respect to your definition, and show that the collection of open sets with respect to an interior operator forms a topology.

Bonus exercise: show that a function $f: X \to Y$ between two topological spaces is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$.