Week 5 Group Problems - Topology - Spring 2023

Today we'll explore product, quotient, and subspace topologies.

1. (Quotient topology exercise) Consider a square piece of paper.

Let's try gluing it to itself in different ways. Glue the edges of the pieces of paper with the same color/shading type, making sure that the triangles line up with each other properly (i.e. not upsidedown from each other). What shapes do you get?
(a)

(e)

(b)

(d)

(f)

2. Recall that a group is a set G with a binary operator $-\bullet-: G \times G \rightarrow G$, an identity element $e \in G$, and an inverse map $i: G \rightarrow G$ satisfying
(a) (associativity) $(g \bullet h) \bullet k=g \bullet(h \bullet k)$ for all $g, h, k \in G$
(b) (two-sided identity) $g \bullet e=e \bullet g=g$ for all $g \in G$
(c) (inversion) $g \bullet i(g)=i(g) \bullet g=e$ for all $g \in G$.

Let's spice this up a bit. Pick a topology on a group G. With this choice of topology, say that G is a topological group if
(a) The map $-\bullet-: G \times G \rightarrow G$ is continuous. Here we put the product topology on $G \times G$.
(b) The map $i: G \rightarrow G$ is continuous.

Now let's do some examples.
(a) Observe that every group is a topological group, if you give it the discrete topology.
(b) Show that \mathbb{R}, viewed as a group under addition and equipped with the Euclidean topology, is a topological group.
(c) Show that the unit circle $S^{1} \subset \mathbb{C}$ inside the complex plane is a topological group under multiplication; here we have the Euclidean topology again.
(d) Show that \mathbb{R}^{\times}(the units in \mathbb{R}, equivalently the nonzero elements of \mathbb{R}) is a topological group for multiplication, and the subspace topology of the Euclidean topology.
(e) Let

$$
\mathrm{GL}_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a d-b c \neq 0\right\}
$$

denote the set of 2×2 invertible matrices with coefficients in \mathbb{R}. This is a group under multiplication. Observe that there is an injective map

$$
\begin{aligned}
& \mathrm{GL}_{2}(\mathbb{R}) \hookrightarrow \mathbb{R}^{4} \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto(a, b, c, d)
\end{aligned}
$$

and so you can give $\mathrm{GL}_{2}(\mathbb{R})$ the subspace topology from \mathbb{R}^{4}. Show that $\mathrm{GL}_{2}(\mathbb{R})$ is a topological group. Is $\mathrm{GL}_{2}(\mathbb{R})$ open or closed in \mathbb{R}^{4} ?

